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Innovative microfossil (radiolarian) 
analysis using a system 
for automated image collection 
and AI‑based classification 
of species
Takuya Itaki1*, Yosuke Taira2, Naoki Kuwamori2, Hitoshi Saito2, Minoru Ikehara3 & 
Tatsuhiko Hoshino4

Microfossils are a powerful tool in earth sciences, and they have been widely used for the 
determination of geological age and in paleoenvironmental studies. However, the identification 
of fossil species requires considerable time and labor by experts with extensive knowledge and 
experience. In this study, we successfully automated the acquisition of microfossil data using an 
artificial intelligence system that employs a computer-controlled microscope and deep learning 
methods. The system was used to calculate changes in the relative abundance (%) of Cycladophora 
davisiana, a siliceous microfossil species (Radiolaria) that is widely used as a stratigraphic tool in 
studies on Pleistocene sediments in the Southern Ocean. The estimates obtained using this system 
were consistent with the results obtained by a human expert (< ± 3.2%). In terms of efficiency, the 
developed system was capable of performing the classification tasks approximately three times faster 
than a human expert performing the same task.

Microfossils that have been preserved in sediments and rocks from geological strata have been used extensively 
over the last 70 years for determining geological ages and in paleoenvironmental studies. The complex structure 
and morphology of most microfossils means that accurate identification of microfossil taxa is time consuming 
and requires an extensive knowledge and considerable experience to perform. However, in spite of increase needs 
to analyze large numbers of samples in order to obtain high-resolution records, it is concerned the scarcity of 
suitably trained human resources in these days.

In an attempt to address these limitations, it is expected that artificial intelligence (AI), which has progressed 
dramatically in recent years as computer performance has increased, could be employed in the field of microfos-
sils classification. Deep learning using convolutional neural networks (CNN) that imitate the human brain is an 
application of AI that can be used to classify images after being trained on a large number of training images. 
Unlike traditional machine learning methods in which a person extracts the features of interest, deep learning 
methods based on CNNs are well suited to the classification of microfossil species with complicated structures 
because they automatically extract features of interest for analysis6. Recently, Mitra et al.14 demonstrated the 
usefulness of machine learning techniques based on CNNs to identify six species of planktic foraminifera with 
an accuracy greater than 80%. Hsiang et al.5 constructed the Endless Forams (http://endle​ssfor​ams.org/) online 
portal, which hosts a large number of planktonic foraminiferal images that have been identified by experts, to 
compare the results of a CNN-based classification with the classification by humans. Furthermore, Marchant 
et al.13 reported that changes in the relative abundance of benthic foraminiferal assemblages estimated using 
a CNN-based classification showed good agreement with manual counts performed by humans. These recent 
studies have shown the effectiveness of deep learning as a method for microfossils classification.
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However, when actually conducting the study, obtaining a sufficiently large number of images for compiling 
both training and analytical datasets can be difficult. In particular, the numerous images that are required for 
compiling the training dataset need to be accurately classified, which can require significant time and effort. 
Recently, Itaki et al.11 developed a system for automating the classification and accumulation of microfossil 
species, hereafter referred to as miCRAD (microfossil Classification and Rapid Accumulation Device) system, 
which is composed of three units for image collection, classification and micromanipulation. The system is 
based on a computer-controlled microscope/micromanipulator and a deep learning program. The automated 
system, which has a rapid image acquisition function combined with an accurate classification model, enables 
non-experts to efficiently identify large numbers of microfossils and is expected to be applied to the analysis of 
microfossil assemblages.

The aim of this study is to demonstrate the usefulness of the miCRAD system for revealing a microfossil 
assemblage using image collection and classification units of the system. Itaki et al.11 constructed a classification 
model that used microscopic images under epi-illumination to collect a single species Cycladophora davisiana 
of the siliceous microfossil radiolarians using a micromanipulator. On the other hand, we constructed classifica-
tion models that employ transmitted light images in this study for implementation with the miCRAD system 
to automatically estimate the relative abundance (%) of C. davisiana (hereafter referred to as C. davisiana%), 
in an entire assemblage. We then verified a practical application of this method to estimate the C. davisiana % 
using actual down-core samples. The C. davisiana% has been used to classify Pleistocene sediments because 
it increased in subarctic regions of the ocean during glacial periods and decreased during interglacial periods 
(e.g.,4,12,15). In addition, the C. davisiana% has been used as a paleoceanographic indicator of intermediate water 
formation (e.g.,9,16).

Results
This experiment was composed of following three steps: (1) collection of images of individual objects for the 
training dataset using the miCRAD system, (2) construction and test of the classification model based on deep 
learning method, and (3) estimation of the particle composition (the C. davisiana%) based on classification 
results. Details of each step are described in below.

Image collection.  The miCRAD system was used to collect images for compiling both the training and test 
datasets used in this study Fig. 1. Images were acquired using a Change Coupled Device (CCD) camera with 2 
million or 5 million pixels, a × 1.5 objective and a magnification of × 4 in transmitted light mode. Binarization 
was used to identify individual particles in the acquired image, and the size and shape of the particles were 
digitized. Individual images were automatically clipped at a resolution of 280 × 280 pixels, which is sufficient for 
characterizing radiolarian morphology. Scanning the entire 36 × 24 mm cover glass, performing image process-
ing, and extracting individual images of approximately 5000 objects took approximately 10 min.

Classification models.  The large number of individual images (> 75,000 objects) that were collected to 
compile the training datasets for the C. davisiana% classification model were sorted into five categories: “C. davi-
siana” [Cdv] containing the target species, “Cycladophora bicornis” [Cbc] containing taxa that are morphologi-
cally similar to C. davisiana, “all other radiolarians” [Rad], “centric diatoms” [dtm] and “all other particles” [oth] 
Figs. 2 and 3. Using these categories, two classification models were constructed using CNNs in this experiment. 
The models, Cdv%v2 and Cdv%v6R, were applied to images acquired at CCD camera resolutions of 2 million 
pixels and 5 million pixels, respectively. Table 1 shows the number of object images that were used as training 
dataset for each category with each model.

All the images of individual objects from the slides used for testing were acquired using the miCRAD system. 
These objects were classified using the two constructed models. The objects were first sorted into particle sizes 
ranging from 60 to 160 µm by setting an arbitrary size on GUI (Graphical User Interface) of the system, because 
small objects are often out of focus and, conversely, large objects often overlap with other objects. As a result, 
approximately 30% of the acquired object images were excluded from the analysis. Classification of about 3,000 
objects took an average of 5 min.

The classification result for each object is derived from the confidence value (0 to 1.00) obtained for each 
object; the highest confidence value is used to assign the object to one of the five categories Table 2. For example, 
in the case of an image of C. davisiana, the results would be presented as follows: C. davisiana [0.87], C. bicornis 
[0.08], other radiolarians [0.03], diatoms [0.00] and other particles [0.01].

Test samples listed in Table 3 (a) and (b) were selected from samples with high and low C. davisiana abun-
dance in the upper 46 cm of the core DCR-1PC used in this study to allow for extensive evaluation of C. davi-
siana% values. Slides were prepared from the same core samples as those used in the model construction, but 
different slides were used to obtain an independent set of images.

Table 3 (a) shows the classification results obtained using model Cdv%v2 for five test samples with a confi-
dence level of 0.60 taken as the threshold value. In the case of a confidence level of 0.6, approximately 90% of the 
objects exceeded the threshold and were classified successfully. This extraction rate is larger than approximately 
50% at the confidence level of 0.95 on the same slide as shown in Table 3 (b). Radiolarians, diatoms and other 
particles were classified with an accuracy of at least 80%, on average, even with a relatively low confidence level, 
implying that it was generally possible to distinguish between images of radiolarians and other particles. However, 
the classification accuracy for C. davisiana was low, ranging from 26.7 to 78.7% (55.1% on average), implying 
that these model conditions were not suitable for estimating the relative abundance of this species.

Table 3 (b) shows classification results for eight test samples obtained using models Cdv%v2 and Cdv%v6R 
and a confidence level of 0.95. Briefly, C. davisiana was classified with a high level of accuracy using both 
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Figure 1.   Schematic diagram of the miCRAD system used for automated image collection and classification of 
microfossil species.

Figure 2.   Subsets of randomly collected training data for five particle categories: C. davisiana [Cdv], C. bicornis 
[Cbc], all other radiolarians [Rad], diatoms [dtm], and all other particles [oth].

Figure 3.   A screen shot of a scanning image showing the five particle categories in red.
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models,71.4–99.2% (92.0% on average) using model Cdv%v2 and 78.6–97.8% (92.4% in average) for model 
Cdv%v6R. Although slide code #1 shows a relatively low accuracy for C. davisiana (< 80%) due to the small 
detected count, this is not a serious problem for calculating the C. davisiana% because of the small contribution 
of this value to the overall assemblage.

The classification accuracy for C. bicornis was generally low for both models, ranging from 0.0–81.6% (35.9% 
on average) with model Cdv%v2 and 2.3–82.4% (30.6% on average) with model Cdv%v6R. In particular, accuracy 
was markedly low for three samples (# 33, 37 and 41) due to a small number of detections. However, the misclassi-
fied C. bicornis image does not include C. davisiana, and conversely the misclassified C. davisiana image does not 
include C. bicornis, which means that species with a similar structure can still be distinguished by these models.

The accuracy for the other radiolarians was 81.3–97.3% (88.7% on average) estimated by Cdv%v2 and 
62.4–90.2% (78.4% on average) by Cdv%v6R, with the latter being somewhat low. The low accuracy obtained 
using Cdv%v6R was largely attributed to the model misclassifying diatom fragments. In the future, to improve 
the accuracy of the model, it will be necessary to evaluate and update these misclassified objects.

Practical test for the C. davisiana% curve.  In this section, the constructed classification models are 
tested for practical use based on core DCR-1PC collected from the Southern Ocean.

The C. davisiana% in the down-core test samples was calculated from objects that had been classified into each 
of the five categories using the two models (Supplementary Table 2. Analysis of 8 test samples from the upper 
46 cm of the core using the models yielded the C. davisiana% values that ranged from 0 to 23%, which showed a 
high correlation with manual count data, r = 0.972 and r = 0.942 for models Cdv%v2 and Cdv%v6R, respectively 
Fig. 4. Such high correlations of the C. davisiana% between manual counting and results from both models are 
consistent with the trend for additional core samples from the upper 46 cm (17 samples for Cdv%v2 and 11 
samples for Cdv%v6R) (Supplementary Table 2 implying that is expected to be highly reproducible. However, 
the slope of the regression line was slightly larger than 1 meaning that the model estimates were underestimated 
due to relatively lower accuracy of other radiolarians [Rads] than those of C. davisiana [Cdv].

Table 1.   Number of images of individual objects used as training data for each category of models Cdv%v2 
and Cdv%v6R.

Category
Cdv%v2
[200 million pixels]

Cdv%v6R
[500 million pixels]

C. davisiana [Cdv] 2992 19,007

C. bicornis [Cbc] 295 1,040

Other radiolarians [Rad] 4410 38,874

Diatoms [dtm] 1639 5,411

Other particles [oth] 922 2,006

Total 10,258 66,338

Table 2.   An example results of the confidence values from slide code #37 obtained for each category. Bold 
cells indicate the highest value in the five categories. Averaged confidence values were estimated from results 
of all 500 objects (whole dataset is shown in Supplementary Table 1). Numbers of the value greater than 
confidence threshold 0.60 and 095 are also shown.

Object No
C. davisiana
Cdv

C. bicornis
Cbc

Other rads
Rad

Diatoms
dtm

Other particles
oth

1 0.87 0.08 0.03 0.00 0.01

2 0.20 0.00 0.79 0.00 0.01

3 0.00 0.00 0.00 1.00 0.00

4 0.00 0.00 0.01 0.98 0.01

5 0.00 0.00 0.92 0.07 0.00

:

500 0.01 0.59 0.03 0.09 0.28

Average 0.16 0.02 0.44 0.33 0.05

# of > 0.60 70 8 204 154 17

# of > 0.95 31 0 117 111 3
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Using the correlation equations shown in Fig. 4, the data obtained by multiple classification models having 
different tendencies can be calibrated as actual count data. Figure 5 shows the calibrated C. davisiana% curve 
for the upper 216 cm applied to the continuous data for the DCR-1PC down-core samples obtained by the 
miCRAD system. The calibrated values for both models corroborate each other, and the error associated with 
human count data for the upper 46 cm was within ± 3.2% (standard deviation). Furthermore, when data collec-
tion by the models was expanded to the upper 216 cm of the core, marked fluctuations ranging between 2 and 
25% were observed Fig. 5.

Table 3.   Classification results for five test samples with model Cdv%v2 at a confidence level of 0.60 (a) and 
eight test samples with both models Cdv%v2 and Cdv%v6R at a confidence level of 0.95 (b). Numbers (#) 
indicate counts detected, and percentages (%) shows the ratio of unclassified images in the total and objects 
that were classified correctly in each category. Average percentage and standard deviation (S.D.) are also 
shown.

Model

Slide
code

Core
depth

Total
images

Unclassified 
images

Category
[Cdv]

Category
[Cbc]

Category
[Rad]

Category
[dtm]

Category
[oth]

(cm) (#) (%) (#) (correct%) (#) (correct%) (#) (correct%) (#) (correct%) (#) (correct%)

(a)

Cdv%v2
Confidence 
threshold
0.60

1 0.6 1228 9.6 60 26.7 76 44.7 627 89.8 52 57.7 295 96.6

13 14.5 1474 7.1 66 31.8 70 72.9 896 93.5 68 80.9 270 96.3

21 23.6 2787 8.4 192 60.4 93 24.7 1523 79.5 311 95.5 433 92.6

25 28.2 4005 8.0 371 77.6 78 28.2 1694 82.7 656 97.7 885 93.4

29 32.7 4527 7.9 418 78.7 74 23.0 1566 83.8 1348 97 763 91.5

Average % 8.2 55.1 38.7 85.9 85.8 94.1

S.D 0.8 22.1 18.7 5.1 15.3 2.0

(b)

Cdv%v2
Confidence 
threshold
0.95

1 0.6 1228 51.1 7 71.4 38 81.6 332 97.3 23 200

13 14.5 1474 45.5 11 90.9 42 69.0 536 95.7 41 173

21 23.6 2787 48.2 46 87.0 40 35.0 889 85.4 231 237

25 28.2 4005 47.9 117 93.2 34 44.1 858 90.7 515 562

29 32.7 4527 47.8 104 98.1 34 44.1 689 84.5 1078 459

33 37.3 4387 46.6 120 97.5 23 0.0 521 91.7 1529 149

37 41.8 4866 44.9 207 98.6 42 4.8 765 81.0 1462 167

41 46.3 3100 41.3 118 99.2 12 8.3 570 83.5 847 270

Average % 46.7 92.0 35.9 88.7

S.D 2.7 8.7 28.2 5.6

Cdv%v6R
Confidence 
threshold
0.95

1 0.6 2174 47.0 14 78.6 34 82.4 340 85.3 76 688

13 14.5 2387 44.5 26 88.5 52 59.6 756 90.2 80 412

21 23.6 5581 47.9 182 88.5 91 48.4 1428 83.0 508 697

25 28.2 4458 48.3 253 96.1 61 32.8 1070 82.2 396 527

29 32.7 6602 49.0 331 96.4 89 13.5 1596 62.4 901 452

33 37.3 6030 48.8 357 97.8 125 3.2 1446 72.9 798 364

37 41.8 6281 47.2 464 97.0 87 2.3 1466 78.9 835 466

41 46.3 4539 48.1 223 96.9 42 2.4 984 72.6 634 474

Average % 47.6 92.4 30.6 78.4

S.D 1.3 6.3 28.5 8.2
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Discussion.  The C. davisiana% curve, which shows high values during glacial periods and low values during 
interglacial periods, has been widely used in studies involving Pleistocene age determination in carbonate-poor 
sediments in the Southern Ocean (e.g.,1,4). The C. davisiana% curve obtained from core DCR-1PC shows low 
values through the upper 20 cm and high values between 20 and 60 cm, which corresponds to zones “a” [Holo-
cene] and “b” [Last glacial period] of C. davisiana stratigraphy4. In Fig. 5, the C. davisiana% variations detected 
by the miCRAD system are compared with results obtained from Ocean Drilling Program site 1089/PS2821 in 
the Atlantic sector of the Southern Ocean2. Despite the considerable distance about 3,000 km between both sites 
(Supplementary Fig.1), their stratigraphic characteristics are very similar. Since this correlation is consistent 
with an age model applied to core DCR-1PC by Crosta et al.3, the C. davisiana% data collected by the miCRAD 
system is considered to be comparable with analysis by a human expert.

Furthermore, considerable increases in time efficiency can be achieved using this system. The time required 
for scanning, image processing and classification of microfossils using the miCRAD system depends on the 
density of particles mounted on the slide. In the case of the core DCR-1PC samples used in this study, approxi-
mately 1000 radiolarians can be detected in a slide area of 18 × 24 mm (about half the area of a cover glass), and 
the analysis can be completed within 10 min. On the other hand, since it typically takes an expert about 30 min 
to count the same number of radiolarians under a microscope, the time required for data acquisition using the 
system is three times faster than that required by a human. Furthermore, continuous data acquisition is possible 
as there is no human fatigue associated with microscope observations. At the Geological Survey of Japan, one 
technician can operate two miCRAD systems simultaneously, which means that throughput can be doubled, 
and a mass production system has been established.

The challenge is to build a more efficient model. The two classification models constructed in this study 
had a high accuracy for C. davisiana when the confidence threshold was set to 0.95, but approximately half of 
the images obtained by the miCRAD system could not be classified for confidence thresholds below this value. 
On the other hand, when the confidence threshold was lowered to 0.60, the number of unclassified images was 
reduced to approximately 10%, but accuracy also decreased. As reported by Itaki et al.11, more efficient data 
acquisition requires that a classification model be developed that can achieve a high accuracy, even with a low 
confidence level.

As another method for evaluating particle composition, it is expected estimation from averaged confidence 
values for each of the five categories could be used, as demonstrated by Shoji et al.17 who classified the composi-
tion of volcanic ash particles. In this method, the confidence values obtained for each category are assigned to 
images of each particle Table 2. For example, when the confidence value of object No. 1 is assigned as C. davi-
siana [0.87], C. bicornis [0.08], other radiolarians [0.03], diatoms [0.00] and other particles [0.01], the category 
with the highest confidence value, i.e. C. davisiana, would be excluded from the classification as the obtained 
value is below the threshold of 0.95. However, the composition of the constituent particles in the sample can be 
estimated from the averaged value of the confidence values for all particles in each category. Using 500 objects 
from slide code #37 shown in Table 2 (whole 500 data is shown in Supplementary Table 1) as an example, the 
relative contribution of C. davisiana to the total radiolarians estimated from ratios of averaged confidence values 
for categories of C. davisiana [0.16], C. bicornis [0.02] and other radiolarians [0.44] is 26.1%, which is consistent 
with a result of 28.2% obtained by a human expert. Although this method involves uncertainty in classification 
accuracy because no classification threshold is provided, efficient data acquisition is possible because no images 
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are excluded in the determination. In the future, we plan to examine the potential of such a method and may 
update the miCRAD software accordingly.

In this study, although the models were successfully designed to estimate the C. davisiana%, it is still restricted 
to apply a model that is capable of analyzing more complex assemblages by classifying multiple species simulta-
neously. Furthermore, fossil and particle compositions are usually various in different regions and periods. For 
further efficiency, many categories of training data are needed, but accuracy tends to decrease as the number of 
categories increases in currently used programs. Therefore, not all work by experts at this stage can be replaced 
by this system. To solve this problem, it is expected that more training data will be collated using a variety of 
AI technologies.

We have already conducted classification tests on microfossils other than radiolarians using deep learning 
methods (e.g.,6). The high classification accuracy achieved for microfossils with complicated features using deep 
learning methods also suggests that these methods can be applied to a variety of other kinds of fine particles. For 
example, Shoji et al.17 classified the particle composition of volcanic ash using a CNN, but the miCRAD system 
could be adapted to analyze data from volcanic eruptions. In addition, the system could also be applied to the 
detection of contaminants in the fields of food safety and medicine.

Methods
Sample procedure.  Sediment core DCR-1PC used in this study was recovered from the Del Caño Rise 
(46°01.34′S, 44°15.24′E, water depth: 2,632 m) in the Indian sector of the Southern Ocean during the KH-10-7 
cruise of R/V Hakuho-maru (Supplementary Fig. 1). The core is composed of alternating homogeneous nan-

Figure 5.   The C. davisiana% curves for the manual count of the upper 46 cm of the core (green) and those 
estimated from model data to a depth of 216 cm (blue and red). Age model of core DCR-1PC is from Crosta 
et al.3 (pink arrows in the lower graph panel). Correlation with results from sites PS2821/ODP 1089 by Cortese 
and Abelmann2 is also shown (dashed pink lines). The C. davisiana zones a, b, c…e1 of Hays et al.4 are indicated 
in the upper graph panel and correlated with gray bands.
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nofossil oozes and diatom oozes. The slide for radiolarian observation was prepared from samples sliced at 1 cm 
intervals using standard methods described in Itaki et  al.10. Briefly, slide preparation involved the following 
steps: (1) Remove carbonates and organic matter with hydrochloric acid and hydrogen peroxide,(2) Wet sieve 
with a screen with a 45 μm mesh size; (3) Concentrate siliceous fossils by the method of Itaki8,(4) Disperse par-
ticles as much as possible on the slide so that particles do not overlap; (5) After drying the particles on the slide, 
mount them with an optical adhesive.

To obtain the training data images, eight slides were prepared from the upper 46 cm of the core, and slides 
for practical testing were made from continuous samples down to 216 cm.

Image collection and classification.  Image collection and classification in this study were carried out 
using the miCRAD system designed by Itaki et al.11, which is a system that connects a deep learning software 
“RAPID Machine Learning” (NEC Corp., Tokyo, Japan) to a microscope with a computer-controlled, motorized 
XY stage and a micromanipulator “Collection Pro” (Micro Support Co., Ltd. , Shizuoka, Japan) referred to as an 
automatic zircon separator in Isozaki (2018). The program is customized to control the hardware and facilitate 
effective image collection. The image collection and classification units of the miCRAD system were used in this 
study.

Although clearer images could be acquired using the automatic focus composition function of the miCRAD 
system, the time required to acquire clearer images is approximately three times that of normal mode. In order 
to save time for image collection, we decided to take images without this focus composition function, and to add 
unfocused images to the training dataset to facilitate the classification of even unclear images.

For the training dataset, a large number of individual images of objects collected using the miCRAD system 
was divided into five categories: C. davisiana (Cdv), C. bicornis (Cbc), all other radiolarians (Rad), diatoms (dtm), 
and all other particles (oth). For categories with a small number of individual images, data was amplified by rotat-
ing the images. Based on these training data, a CNN classification model was automatically constructed using a 
deep learning software platform “RAPID machine learning” (NEC Corp.), which can be easily operated on the 
GUI. Generally, the initial generated model has a low accuracy, so we tried to improve accuracy in a stepwise 
manner by trial and error, such as by changing categories and amplifying training data.

Image acquisition and classification process by miCRAD system are all operated on the GUI of the system. 
Here is a brief description of the procedure. (1) Set the slide on the automated XY stage and adjust the focus 
(if necessary, focus composition). (2) Binarization threshold adjustment by contrast, light intensity, color tone, 
brightness, size, etc., to better extract object images from the scanned image (settings can be saved for observation 
under the same conditions). (3) Specify the observation area of the slide and scan it. (4) Selecting a classification 
model built by "RAPID Machine Learning"  to automatically classify the clipped image of the objects. (5) Clas-
sification results are saved as images and a CSV file.

Based on the classification results, the relative abundance of C. davisiana against total radiolarians was cal-
culated as following equation:

where Cdv, Cbc and Rad are count values estimated by the miCRAD system for C. davisiana, C. bicornis and 
all other radiolarians, respectively. As a standard, we used the C. davisiana% obtained by manual counting of 
radiolarians in the same sample by an expert; counted number of the standard data was more than 300 individu-
als (305 to 551 individuals).
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