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LogSum + L2 penalized logistic 
regression model for biomarker 
selection and cancer classification
Xiao‑Ying Liu*, Sheng‑Bing Wu, Wen‑Quan Zeng, Zhan‑Jiang Yuan & Hong‑Bo Xu

Biomarker selection and cancer classification play an important role in knowledge discovery using 
genomic data. Successful identification of gene biomarkers and biological pathways can significantly 
improve the accuracy of diagnosis and help machine learning models have better performance on 
classification of different types of cancer. In this paper, we proposed a LogSum + L2 penalized logistic 
regression model, and furthermore used a coordinate decent algorithm to solve it. The results of 
simulations and real experiments indicate that the proposed method is highly competitive among 
several state‑of‑the‑art methods. Our proposed model achieves the excellent performance in group 
feature selection and classification problems.

With the development of DNA microarray  technology1,2, the biological researchers can analyze the expression 
levels of thousands of genes simultaneously. Many studies have shown that microarray data can be used to clas-
sify the different types of cancer, which includes how long the incubation period is, and what drugs are effective 
in the diagnosis and treatment processes.

From a biological point of  view3, only a small number of genes (biomarkers) strongly indicate the target 
cancer, while other genes are not related to disease. Therefore, the data with unrelated genes may bring noise, 
and make the machine learning approaches less easy to find pathogenic genes that cause the disease. Moreover, 
from a machine learning perspective, the large number of genes (features) with few samples in the datasets may 
cause  overfitting4, and have negative impact on classification performance. Due to the importance of these issues, 
effective gene (biomarker) selection methods are needed to help classify different cancer types and improve 
prediction accuracy.

In recent years, many methods for gene selection in microarray datasets have been developed and generally 
can be divided into three categories: filters, wrappers, and embedded methods. Filter  methods5–8 evaluate genes 
based on discriminative power without considering their regulation correlations with other genes. The main 
disadvantage of the filtering methods is that it examines each gene separately, and makes each gene independent, 
thereby ignores the possibility that the genes have combined and grouping effects. This is a common problem 
with statistical methods, such as t-test, which can also examine each gene individually.

Wrapper  methods9–11 utilize feature assessment measures based on the learning performance to select subsets 
of genes. Generally, they can acquire a small number of related genes to notable promote the learning ability. In 
some cases, the results of the wrapper methods are better than those of the filter methods. However, the main 
fault of wrapper methods is their computational cost is high.

A third set of feature selection approaches is the embedded  methods12–26 that perform feature selection as part 
of the learning procedure of a single process. Under similar learning performance, the computational efficiency of 
embedded methods is more efficient than wrapper approaches. Hence, embedded methods have recently attracted 
a lot of attention in the literature. The regularization methods are important embedded technologies, which can 
perform feature selection and model training simultaneously. Many regularization methods have been proposed, 
such as  Lasso12,  SCAD13, adaptive  Lasso14,  MCP15, Lq (0 < q < 1)16, L1/2

17,18, LogSum19, etc. These methods perform 
well with the independent feature selection. When the features are highly correlated, some regularization methods 
which pay attention to the grouping effect can be used to select the groups of the relevant features, such as group 
 Lasso20, Elastic  net21, Fused  Lasso22, OSCAR 23, adaptive Elastic  net24, SCAD-L2

25, L1/2 + L2
26.

On the other hand, many machine learning models have been used to analyze microarray gene expression 
data for cancer classification. For example, Furey et al. used support vector machines (SVMs) to classify cell 
and tissue  types27. Medjahed et al. applied the K-nearest neighbors (K-NN) to the diagnosis and classification 
of breast  cancer28. Meanwhile, some researchers used the logistic regressions with optimization methods for 
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binary cancer  classification29–33. However, the traditional logistic regression model has two obvious shortcom-
ings, mainly in the following two aspects:

1. Feature selection problem.
  All or most of the feature coefficients obtained by fitting the logistic regression model are not zero, i.e. all 

most of the features are related to the classification target and not sparse. However, the key factors affect-
ing the model are often only a few in many practical problems. This non-sparseness of the logistic models 
increases the computational complexity on the one hand and is not conducive to the actual interpretation 
of the practical problems.

2. Overfitting problem.
  The logistic regression models can often obtain good precision for the training data, but for the test data 

outside the training set, the classification accuracy rate is not ideal. In fact, not only logistic regression, many 
other data analysis models will also be affected by overfitting. It has become one of the hot research topics 
in statistics, machine learning and other fields.

In recent years, there is growing interesting to apply the regularization techniques in the logistic regression 
models to solve the above mentioned two shortcomings. For example, Tibshirani and  Friedman34,35 proposed 
the sparse logistic regression based on the Lasso regularization and the coordinate descent methods. Algamal 
et al.36,37 proposed the adaptive Lasso and the adjusted adaptive elastic net for gene selection in high dimensional 
cancer classification. Like sparse logistic regression with the L1 regularization method, Cawley and  Talbot30 
investigated sparse logistic regression with Bayesian regularization. Liang et al.38 investigated the sparse logistic 
regression model with the L1/2 penalty for gene selection in cancer classification.

Inspired by above mentioned methods, in this paper, we proposed a LogSum + L2 penalized logistic regression 
model. The main contributions of this paper include.

1. Our proposed method can not only select sparse features (biomakers), but also identify the groups of the 
relevant features (gene pathways). The coordinate decent algorithm is used to solve the LogSum + L2 penal-
ized logistic regression model.

2. We also evaluate the capability of our proposed method and compare its performance with other regulariza-
tion methods. The results of simulations and real experiments indicate that the proposed method is highly 
competitive among several state-of-the-art methods.

The rest of this paper is organized as follows. In “Related works” section, we introduce the related work. 
“Methods” section represents the LogSum + L2 penalized logistic regression model and its optimization algorithm. 
“Experiments experimental results and discussion” section analyzes the results of the simulated data. “Discussion 
and conclusion” section analyzes the results of real data. Section 6 concludes this paper.

Related works
Sparse penalized logistic regression. We focused on binary classification using logistic regression (LR), 
which is a statistical method for modeling a binary classification problem. Suppose we have n samples and p 
genes. Datasets X and y are the genes matrix and the dependent variable, respectively. So, the n samples mean the 
set D, xij denotes the value of gene j for the ith samples, yi is a corresponding variable that takes a value of 0 or 1, 
yi = 0 indicates the ith sample in Class 1 and yi = 1 indicates the ith sample is in Class 2. Then, we define a classi-
fier f (x) = ex

(1+ex) such that for any input x with class label y, f (x) predicts y correctly. The LR is given as follows:

In Eq. (1), β= (β0,β1,...,βp) are the coefficients need to be estimated. We should notice that β0 is the intercept. 
The log-likelihood function of the transformation of Eq. (1) is defined as:

Then we can obtain the coefficients β when Eq. (2) is minimized. In the cancer classification problem with 
high-dimensional and low-sample size data (p ≫ n),directly solving the logistic model (2) will make overfitting. 
Therefore, to solve this problem, we need add a regularization term to (2), the sparse logistic regression can be 
modelled as:

where l(β) is the loss function, p(β) is the penalty function, and � > 0 is a control parameter.

A coordinate decent algorithm for different thresholding operators. The coordinate decent algo-
rithm is a “one-at-a-time”  approach40, and before considering the coordinate descent algorithm for the nonlinear 

(1)P(yi = 1|Xi) = f (X ′
iβ) =

e(X
′
iβ)

1+ e(X
′
iβ)

(2)l(β) = −
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logistic regularization, we first introduce a linear regression case. The objective function of the linear regression 
is as follow:

where y = (y1, . . . , yn)
T is the vector of n response variables,Xi = (xi1, xi2, . . . , xij) is ith input variables with 

dimensionality p and yi is the corresponding response variable. ||.|| denotes the L2-norm.
The coordinate decent algorithm “one-at-a-time” is to solve βj and other βk  =j(represent the coefficients βk  =j 

remained after jth element βj is removed) are fixed. The Eq. (4) can be rewritten as:

In Eq. (5), kth represents other features than the jth feature.
The first order derivative at βj can be estimated as:

We define ỹ(j)i =
∑

k �=j xikβk as a part of fitting βj , ̃r
(j)
i = yi − ỹ

(j)
i  , and wj =

∑n
i=1 xij r̃

(j)
i  , where ̃r(j)i  represents 

the partial residuals with respect to the jth feature.
To consider the correlation of features, Elastic Net ( LEN)21 had been proposed, which emphasizes a grouping 

effect. The LEN penalty function is given as follows:

The penalty function of LEN is combination of L1 penalty and ridge penalty which a = 1 and a = 0 respectively. 
Therefore, Eq. (6) is rewritten as follows:

Zou and Hastie have proposed the univariate  solution21 for a LEN penalized regression coefficient as follows:

where S(wj , �a) is soft thresholding operator for the L1 penalty if a is equal to 1, so Eq. (9) can be divided into 
three situations as follows:

Fan et al. have proposed the SCAD  penalty13, which can produce sparse set of solutions and approximately 
unbiased coefficients for large coefficients. Its penalty function is shown as follows:

Additionally, the SCAD thresholding operator is given as follows:

Like the SCAD penalty, Zhang et al. have proposed the maximum concave penalty (MCP)15. The formula of 
its penalty function is shown as:

And the MCP thresholding operator is given as follows:

(4)min

{
1
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In Eq. (14), γ is the experience parameter.
Xu et al. have proposed L1/2  regularization17, and its penalty function can be written:

Then the univariate half thresholding operator for a L1/2 penalized linear regression coefficient is given as 
follows:

in Eq. (16), φ�(w) = �

8

(
|w|
3

)− 3
2.

To consider the correlation of genes, Huang et al. have proposed HLR  regularization26. Equation (15) can 
be rewritten:

And the univariate half thresholding operator for the HLR penalized linear regression coefficient is as follows:

Theoretically, the L0 regularization produces the better solutions with more sparsity, but it is NP problem. 
Therefore, Candes et al.  have19 proposed LogSum penalty, which approximates much better the L0 regularization. 
We could rewrite the penalty function of the LogSum regularization as follows:

where ε > 0 should be set arbitrarily small, to closely make the LogSum penalty resemble the L0-norm. Equa-
tion (19) has a local  minimal39.

where � > 0 , 0 < ε <
√
� , c1 = wj − ε , c2 = c21 − 4(�− wjε).

Methods
LogSum + L2 penalized logistic regression model. In this paper, we proposed the LogSum + L2 penal-
ized logistic regression model for feature group selection. We could write the LogSum + L2 penalty as follows:

where 
∥∥y − Xβ

∥∥2 is the loss function, (y,X) is a data set, ε > 0 is a constant, � > 0 , �1 ≥ 0 and �2 ≥ 0 are regu-
larization parameters that control the complexity of the penalty function.

Figure 1 describes the contour plots on two-dimensional for the penalty functions of L1, LEN, HLR and Log-
Sum + L2 approaches. It is demonstrated that the LogSum + L2 penalty is non-convex for the given parameters 
�1 and �2 in Eq. (21).

The LogSum + L2 thresholding operator is given as follows:

where � = 2
√
�1(1+ 2�2)− (1+ 2�2)ε , �1 + �2 = 1.

The proof of Eq. (22) is given as follows:
Considering the regression model has the following form
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where the response y ∈ Rn , the predictors X = (x1, x2, ..., xp),X ∈ Rn×p and the error term e = (e1, e2, ..., en) 
are i.i.d. with mean 0 variance σ 2.

The Logsum+ L2 regularization can be expressed as:

Its first partial derivative with respect to βk is given by follows:

Equation (25) is obtained from condition that the design matrix X is orthonormal. By setting the first partial 
derivative equal to zero, we obtain the estimator with its kth element β̂k.

We first considers the situation βj > 0 , let r(k)i = yi −
∑p

j �=k xijβj , wk =
∑n

i=1 r
(k)
i (−xik) . Set the first partial 

derivative ∂ lLogsum+L2
∂βk

= 0 , we have:

and Eq. (26) is equivalent to follows:
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Figure 1.  Contour plots (two-dimensional) for the regularization methods.
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Let

We discuss the solutions of Eq. (27) according to the value of �.

1. if � < 0 , Eq. (27) has no solution, that is no real root.
2. if � = 0 , Eq. (27) has unique root, that is β̂k = wk−(1+2�2)ε

2(1+2�2)
.

3. if � > 0 , Eq. (27) has two roots, we have

Therefore, when wk ≥ 2
√
�1(1+ 2�2)− (1+ 2�2)ε , we obtain the estimator

For βk < 0 , we can obtain the estimator in a similar way. Finally, we obtain the thresholding function of the 
Logsum+ L2 regularization as Eq. (22).

According to different thresholding operators, we also discuss three properties to satisfy the coefficient esti-
mator as shown in Fig. 2:

(a) Unbiasedness the resulting estimator is nearly unbiased when the true unknown parameter is large to avoid 
unnecessary modeling bias;

(b) Sparsity the resulting estimator is a thresholding rule, which automatically sets a small estimated coefficient 
to zero to reduce model complexity;

(c) Continuity the resulting estimator is continuous to avoid instability in model prediction.

Figure 2 shows four regularization methods:L1 , LEN , HLR and LogSum+ L2 penalties with an orthogonal 
design matrix in the regression model. The estimators of L1 and LEN are biased, whereas the HLR penalty is 
asymptotically unbiased. Similar to the HLR method, the LogSum+ L2 approach also performs better than L1 
and LEN in the property of unbiasedness. All of these four regularization methods fulfil requirements of sparsity 
and continuity.

(27)(1+ 2�2)β
2
k − (wk − (1+ 2�2)ε)βk − wkε + �1 = 0

� = (wk − (1+ 2�2)ε)
2 − 4(1+ 2�2)(�1 − wkε)

= (wk + (1+ 2�2)ε)
2 − 4�1(1+ 2�2)

(wk + (1+ 2�2)ε)
2 > 4�1(1+ 2�2)

wk + (1+ 2�2)ε > 2
√
�1(1+ 2�2)

(28)β̂k =
wk − (1+ 2�2)ε +

√
(wk + (1+ 2�2)ε)

2 − 4�1(1+ 2�2)

2(1+ 2�2)

Figure 2.  Exact solution of (a) L1 (b) LEN (c) HLR (d) LogSum+ L2 in an orthogonal design.
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A coordinate decent algorithm for the LogSum + L2 model. Inspired by Liang et al.38, Eq. (3) is lin-
earized by one-term Taylor series expansion:

where ε > 0 , Zi = Xiβ̃ + Yi−f (Xi β̃)

f (Xi β̃)(1−f (Xi β̃))
 is the estimated response, Wi = f (Xiβ̃)(1− f (Xiβ̃)) is the weight and 

f (Xiβ̃) = exp(Xi β̃)

1+exp(Xi β̃)
 . Redefine the partial residual for fitting current β̃j as Z̃(j)

i =
∑

k �=j xikβ̃k and 
wj =

∑n
i=1 Wixij(Zi − Z̃

(j)
i ) . A pseudocode of the coordinate descent algorithm for the Logsum+ L2 penalized 

logistic regression model is shown in Algorithm 1 (Fig. 3).

(30)L(β , �) ≈





1

2n

n�

i=1

(Zi − Xiβ)
′Wi(Zi − Xiβ)+ �




p�

j

�
�1log

���βj
��+

�
+ �2

��βj
��2
�









Figure 3.  Flowchart of the coordinate descent algorithm for the LogSum+ L2 penalized logistic regression 
model.
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Experiments experimental results and discussion
Analysis on simulated data. In this section, we analyze the performance of the proposed method (the 
LogSum+ L2 penalized logistic regression model) by simulation analysis. We compare the proposed method 
with other three methods, which are logistic regression with 

L1
 , LEN , HLR regularizations. We simulate data 

from the true model.

where X ∼ N(0, 1) , ε is the independent random error and σ is the parameter that controls the signal to noise. 
Two scenarios are presented here. In each example, the dimension of features is 1000. Here are the details of the 
two scenarios.

1. In Scenario 1, the dataset consists of 200 observations, we set σ = 0.3 and simulate the group feature situation.

  
 where ρ is the correlation coefficient of the group features.

  In this example, there is one set of related features. The ideal sparse regression method should select 5 real 
features and set other 995 features as noise features to zero.

2. In Scenario 2, we set σ = 0.4 and the dataset consists of 400 observations, and defined two group features.

log

(
y

1− y

)
= Xβ + σε, ε ∼ N(0, 1)

β =



2, 2, 2, 2, 2� �� �
5

, 0, . . . , 0� �� �
995



;

xi = ρ × x1 + (1− ρ)× xi , i = 2, 3, 4, 5;

β =



2, 2, 2, 2, 2, 1.5,−2, 1.7, 3,−2.5,� �� �
10

3, . . . , 3� �� �
10

0, . . . , 0� �� �
980



;

xi = ρ × x1 + (1− ρ)× xi , i = 2, 3, . . . , 10;
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In this example, there are two sets of related group features. The ideal penalized logistic regression method 
should select 20 real features and set other 980 features as noise features to zero.

In this experiment, we initialize the coefficient ρ of features’ correlation as 0.2, 0.6 respectively, and hope to 
observe the accuracy of testing under different correlations by running different correlation values. The L1 and 
LEN approaches were executed by Glmnet (http://web.stanf ord.edu/~hasti e/glmne t_matla b/, MATLAB version 
2014-a). We use the tenfold cross-validation (CV) approach to optimize the regularization parameters or tuning 
parameters (balance the tradeoff between data fit and model complexity) of the L1 , LEN , HLR and LogSum+ L2 
approaches.

At the beginning, we divided the datasets at random into the training sets and the test sets. In our experiment, 
the approximate 70% of samples are proposed as training sets, and the rest are used as test sets. We repeated the 
simulations 30 times for each penalty method and computed the mean classification accuracy, mean classifica-
tion sensitivity, and mean classification specificity on the training and test datasets respectively. To evaluate the 
quality of the selected features for the regularization approaches, the sensitivity and specificity of the feature 
selection  performance39 were defined as the follows:

where the .∗ is the element-wise product, and |.|0 calculates the number of non-zero elements in a vector, β  and 
β̂  are the logical “not” operators on the vector β and β̂.

The training results of different methods on simulate datasets are reported in Table 1. As it can be seen, for 
all scenarios, our proposed LogSum+ L2 procedure generally achieves higher or comparable classification per-
formance than the L1 , LEN and HLR methods. For example, in the Scenario 1 with ρ = 0.6, our proposed method 
gained the 97.86% of accuracy, 95.38% of sensitivity and 100% of specificity, all of this data has increased by 6% 
for other methods. And whatever Scenario 1 or 2, the LogSum+ L2 methods always show the highest accuracy 
of training set, both ρ = 0.2 and ρ = 0.6. In summary, in the case of different scenarios and different values ρ , the 
LogSum + L2 penalized logistic regression model is always the best.

Table 2 shows test results of different methods on simulate datasets. We can find that the performance of the 
LogSum + L2 penalized logistic regression model is still the best one among the four methods. And in Scenario 
1, whatever ρ = 0.2 or ρ = 0.6, the LogSum+ L2 approach shows similar values, but in Scenario 2, the sensitivity 
of the LogSum + L2 model is far apart, and its accuracy and specificity are not much different compared with 
other three methods.

Table 3 shows the feature selection of all competing regularization methods. As shown in Table 3, these 
are the β-Sensitivity and β-Specificity. The approximate results are similar to the previous two Tables. In the 

xi = ρ × x11 + (1− ρ)× xi , i = 12, 13, . . . , 20;

True Negative (TN) :=
∣∣∣β . ∗ β̂

∣∣∣
0
, False Positive (FP) :=

∣∣∣β . ∗ β̂
∣∣∣
0

False Negative (FN) :=
∣∣∣β . ∗ β̂

∣∣∣
0
, True Positive (TP) :=

∣∣∣β . ∗ β̂
∣∣∣
0

β-Sensitivity := TP

TP + FN
, β-Specificity := TN

TN + FP

Table 1.  Training results of different methods on the simulated datasets. Numbers in parentheses are the 
standard deviations and the best results are highlighted in bold.

ρ Method

Scenario

Accuracy Sensitivity Specificity AUC 

1 2 1 2 1 2 1 2

0.2

L1
90.00%
(1.85%)

98.78%
(0.37%)

91.30%
(1.12%)

99.82%
(0.01%) 88.73%(2.14%) 97.45%

(0.49%)
97.12%
(0.53%)

98.12%
(0.32%)

LEN
87.14%
(2.28%)

99.16%
(0.12%)

86.96%
(2.97%)

99.78%
(0.03%)

87.32%
(3.17%)

97.33%
(0.52%)

95.08%
(0.93%)

97.89%
(0.35%)

HLR
94.29%
(0.59%)

98.65%
(0.35%)

95.65%
(0.62%)

99.82%
(0.01%)

92.96%
(1.26%)

98.31%
(0.38%)

98.84%
(0.21%)

98.53%
(0.33%)

LogSum+ L2
100%
(0%)

99.50%
(0.01%)

100%
(0%)

99.96%
(0.01%)

100%
(0%)

99.42%
(0.01%)

100%
(0%)

99.27%
(0.06%)

0.6

L1
91.43%
(1.35%)

98.65%
(0.26%)

87.69%
(2.61%)

98.76%
(0.13%)

94.67%
(0.92%)

97.24%
(0.29%)

97.37%
(0.31%)

98.16%
(0.28%)

LEN
85.71%
(2.03%)

97.76%
(0.31%)

69.23%
(2.84%)

97.84%
(0.20%)

100%
(0%)

98.86%
(0.22%)

96.04%
(0.48%)

98.07%
(0.34%)

HLR
90.71%
(1.76%)

98.65%
(0.23%)

87.69%
(1.48%)

99.12%
(0.04%)

93.33%
(0.81%)

98.21%
(0.26%)

97.58%
(0.40%)

98.54%
(0.32%)

LogSum+ L2
97.86%
(0.21%)

99.23%
(0.02%)

95.38%
(0.62%)

99.30%
(0.02%)

100%
(0%)

99.10%
(0.02%)

100%
(0%)

98.97%
(0.09%)

http://web.stanford.edu/~hastie/glmnet_matlab/
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same ρ value, the LogSum + L2 penalized logistic regression model contains the greatest number of features and 
highest sensitivity and specificity. And in different ρ value, the performance of ρ = 0.6 always greater than the 
performance of ρ = 0.2.

Analysis of real data. We use three publicly available lung cancer microarray datasets, which download 
from GEO (https ://www.ncbi.nlm.nih.gov/geo/). Some detail information and introduction will be shown below:

1. GSE10072: Series GSE10072 is a gene expression signature of cigarette smoking and its role in lung adeno-
carcinoma development and survival. Tobacco smoking can cause 90% of lung cancer cases, but the changes 
in the level of the molecules that lead to cancer development and affect survival are still unclear.

2. GSE19188: Series GSE19188 is a dataset about gene expression for early stage Non-small-cell lung carcinoma 
(NSCLC). 156 tumors and normal samples are aggregated into the expected group. The prognostic charac-
teristics of 17 genes showed the best correlation with the survival time after surgery.

3. GSE19804: Series GSE19804 is a dataset about Genome-wide screening of transcriptional modulation in 
non-smoking female lung cancer in Taiwan. Although smoking is a major risk factor for lung cancer, only 
7% of women with lung cancer in Taiwan have a history of smoking, which is much lower than that of white 
women. Researchers extracted RNA from paired tumors and normal tissues for gene expression analysis to 

Table 2.  Test results of different methods on the simulated datasets. Numbers in parentheses are the standard 
deviations and the best results are highlighted in bold.

ρ Method

Scenario

Accuracy Sensitivity Specificity AUC 

1 2 1 2 1 2 1 2

0.2

L1
75.00%
(3.82%)

71.67%
(3.19%)

78.31%
(2.83%)

78.57%
(2.88%)

74.19%
(3.64%)

63.50%
(4.31%)

86.76%
(1.63%)

80.80%
(2.37%)

LEN
78.33%
(3.15%)

66.67%
(4.18%)

79.54%
(2.68%)

75.00%
(3.07%)

87.10%
(2.63%)

53.13%
(6.16%)

84.43%
(1.87%)

76.23%
(3.49%)

HLR
80.00%
(1.86%)

65.00%
(4.03%)

79.63%
(2.66%)

71.43%
(3.92%)

87.10%
(2.52%)

58.76%
(5.83%)

88.65%
(1.31%)

77.23%
(3.46%)

LogSum+ L2
85.00%
(1.55%)

76.67%
(3.17%)

86.21%
(1.43%)

81.00%
(3.17%)

89.87%
(1.96%)

78.13%
(3.05%)

93.99%
(0.62%)

83.82%
(2.29%)

0.6

L1
68.33%
(4.01%)

58.33%
(4.92%)

62.07%
(4.65%)

59.09%
(4.83%)

70.97%
(3.62%)

57.89%
(5.52%)

82.76%
(1.94%)

65.67%
(4.46%)

LEN
71.67%
(3.61%)

56.67%
(5.32%)

55.17%
(5.18%)

63.64%
(4.78%)

77.42%
(2.95%)

44.74%
(8.03%)

81.76%
(2.43%)

59.93%
(5.04%)

HLR
73.33%
(3.33%)

55.00%
(5.57%)

58.62%
(4.96%)

59.09%
(5.02%)

80.65%
(2.31%)

52.63%
(5.24%)

86.76%
(1.88%)

52.27%
(5.71%)

LogSum+ L2
85.00%
(1.73%)

70.00%
(2.83%)

82.76%
(2.04%)

69.09%
(3.11%)

87.10%
(1.78%)

76.32%
(2.71%)

92.10%
(0.50%)

71.77%
(4.32%)

Table 3.  Results of β-sensitivity, β-specificity obtained by four methods. (Numbers in parentheses are the 
standard deviations and the best results are highlighted in bold).

ρ Method

Scenario

β-Sensitivity β-Specificity

1 2 1 2

0.2

L1
73.45%
(2.95%)

71.53%
(2.94%)

99.90%
(0.01%)

95.81%
(0.52%)

LEN
73.16%
(2.26%)

71.31%
(2.32%)

99.95%
(0.01%)

76.65%
(2.73%)

HLR
74.62%
(3.05%)

73.15%
(2.89%)

99.95%
(0.01%)

95.45%
(1.92%)

LogSum+ L2
82.57%
(2.58%)

80.11%
(2.74%)

99.95%
(0.01%)

99.60%
(0.01%)

0.6

L1
64.18%
(3.56%)

62.43%
(4.62%)

99.70%
(0.01%)

95.00%
(0.73%)

LEN
65.36%
(3.63%)

63.34%
(4.13%)

99.95%
(0.01%)

76.00%
(3.04%)

HLR
65.41%
(3.81%)

63.62%
(4.51%)

99.90%
(0.01%)

95.96%
(0.65%)

LogSum+ L2
73.50%
(2.92%)

72.31%
(3.86%)

99.85%
(0.01%)

99.24%
(0.01%)

https://www.ncbi.nlm.nih.gov/geo/
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explain this phenomenon. This dataset and its reports comprehensively analyze the molecular characteristics 
of lung cancer in non-smoking women in Taiwan.

The GSE10072 dataset contains 22,284 microarray gene expression profiles and GSE19188 and GSE 19,804 
both have 54,675 microarray gene expression profiles. As same as simulation data, we randomly divide the data-
sets such that 70% of the datasets become training samples and 30% become test samples. A brief introduction 
of these datasets is summarized in Table 4.

Table 5 describes the average training and test accuracies are obtained by different variable selection methods 
in the three datasets. It is easy to find that the performance of the LogSum + L2 penalized logistic regression model 
is better than other three approaches. For example, in terms of training accuracy, the LogSum+ L2 approach 
reached 99.43%, and other three methods are 98.32%, 99.04% and 98.21% respectively in GSE10072 dataset. In 
GSE19188 dataset, we observe the test accuracy of the LogSum+ L2 method is 75%, and other three methods 
are 51.46%, 47.56% and 46.19% respectively. From the number of selected genes, we can find the LogSum + L2 
penalized logistic regression model always select the lowest number of genes and the LEN approach select the 
highest number of genes.

In order to search the common gene signatures selected by the different methods, we used VENNY software 
to generate Venn diagrams. As show in Fig. 4, we consider the common gene signatures selected by the logistic 
regression model with L1 , LEN , HLR and LogSum+ L2 regularizations, which are the most relevant signatures 
of lung cancer. Many genes selected by the LogSum + L2 penalized logistic regression model do not appear in 
the results of the other three regularization methods. For example, the LogSum+ L2 approach selects 5, 6, and 3 
unique genes from GSE10072, GSE19188 and GSE19804 datasets respectively. This means that the LogSum + L2 
penalized logistic regression model can find the different genes and pathways related to lung cancer compared 
with other three regularization methods.

Figures 5, 6 and 7 show the interactive networks of all the features selected by the LogSum + L2 penalized 
logistic regression model. The integrative networks among these selected features are represented by the cBio-
Portal from publicly lung cancer datasets. The circles with thick border represent the selected genes, and the 
rest circles with gradient color-coded represent genes according to their alteration frequencies in databases. The 

Table 4.  Three publicly available lung cancer gene expression datasets.

Dataset No. of probes Classes (Class1/Class2) No. of sample (Class1/Class2)

GSE10072 22,284 Normal/Lung Cancer 107 (49/58)

GSE19188 54,675 Normal/Lung Cancer 156 (88/91)

GSE19804 54,675 Normal/Lung Cancer 120 (60/60)

Table 5.  Training and test accuracy and number of selected genes of three lung cancer datasets in four 
methods. Numbers in parentheses are the standard deviations and the best results are highlighted in bold.

Data Method Training accuracy Test accuracy No. selected genes

GSE10072

L1
98.32%
(0.14%)

95.12%
(0.31%)

23
(1.97)

HLR
99.04%
(0.04%)

98.4%
(0.17%)

72
(8.45)

LEN 98.21%
(0.16%)

92.1%
(0.94%)

11
(1.32)

LogSum+ L2
99.43%
(0.02%)

99.15%
(0.08%)

7
(0.82)

GSE19188

L1
97.11%
(0.21%)

51.46%
(6.05%)

72
(9.33)

HLR
98.33%
(0.09%)

47.56%
(7.41%)

121
(10.34)

LEN 96.3%
(0.28%)

46.19%
(5.23%)

17
(2.03)

LogSum+ L2
99.25%
(0.01%)

75%
(3.44%)

10
(1.21)

GSE19804

L1
99.05%
(0.02%)

95.2%
(0.61%)

37
(4.32)

HLR
99.05%
(0.02%)

94.6%
(0.64%)

70
(7.73)

LEN 97.14%
(0.22%)

96.6%
(0.58%)

9
(1.03)

LogSum+ L2
99.41%
(0.01%)

98.45%
(0.23%)

6
(0.82)
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hexagons represent target drugs, and among of them some with yellow color represent the drugs approved by 
FDA. The links connected some selected genes represent that they have regulation correlations with group effect.

In GSE10072 dataset, from Fig. 5, we find a gene named EGFR, which has been conformed as the important 
target gene of  NSCLC40. It belongs to ERBB receptor tyrosine kinase family, which include some other genes like 
HER2, HER3 and HER4. Due to observed patterns of oncogenic mutation of EGFR and HER2, many research 
works report their attractive option for targeted therapy in patients with NSCLC.

As shown in Fig. 6, three important genes TUBB1, PRKD1 and STK11 have been selected, and genes PRKD1 
and STK11 have the regulation correlation with group effect from GSE19188 dataset. In fact, there are many 
drugs have been developed to target the gene TUBB1. And many research works report that genes PRKD1 and 
STK11 significantly influence the patients’ survival rates across all  tumors41.

As shown in Fig. 7, four important genes EPCAM, SMC3, HIST1H2BL, and LMNA and their regulation 
correlations with group effect have been selected from GSE19804 dataset. Many research works report that the 
epithelial cell adhesion molecule (EPCAM) represents true oncogenes as the tumor-associated calcium signal 
transducer, and study the relationship between gene EPCAM and  NSCLC42.

Table 6 summarizes that the genes were selected by the LogSum + L2 penalized logistic regression model. At 
the beginning of the experiments, the attribute of genes is prob set ID. Thus, we could transform prob set ID 
to gene symbol by using the website DAVID (https ://david .ncifc rf.gov). According to the experimental results, 
the LogSum + L2 penalized logistic regression model can find some unique genes, which cannot be identified by 
other regularization models but are significantly related to the disease. Therefore, we believe that the LogSum + L2 
penalized logistic regression model can accurately and efficiently identify cancer-related genes.

Figure 4.  Venn diagram analysis of the results of L1 , LEN , HLR and LogSum+ L2 regularization methods.

https://david.ncifcrf.gov
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Discussion and conclusion
Successful identification of gene biomarkers and biological pathways can significantly improve the accuracy 
of diagnosis and help machine learning models have better performance on classification of different types of 
cancer. Many researchers used the logistic regressions with optimization methods for binary cancer classifica-
tion. However, the traditional logistic regression model has two obvious shortcomings: feature selection and 

Figure 5.  Maximum Integrative Network of features selected by the LogSum + L2 penalized logistic regression 
model in GSE10072 dataset.

Figure 6.  Maximum Integrative Network of features selected by the LogSum + L2 penalized logistic regression 
model in GSE19188 dataset.
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Figure 7.  Maximum Integrative Network of features selected by the LogSum + L2 penalized logistic regression 
model in GSE19804 dataset.

Table 6.  The genes are selected by the LogSum + L2 penalized logistic regression model for different datasets.

Prob_ID Gene symbol Gene name

Dataset: GSE10072

201839_s_at EPCAM Epithelial cell adhesion molecule (EPCAM)

200685_at SRSF11 Serine and arginine rich splicing factor 11(SRSF11)

204600_at EPHB3 EPH receptor B3(EPHB3)

205297_s_at CD79B CD79b molecule (CD79B)

202932_at YES1 YES proto-oncogene 1, Src family tyrosine kinase (YES1)

201983_s_at EGFR Epidermal growth factor receptor (EGFR)

201596_x_at KRT18 Keratin 18(KRT18)

Dataset: GSE19188

204292_x_at STK11 Serine/threonine kinase 11(STK11)

205880_at PRKD1 Protein kinase D1(PRKD1)

208694_at PRKDC Protein kinase, DNA-activated, catalytic polypeptide (PRKDC)

205868_s_at PTPN11 Protein tyrosine phosphatase, non-receptor type 11(PTPN11)

214250_at NUMA1 Nuclear mitotic apparatus protein 1(NUMA1)

231657_s_at CCDC74A Coiled-coil domain containing 74A(CCDC74A)

220939_s_at DPP8 Dipeptidyl peptidase 8(DPP8)

210704_at FEZ2 Fasciculation and elongation protein zeta 2(FEZ2)

208601_s_at TUBB1 Tubulin beta 1 class VI(TUBB1)

207660_at DMD Dystrophin (DMD)

Dataset: GSE19804

1553655_at CDC20B Cell division cycle 20B(CDC20B)

201839_s_at EPCAM Epithelial cell adhesion molecule (EPCAM)

1552370_at C4ORF33 Chromosome 4 open reading frame 33(C4orf33)

1556925_at SMC3 Structural maintenance of chromosomes 3(SMC3)

207611_at HIST1H2BL Histone cluster 1 H2B family member l(HIST1H2BL)

1554600_s_at LMNA Lamin A/C(LMNA)
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overfitting problems. In this paper, we proposed the LogSum+ L2 penalized logistic regression model. Our 
proposed method can not only select sparse features (biomakers), but also identify the groups of the relevant 
features (gene pathways). The coordinate decent algorithm is used to solve the LogSum + L2 penalized logistic 
regression model. We also evaluate the capability of our proposed method and compare its performance with 
other regularization methods. The results of simulations and real experiments indicate that the proposed method 
is highly competitive among several state-of-the-art methods. The disadvantage of the proposed method is its 
three regularization parameters need to be tuned by the k-fold cross-validation approach.

In recent years, increasing associations between of microRNAs (miRNAs) and human diseases have been 
identified. Based on accumulating biological data, many computational models for potential miRNA-disease 
associations inference have been  developed43–46. We will apply the proposed LogSum + L2 penalized logistic 
regression model to identify the non-coding RNA biomarker of human complex diseases as the future direction 
of our research.
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