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Analyzing the effects of memory 
biases and mood disorders 
on social performance
Nanda Kishore Sreenivas1,3 & Shrisha Rao2,3*

Realistic models of decision-making and social interactions, considering the nature of memory and 
biases, continue to be an area of immense interest. Emotion and mood are a couple of key factors that 
play a major role in decisions, nature of social interactions, size of the social network, and the level 
of engagement. Most of the prior work in this direction focused on a single trait, behavior, or bias. 
However, this work builds an integrated model that considers multiple traits such as loneliness, the 
drive to interact, the memory, and mood biases in an agent. The agent system comprises of rational, 
manic, depressed, and bipolar agents. The system is modeled with an interconnected network, 
and the size of the personal network of each agent is based on its nature. We consider a game of 
iterated interactions where an agent cooperates based on its past experiences with the other agent. 
Through simulation, the effects of various biases and comparative performances of agent types is 
analyzed. Taking the performance of rational agents as the baseline, manic agents do much better, 
and depressed agents do much worse. The payoffs also exhibit an almost-linear relationship with the 
extent of mania. It is also observed that agents with stronger memory perform better than those 
with weaker memory. For rational agents, there is no significant difference between agents with a 
positive bias and those with a negative bias. Positive bias is linked with higher payoffs in manic and 
bipolar agents. In depressed agents, negative bias is linked with higher payoffs. In manic agents, 
an intermediate value of mood dependence offers the highest payoff. But the opposite is seen in 
depressed agents. In bipolar agents, agents with weak mood dependence perform the best.

Individual and group decision-making and social interactions have been studied for long and continue to remain 
of interest. Some early models were fairly simplistic1,2, and they assumed perfectly rational behavior which is often 
not the case in reality. Time and again, research in the domains of psychology and behavioral sciences asserts 
that humans, as well as animals, are subject to a wide array of cognitive biases3,4. Later works moved away from 
the assumption of perfect rationality and started incorporating various cognitive biases into decision models5–8. 
However, the effects of emotion and mood disorders on decisions and interactions still need to be explored.

Although we humans aspire to be rational decision-makers and never let emotion cloud our judgment, such 
is never really the case9. This has been understood for long—the importance of emotion was captured succinctly 
by Simon10:

“Hence, in order to have anything like a complete theory of human rationality, we have to understand 
what role emotion plays in it.”

A great deal of research has focused on the impact of emotion on memory but the findings have been extremely 
diverse, with some claiming emotional memories are indelible11, while others claim that emotion has no effect 
whatsoever on memory12. Even among those that agree that emotion has some impact on memory, some claim 
memories associated with positive emotions are stronger13,14 and last longer, while others claim the opposite15.

Appraisal theory has been used in prior works to quantitatively define emotion, where an agent evaluates the 
reward with respect to its goal or expectation16,17. If the reward obtained is better than the agent’s expectation, 
positive emotion is induced; and the reverse also holds. The process of storing information for the first time in 
memory is called encoding and this process leaves a trace in the memory. The strength and longevity of the trace 
depend on how well it has been encoded.

Mood has been seen as the summary of recent emotions18. While emotions change after each episode, mood 
maintains a historical context, yet staying temporally relevant. Mood affects the behavior of an individual in terms 
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of reward perception19, memory retrieval20, and levels of social engagement21,22. There is much to be learned about 
the effects of emotions and mood in decisions and social interactions. Shevchenko23 recently wrote:

“Moods in decision research have been ignored for many years, although decisions made in an emotional 
state are ubiquitous in daily life. The areas of emotion and decision-making research have remained mostly 
unfamiliar.”

Mood disorders are prevalent in humans, and studies indicate that about 20% of U.S adults experience 
some class of mood disorder in their lifetimes24. There have been many computational models of various mood 
disorders19,25–28, but most of these assume independent agents without any social interactions or social networks. 
The extent and frequency of social interactions are intricately linked to mood disorders, with studies indicating 
that chronically depressed people have smaller social networks than healthy controls29,30. Empirical studies also 
conclude that depressed phases are connected with lower energy, interest, and drive31,32. Prior models do not 
take this into account.

There are several models of mood fluctuation in bipolar disorder such as rhythmic models, discrete models, 
and models based on the Behavioral Approach System (BAS)33–37.

Symptoms of depression include persistent low mood or sadness, and an inability or diminished ability to 
experience pleasurable stimuli. Depression and mania have been modeled using the concept of reward sensitiv-
ity in some prior works19,26,27. In these models, the reward as perceived by an agent is the product of its reward 
sensitivity and the actual reward. Depressed agents are assigned values of reward sensitivity between 0 and 1, 
while manic agents have values greater than 1.

Mood also affects memory retrieval; mood dependence is the phenomenon where past events whose emotional 
state match the current mood are more likely to be retrieved. There seems to be no prior model capturing this 
effect of mood on memory.

In some works on decision-making, memory is assumed to be infinitely long and perfect5,38. However, this 
is not justified39,40, and memories are susceptible to forgetting at various rates. The likelihood of remembering 
recent events is higher when compared with older events, which is termed the “recency effect”41,42. While it seems 
intuitive that stronger memory enhances performance, some have also argued that forgetting is a useful feature 
because it helps optimize decision-making43. The most common approaches to model forgetting involve the use 
of exponential decay or power law functions44–46.

This work is broadly in the field of computational social science using agent-based modeling47, and specifi-
cally uses an agent-based model carefully constructed in line with studies in psychology. It is well known that 
agent-based modeling is a powerful, relatively new tool in the study of social psychology48, and that while we 
cannot yet directly derive outcomes that can guide treatments, it does permit new insights that are not possible 
using mathematical models and clinical experiments49.

We give an integrated model of decisions and social interactions that takes into account the roles of emotion, 
mood, and memory biases. A game of iterated interactions based on the Continuous Prisoners’ Dilemma (CPD) 
is considered. As opposed to a standard Iterated Prisoners’ Dilemma which offers only two choices, CPD allows 
agents to cooperate at various levels between 0 and 1. To explain one such interaction, assume an agent A is 
paired with one of its neighbors B. A appraises the reward, i.e., the cooperation extended by B, with respect to 
its expectation, and this determines the emotion induced by this interaction. Both agents update their memory 
and mood, and this affects their subsequent interactions. Agents also broadcast the gist of their interaction to 
their neighbors.

In our work, emotion is modeled in line with the appraisal theory. To model the effect of emotion on memory, 
we define the initial strength of a trace as a linear function of emotion. We use two different gradients for positive 
and negative emotions, allowing us to model both positively and negatively biased agents.

The mood dependence effect is modeled as a probabilistic retrieval of traces using a triangular distribution 
centered around the current mood of the agent. This ensures traces with similar emotional states have higher 
chances of being retrieved than others, which is the condition of mood dependence. Forgetting is modeled using 
exponential decay, in line with prior work45,46.

Agents with mood disorders such as mania, depression, and bipolarity are considered in addition to perfectly 
rational agents. Such an agent society is modeled with an interconnected social network, where agents interact 
only with their neighbors, and agents broadcast their experiences to their neighbors. Also, the size of the personal 
network of each agent is determined by its type, which helps fill one significant gap in many prior models that 
consider agents in isolation.

Agents are also modeled with different levels of engagement or drive. In each round of interaction, an agent 
has the choice to decide if it wants to participate. Manic agents are modeled with a higher drive and depressed 
agents with a lower drive, as is consistent with clinical observations50,51.

Through simulation, we obtain results about the comparative performances of different types. An agent society 
with agents of all four types—rational, manic, depressed, and bipolar—is considered. Considering the average 
payoff of rational agents as the baseline, bipolar agents perform better by roughly 10%. The average payoff of 
manic agents is approximately 70% higher, and it is about 60% lower for depressed agents. Average payoff is 
plotted against the extent of mania and depression, and an almost-linear relationship is observed in both cases.

With regard to memory, agents with stronger memory perform better than those with weaker memory. The 
results differ across types with regard to emotional bias. For rational agents, there is no significant difference 
between agents with a positive bias and those with a negative bias. In manic agents as well as bipolar agents, posi-
tive bias is linked with higher payoff, but the effect is larger for bipolar agents when compared to manic agents. 
However, among depressed agents, those with a negative bias have higher payoffs.
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In the context of mood-dependent retrieval also, the effects vary across different types. For rational agents, 
there is no significant change in payoff observed by varying the level of mood dependence. In manic agents, an 
intermediate value of mood dependence offers the highest payoff. But in depressed agents, a similar medium 
value offers the least payoff. In bipolar agents, agents with weak mood dependence perform the best.

Background
In this section, we summarize related work in the fields of psychology, decision and behavioral sciences. Each 
subsection deals with one key aspect of the context of our model.

Forgetting.  Forgetting is the time decay of strength of memory traces in the absence of refreshing, until it is 
ultimately deleted. This is a fairly common phenomenon in humans, and has a considerable impact in decision-
making. The earliest work on memory and forgetting can be traced back to 1885, when Ebbinghaus examined 
the decline of memory strength with time. Broadly speaking, there have been two theories to model forgetting, 
on the basis of decay and interference52–54.

While both theories agree that old memories are lost over time, decay theory posits time as the only driving 
force behind forgetting55,56. Recent models based on time decay include the primacy model57 and the positional 
decay model58. Interference-based models argue that other activities interfere with retrieval of memory items, 
and thus contribute to forgetting. Typically, these models use an associative network that binds items to contexts, 
and when new information is encoded it typically overwrites the old, which is thus forgotten59.

Rubin and Wenzel considered two hundred datasets and about a hundred different functions, and observed 
that logarithmic, exponential, hyperbolic and power functions offered the best fit to model forgetting60. Since 
then, exponential decay44–46 and power functions61–63 seem to be the most favored functions to model forgetting.

Emotions and memory.  Levine and Pizarro write64: “Converging evidence from autobiographical mem-
ory studies, animal and human laboratory studies, and brain imaging studies shows that emotional events are 
remembered better than non-emotional events and that mechanisms specific to emotion underlie these effects.” 
Several other studies also concur with the idea that emotions improve memory for details central to the event 
and diminish memory for any peripheral details65,66.

In the domain of modeling emotions, one of the most influential ideas is the appraisal theory in psychology, 
where emotions are based on an individual’s evaluation of an interaction with respect to a goal16,17. There have 
been attempts to relate the emotional valence and strength of autobiographical memories, but the findings are 
varied, with some claiming that positive events are remembered better13,14, while others support better memory 
for negative events15.

Negativity bias has been described as the phenomenon by which a negative event has a greater psychological 
effect even when it is of equal intensity as a positive event67. This bias has been found to be fairly ubiquitous in 
humans68,69. Neurological studies also point to greater processing of negative information, which causes asym-
metry in attention and memory70. In studies concerning positive and negative behaviors, participants tend to 
recall negative behaviors more than positive behaviors71,72.

Mood and memory.  It has been known for long that mood and memory are related, and that the current 
mood affects which memories are retrieved73,74. As Lewis et al.20 write, “Remembering all of the negative events 
of our past lives when depressed is an example of this.” Mood dependence is the phenomenon where retrieval is 
facilitated for memories that match the present mood. Neuroimaging studies examining the influence of emo-
tion in encoding and retrieval also provide evidence in support of this75,76. Further, recent empirical studies 
based on human participants also offer support to this theory77. However, there seem to be no computational 
models of this phenomenon.

Types of mood disorders.  Bipolar disorder.  Bipolar disorder78 (BP) is a mental disorder characterized 
by cycling between manic and depressed episodes. Its prevalence is estimated to be 3.3% in the US79, and it is 
thought to affect about 2.4% of the global adult population80.

There are several prior computational models of BP. Rhythmic models are based on the idea that there is 
an intrinsic oscillation of mood, independent of any external perturbation33,34,81. These models assume mood 
swings periodically between mania and depression82,83. Another class of models assume multistability, claiming 
mood tends to distinct discrete states35,84. The other popular theory is that the hypersensitivity of the Behavioral 
Approach System (BAS), and the resulting interactions between mood, expectation, and behavior can explain 
BP36,37,85.

However, among these classes of models, rhythmic models are thought to have close links to actual biological 
rhythms, such as the circadian rhythm86. Indeed, the standard clinical treatment for BP, using Lithium, works 
through influencing the circadian pathways87.

Depression and mania.  Anhedonia is one of the major symptoms of depression, and it refers to an inability or a 
diminished ability to experience pleasurable stimuli51,88. This model is supported by an empirical study as well, in 
which self-reported anhedonia was positively correlated with participants’ estimated reward sensitivity89. Mania 
is characterised by elevated mood, energy, and reward-seeking behavior or drive90.

A popular approach to model mania and depression is to use reward sensitivity. The perceived reward is 
determined by the product of actual reward and reward sensitivity19; to model mania, reward sensitivity is chosen 
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as a value greater than 1, and to model depression, a fractional value is used. Thus, the single parameter can be 
used to model diminished and enhanced reward perception in depression and mania respectively.

Social interactions in mania can be abnormal, such as acting in overly familiar ways with strangers50. 
Depressed agents on the other hand exhibit poor social relationships, with studies indicating lower scores for 
adequacy of both intimate and diffuse social relationships32,91,92. Studies also indicate elevated absenteeism at 
work, and lower work performance, in chronically-depressed individuals, and during depressed phases in BP 
patients31.

Model of agent psychology and interactions
Consider two agents A and B paired in an interaction at time t. Now, agent A’s expectation of B’s level of coopera-
tion in this interaction ( EA(B) ) is the average of past levels of cooperation of B. A searches its memory for past 
experiences with B, which returns a set of relevant traces denoted by Le.

Here, i[c] denotes the level of cooperation extended by the other player in the interaction that is described by 
the trace i. The primary assumption of this model, in line with studies93,94, is that A cooperates at the same level 
at which it expects B will cooperate.

This interaction induces an emotion in both agents, and consequently their moods and memory are updated 
as well. These will be explained in more depth in the following subsections. For the remainder of this section, we 
will continue with the same nomenclature of agents, A and B to maintain consistency and clarity.

Interaction model.  The agent society consists of four different types of agents: rational, manic, depressed, 
and bipolar agents. The set of all agents is denoted by A . The society is modeled with a social network, and 
agents’ interactions are limited to their neighbors only. The social network is modeled as an undirected graph 
with agents as the nodes. Hence, the social network can be represented by

The degree of the node determines the size of the neighborhood of an agent. The size of the neighborhood of the 
agent A is given by ηA , so 0 ≤ ηA ≤ |A | − 1.

As discussed in "Types of mood disorders", the size of the neighborhood of an agent is dependent on the type 
of the agent. The exact relationship between these is explained in "Modeling mood disorders".

The simulation consists of multiple rounds of interactions, and all agents are not active in all the rounds. At 
any such round t, an agent A is randomly paired with another agent B if and only if (A,B) ∈ E and both A and 
B are active at t.

An interaction between a pair of agents is based on the Continuous Prisoners Dilemma (CPD)95,96. In the 
standard Iterated Prisoners’ Dilemma, agents are restricted to only two actions—cooperate or defect. However, 
not all interactions can be realistically modeled with such restricted behavior.

In the CPD, agents can cooperate at any level between 0 and 1, where 0 and 1 correspond to the cases of 
completed defection and cooperation respectively. The concept and related payoff structure are adopted from 
Verhoeff95.

For the two agents A and B, their cooperation levels are denoted by cA and cB , respectively. The payoff func-
tions are derived from the discrete payoff matrix by linear interpolation95:

where C, T, D, S are the payoffs in the standard PD as shown below.

Player B
1 0

Player A
1 (C,C) (S,T )
0 (T,S) (D,D)

The values are chosen so 2C > T + D and T > C > D > S (these are standard conditions applicable to the 
Prisoners’ Dilemma).

Emotion and mood.  We adopt the appraisal theory of emotion, as discussed in "Emotions and memory". 
The agent A evaluates the reward, which is the level of cooperation cB extended by B with respect to its expecta-
tion EA(B) . The emotion of the agent A at time t, δtA is therefore the difference between reward and expectation, 
given by

EA(B) =

∑

i∈Le
i[c]

|Le|
.

(1)cA = EA(B).

G = (A ,E ) E ⊆ {(x, y)|(x, y) ∈ A
2 ∧ x �= y}.

(2)pA(a, b) = cAcBC + cAc̄BS + c̄AcBT + c̄Ac̄BD,

(3)δtA = cB − EA(B) = cB − cA.
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By Eq. (1), EA(B) = cA and thus the induced emotion is equivalent to the difference between the levels of 
cooperation of A and B. As discussed in "Interaction model", levels of cooperation cA and cB range from 0 to 1. 
Therefore Eq. (3) shows that -1 ≤ δtA ≤ 1 . If cB > cA , it implies A has received a reward greater than it expected, 
which results in a positive emotion, δtA > 0.

The mood νtA of agent A is updated as follows.

Here, κA is the rate of change of mood and 0 ≤ κA ≤ 1 . When κA is 1, the agent’s mood is fleeting and is the same 
as its emotion. But, when κA is 0, the agent’s mood is constant and remains unperturbed by the interactions. To 
maintain symmetry, the mood is transformed to lie between − 1 and 1 using a sigmoidal function such as the 
hyperbolic tangent function.

Memory encoding.  The agent stores its experience after each interaction in its memory. This process of 
encoding leaves behind a trace, with initial strength φ0 . We model that the encoding function is solely based on 
the emotional value of the interaction. As discussed in "Emotions and memory" and the references therein, it is 
clear that any encoding function satisfies the following two properties. First, emotionally charged events must be 
more strongly encoded than emotionally neutral events. Second, any agent can either be positively or negatively 
biased and the encoding function should allow this. After the interaction between A and B, A now encodes this 
experience into its memory, and the initial strength φ0 of this trace is given by:

The negative and positive gradients are denoted by kN  and kP . It can be seen from Eq.  (5) that 
c ≤ φ0 ≤ max (kN , kP) . The values of the gradients may differ across agents, but for any agent it remains con-
stant. The emotional bias of an agent, denoted by ξ , is a ratio of the two gradients.

If ξ > 1 , then the agent is positively biased; it is negatively biased if ξ < 1 , and has no emotional bias otherwise.

Rate of forgetting.  A trace cannot remain at the same strength as time progresses. We use an exponential 
forgetting curve as in many prior works44–46.

Here, θA is the rate of forgetting and varies across agents, but remains constant for an agent; θ > 0 . Each agent also 
has a minimum threshold on strength of traces, φmin . When the strength of a trace drops below this threshold, 
it is deleted from memory.

However, when a trace is successfully retrieved from memory, its strength is reset to φ0.
Remark 1 The duration d of availability of a trace, without any refreshing, increases with initial strength, and 

decreases with the rate of forgetting.
For a trace to get deleted from memory, its strength should be less than the minimum threshold, i.e., 

φd < φmin . This means φ0e−θd < φmin , which in turn yields:

Since φ0 is higher for emotionally charged events by Eqs. (5),  (8) shows that emotionally charged events last 
longer in the memory.

Mood and memory retrieval.  Agent A searches its memory for traces pertaining to B, and obtains the 
filtered set of traces, L . Mood dependent retrieval is the phenomenon where traces whose emotional states match 
the current mood are more likely to be retrieved. Since mood νtA is a continuous variable such that −1 ≤ νtA ≤ 1 
by Eq. (4), retrieving traces whose emotional states are exactly equal to the current mood is not feasible. There-
fore, we use a triangular function (similar to the triangular apodization function used in signal processing and 
spectroscopy97), centered at the agent’s current mood, with a parameter γA ≥ 0 , to assign the likelihood of 
retrieval of each trace. Any function chosen should satisfy the following two requirements. First, for lower val-
ues of γA , the retrieval should not be selective, i.e., all traces should be retrieved irrespective of emotional state. 
Second, for higher values of γA , the retrieval chances should be better for those traces whose emotional state 
match the current mood. A triangular function satisfies both these requirements.

From the filtered set L , the likelihood of retrieval of each trace is given by:

Here, emotion of trace j is denoted by j[e] and by Eq. (9), it is clear that 0 ≤ pj ≤ 1 . When γA is lower, the 
curve is flatter, and almost all traces are equally likely to be retrieved with probability tending to 1, which is the 

(4)νtA = tanh (νt−1
A + κA(δ

t
A − νt−1

A )).

(5)φ0 =

{

(−kN × δtA)+ c δtA ≤ 0

(kP × δtA)+ c δtA > 0

(6)ξ =
kP

kN
.

(7)φt = φ0e
−θAt .

(8)d >
1

θ
ln

(

φ0

φmin

)

.

(9)∀j ∈ L, pj = max(0, 1− γA|j[e] − νtA|).



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20895  | https://doi.org/10.1038/s41598-020-77715-6

www.nature.com/scientificreports/

case of weak mood dependence. On the other hand, if A has a strong mood dependence, i.e., high γA , only traces 
whose emotional states are close to the current mood are retrieved. This is also seen in Fig. 1, where the curves 
corresponding to lower values of γA are almost horizontal and assign probabilities close to 1 for all traces. On the 
other hand, the curves corresponding to higher values of γA assign a probability of 0 to traces whose emotions 
do not match the current mood. Traces in L are probabilistically retrieved based on Eq. (9), and those traces that 
are successfully retrieved are returned as Le.

Modeling mood disorders.  We model three different mood disorders: mania, depression, and bipolar 
disorder.

Mania and depression.  As discussed in "Types of mood disorders", one of depression’s common symptoms is 
anhedonia51, the inability or the diminished ability to enjoy pleasurable events; in mania, the opposite is true90. 
Huys et al.19 used reward sensitivity to model perceived rewards to be different from actual rewards in individu-
als with mood disorders. In Eq. (3), we assume no difference between perceived and actual rewards, both equal 
to cB . To accommodate manic and depressed agents, Eq. (3) is modified as:

Here, βt
A is the reward sensitivity of agent A at time t, which remains constant for each agent, of either manic 

and depressed type. If agent A is depressed, then 0 ≤ βA ≤ 1 . If A is manic, then βA > 1 . When βA is exactly 1, 
Eq. (10) reduces to Eq. (3), and A is a rational agent. Although theoretically 0 ≤ βA < ∞ , for the sake of simula-
tion a maximum value of βA is considered, and denoted by βmax.

Depression is associated with reward hyposensitivity and anhedonia89,98, while mania is associated with 
excessive motivation99. Therefore we model reward sensitivity as a constant, trait-like parameter (to address 
hyposensitivity) with a low value (for anhedonia) for depressed agents, and a high value (for the opposite, in 
case of manic agents).

The mood νtA is initialized with a value based on β0
A as:

It can be seen from Eq. (11), depressed agents are initialized with a negative mood, and manic agents are associ-
ated with a positive mood. 0 ≤ νtA ≤ 1 for manic agents and −1 ≤ νtA ≤ 1 for depressed agents.

In the case of depression, it has been seen that depressed people are more likely to be connected to other 
depressed individuals100. In line with this, we introduce a connection diversity parameter for depressed agents 
only, denoted by π . If π is 0.5, that implies half the connections of the agent are depressed agents, and the remain-
ing connections are distributed among the other types equally.

Bipolar disorder.  Bipolar disorder (BP) is a mood disorder where the agent’s mood oscillates between mania 
and depression. In line with existing rhythmic models34,81,101 that assume mood swings as periodic, we model 
mood fluctuation in BP using a sine curve with the period varied periodically by the parameter ωA and a con-
stant offset �A . The mood of a bipolar agent A at any time t is given by:

The offset �A determines if the agent is mostly manic or mostly depressed and −1 ≤ �A ≤ 1 . If �A > 0 , the agent 
is mostly manic it is mostly depressed if �A < 0 . The parameter ωA determines the period of cycling. Clinical 

(10)δtA = tanh (βt
AcB − cA).

(11)ν0A =

{

β0
A − 1 0 ≤ β0

A < 1

1+
β0
A−1

βmax−1
1 < β0

A ≤ βmax

(12)νtA = sinωAt + �A.
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Figure 1.   Mood dependence.
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studies suggest there are phases of rapid cycling in BP patients82,83, and that the rate of cycling is different across 
individuals. In our model, ωA is updated every 50 rounds, and it is sampled from an exponential distribution 
with mean ω′

A , which remains constant for an agent.
In bipolar agents, the perceived reward is dependent on the agent’s mood26,102, and hence cannot be mod-

eled by a constant reward sensitivity. Instead, a time-varying reward sensitivity, βt
A is used to model bipolarity.

The emotion induced by an interaction for bipolar agents is given by Eq. (10). The only difference is that, the 
reward sensitivity βt

A is constant for manic and depressed agents, but changes with time for bipolar agents. It is 
clear from Eq. (13), that the agent overestimates reward when manic, and perceives diminished rewards when 
depressed.

Social interactions and mood disorders.  Another symptom associated with manic and depressed phases is the 
relatively higher and lower drive of the individual. We already alluded to this concept in "Interaction model", 
stating agents can choose if they want to participate or not in any round of interaction. This is modeled as drive 
of an agent ζA , with 0 ≤ ζA ≤ 1 . In each round, the agent decides to participate with probability ζA , given by:

The size of A’s neighborhood, ηA is also vastly different for manic and depressed agents with depressed agents 
being more lonely and having smaller personal network50,91. The social reach is a function of reward sensitivity, 
and is given by:

Both these parameters are constant for an agent, and Eqs. (14) and  (15) are obtained by applying min–max 
rescaling to transform the ranges. For example, in the case of depressed agents, 0 ≤ β0

A ≤ 1 and 0 ≤ ζA < 0.5 . 
Hence, min–max rescaling is used to transform the value of β0

A to an appropriate value of ζA.
The mood is a complex phenomenon103. Also, there is no direct relationship between mood and behavior104. It 

is fuzzy, ambiguous, could be fleeting or lasting, and a person cannot pinpoint the “why” of their current mood105. 
There is also no direct causal relationship between mood and the drive to participate in an activity105. Therefore, 
there is no precise way to model drive and network size as state-like factors dependent on current mood.

Agent types and design
An agent society comprising four different types of agents is considered. The agents are categorized into these 
types by behavior, decision making and internal attributes. The system is initialized with various specifications 
such as the number of agents, proportion of various types, and the number of rounds of interaction. The set of all 
agents is denoted by A and the number of rounds is denoted by K. In the following subsections, we will define 
the attributes of an agent and the different types of agents.

Agent attributes.  An agent A has several attributes that determine its nature and behavior. First, A has an 
unique identifier, denoted by αA . The total number of agents in the system is |A | , therefore αA ∈ {1, 2, . . . , |A |} . 
The performances of agents are compared based on cumulative payoffs at the end of the simulation, and this is 
captured by a non-negative real number. The mood of A, νtA and the rate of change of mood κ , are as described 
in "Mood and memory". The reward sensitivity βt

A is determined by its type, as discussed in "Mood disorders". 
The size of A’s neighborhood ηA is determined by the initial reward sensitivity β0

A as given by Eq. (15). The drive 
of A ζA , a measure of the level of engagement, is also a function of β0

A and is given by Eq. (14). A also maintains 
a set of its neighbors, NA.

The memory of A has five attributes. The rate of forgetting θA and the minimum threshold of trace strength 
φmin , are as in "Forgetting". Another attribute is the level of mood dependence used to model mood-dependent 
retrieval in Eq. (9). It also needs to maintain a pair of gradients (kN , kP) which are used as positive and negative 
gradients in the encoding function (Eq. 5). Lastly, the memory maintains a set of traces.

Each trace contains information pertaining to a single interaction, such as the identifier of the counterpart 
agent involved and the level of cooperation extended. Other information include the emotion δtA induced by the 
interaction (as given by Eqs. (3) and (10)). The trace is encoded and assigned an initial strength φ0 (as given by 
Eq. (5)) and this is also captured. The strength of the trace, φt decays with time (as given by Eq. (7)).

Agent types.  As discussed in "Model of agent psychology and interactions", we consider four different types 
of agents: rational, manic, depressed, and bipolar. Table 1 summarizes the key differences among them.

(13)βt
A =







1 νtA = 0

νtA + 1 − 1 ≤ νtA < 0

1+ νtA(βmax − 1) 0 < νtA ≤ 1

(14)ζA =











0.5 β0
A = 1

0.5β0
A 0 ≤ β0

A < 1

0.5+ 0.5
β0
A−1

βmax−1
1 < β0

A ≤ βmax

(15)ηA =











0.5|A | β0
A = 1

0.5β0
A|A | 0 ≤ β0

A < 1
�

0.5+ 0.5
β0
A−1

βmax−1

�

|A | 1 < β0
A < βmax
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Rational agents.  A rational agent is considered the baseline. It perceives rewards as they are, hence has a reward 
sensitivity of exactly 1, and its mood always stays neutral at 0. The size of its neighborhood is exactly half the total 
number of agents in the system (Eq. 15). Similarly, its drive is also 0.5, based on Eq. (14). This agent type is based 
upon the ideal of a perfect rational human.

Manic agents.  A manic agent is the virtual equivalent of a human with chronic mania. For simulation, the value 
of βmax is taken to be 10 and hence, the reward sensitivity lies between 1 and 10 (see "Mood disorders"). Mood νtA 
is initialized with a positive value based on βA by Eq. (11), and the mood always remains positive. Manic agents 
exhibit greater drive than rational agents, and therefore ζA > 0.5 by Eq. (14). Manic agents’ higher levels of social 
engagement are modeled with larger neighborhoods, from Eq. (15).

Depressed agents.  A depressed agent is based on humans with Major Depressive Disorder. The reward sensitiv-
ity of these agents lies between 0 and 1 (see "Mood disorders"). Mood νtA is initialized with a negative value based 
on βA , by Eq. (11), and the mood always remains negative. Depressed agents possess smaller neighborhoods as 
given by Eq. (15). Their levels of engagement are also lower, modeled with a lower drive than rational agents in 
Eq. (14).

Bipolar agents.  A bipolar agent is subject to oscillating periods of mania and depression. As discussed in "Mood 
disorders", mood updates are modeled by a sine function. Bipolar agents have two additional attributes apart 
from the basic attributes defined in "Agent attributes": ωA , which controls the rate of cycling, and the offset �A.

The sizes of the neighborhood and the drive of bipolar agents are given by Eqs. (15) and (14), respectively. 
Since mood updates happen intrinsically due to internal rhythms according to Eq. (12), the rate of mood change 
κA is not pertinent for bipolar agents.

A summary of all four agent types and the permissible ranges for their attributes is given in Table 1.

Results
A system of 200 agents with representation from all four types is simulated for 2000 rounds of interaction. As 
discussed in "Agent types", the parameters of each agent are assigned in the range of permissible values. In each 
round, agents are paired according to the interaction model outlined in "Interaction model". The agents interact, 
update their payoffs, emotion, mood, and their availability for the next round. Different parameters of agents 
are varied in each experiment and their impacts on total payoff are presented in the subsequent subsections.

Comparing payoffs of all agent types.  For this experiment, all four types of agents are equally repre-
sented (25%). We find that payoffs are highest for manic agents and least for depressed agents (Fig. 2a). Although 
bipolar agents show vastly different payoffs between themselves, on average the payoff of bipolar agents is greater 
than that of rational agents by about 10%. It is also seen that the average payoff of manic agents is about 70% 
higher than the average payoff of rational agents. When compared with rational agents, an average depressed 
agent’s payoff is roughly 60% lower.

Effect of varying the population composition.  In this experiment, for each type of agent, different 
levels of representation in the total population are considered, with the remaining types distributed equally. 
For example, if we consider 10% representation of rational agents in the system, then the remaining 90% is split 
between the other three types equally. In Fig. 2b, each curve depicts the effect on the average payoff of that type 
when the proportion of agents of that type is varied. No significant difference in the level of payoff is observed 
for rational and depressed agents when their proportion in the system is increased. However, increasing the 
proportion of manic agents resulted in a significant dip in their average payoff. For bipolar agents, a higher value 
of average payoff is observed with an increasing proportion of the corresponding type.

Effect of diversity of connections in depressed agents.  In this experiment, we have an agent society 
with equal numbers of agent in all four types, and we vary the connection diversity of depressed agents from 
0.2 to 0.5. A connection diversity of 0.25 implies there is an equal number of agents from all four types in the 
personal network of the agent. As seen in Table 1, the highest value of η for a depressed agent is 0.5|A | . If π > 0.5, 
then the number of connections with depressed agents would exceed 0.25|A | . This is not possible because the 
total number of agents of each type is 0.25|A | . Through simulation, it is seen that a moderate value of π brings 
out the highest average payoff (Fig. 2c).

Table 1.   Summary of agent types and attributes.

Attribute Rational Manic Depressed Bipolar

β0
A

1 [1,10] [0,1] [0,10]

ν0
A

0 [0,1] [− 1,0] [− 1,1]

κA 0 0.1 0.1 N/A

ηA 0.5|A | [0.5|A |, |A |] [0, 0.5|A |] [0, |A |]

ζA 0.5 [0.5,1] [0,0.5] [0,1]
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Effect of forgetting.  In this experiment, the rate of forgetting is varied in powers of 10 starting from 10−4 
until 10. To avoid potential confounders, other parameters such as the positive and negative gradients, mood 
dependence, etc., are fixed. The value of gradients for the encoding function (Eq. 5), kN , kP and the intercept c 
are chosen such that the initial strength of traces are less than 100. From Eq. (8), the minimum value of d, the 
duration of availability with θA = 0.0001 is much greater than 2000, which is the total number of interactions. 
Hence this corresponds to the case of a perfect memory, where an agent remembers every single interaction 
right from the beginning. On the other hand, when θA = 10 , the maximum duration of availability is less than 
1, which implies the agent has no memory at all. Through simulation, it is observed that a stronger retention, 
i.e., a lower value of θA offers better payoffs than weaker retention (Fig. 2d). However, the exact difference varies 
across types. Among manic agents, high values of θA cause 4% lower payoffs than agents with perfect memory. 
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Figure 2.   Results.
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Among rational and depressed agents, those with no memory have an average payoff that is roughly 10% lower 
than agents with perfect memory. Among bipolar agents, agents with a near-perfect memory perform better 
than those with either a perfect memory or no memory.

Effect of emotional bias.  Considering a system with equal proportions of all agent types, with other 
parameters such as θA and γA fixed to avoid any potential confounders, the average payoff is considered the 
baseline (0), and the payoff associated with both biases are plotted as percentage differences from the baseline 
(Fig. 2e). In manic, and bipolar agents, positive bias is associated with higher payoffs, with positively biased 
agents performing about 12% better among bipolar agents, but only roughly 1% better among manic agents. 
There is not much change for rational agents. However, among depressed agents, negatively biased agents per-
form roughly 2% better than average.

Effects of mood‑based retrieval.  To analyze the effects mood dependence, we considered values from 
10−2 to 100 in powers of 10. For each type, the average payoff at the lowest level of mood dependence (0.01) is 
considered 100 and the payoffs at other levels are scaled appropriately. Fig. 2f shows that mood dependence 
does not have any significant effect on rational agents. However, for manic agents an intermediate value of 
mood dependence offers the highest payoff ( ∼ + 30%) while in depressed agents, an intermediate value of mood 
dependence gives the lowest payoff ( ∼ −40%). In bipolar agents, low mood dependence maximizes payoff.

Effect of reward sensitivity.  As discussed in "Mood disorders", the reward sensitivity βA is a measure 
of the extent of mania or depression. Figure 3a depicts the almost-linear relationship between βA and average 
payoff. It is observed that payoffs increase with increasing mania, which is fairly obvious because the higher 
the mania, higher is the drive in our model (Eq. 14). An almost-linear relationship between βA and payoff is 
observed in depressed agents also (Fig.  3b). The observed relationship between payoffs and level of mania/
depression is in line with prior clinical studies106,107, but there is no obvious analytical explanation in those. 
This model thus allows for insights into the observed outcomes. It is also clear that depressed agents at any level 
perform worse than manic agents.

Conclusion
Mood disorders are unfortunately prevalent in society, hence models that capture them realistically are essential 
and relevant. We present a model that captures some important aspects of social interactions and success, given 
mood disorders and memory biases. A linear encoding function with different gradients for positive and negative 
emotions is used to model the relationship between emotion and memory. Mood-dependent memory retrieval 
is modeled using a triangular function centered at the agent’s current mood. Social interactions are considered 
in mood disorders, as opposed to most prior work that considered agents in isolation.

Based on simulation of an agent society with different types of agents, we obtain results about relative payoffs 
and other aspects that are in agreement with, and extend, published studies. Our results concur with psycho-
logical studies that establish a relationship between severity of depression and lower performance106. Clinical 
studies also suggest diminished performance in depressed individuals and improved performance in cases of 
mania107–109, as also seen in our model.

Mood-dependent memory retrieval remains unexplored in prior works and clinical studies, and there seem 
to be no models that establish its impact on performance. We can show that an intermediate level of mood 
dependence brings the highest payoffs for manic agents, and lowest payoff for depressed agents. Our work can 
thus also be extended to effects of various traits or biases, some of which may not be easy to study empirically.

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1  2  3  4  5  6  7  8  9  10

A
ve

ra
ge

 p
ay

of
f p

er
 a

ge
nt

Extent of mania (β)

(a) Effect of mania on payoffs

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

A
ve

ra
ge

 p
ay

of
f p

er
 a

ge
nt

Extent of depression (β)

(b) Effect of depression on payoffs

Figure 3.   Effect of levels of mania and depression.



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20895  | https://doi.org/10.1038/s41598-020-77715-6

www.nature.com/scientificreports/

Received: 6 March 2020; Accepted: 21 October 2020

References
	 1.	 Schelling, T. C. Micromotives and Macrobehavior (Norton, Leicestershire, 1978).
	 2.	 Epstein, J. M. & Axtell, R. Growing artificial societies: Social science from the bottom up (MIT Press, Cambridge, 1996).
	 3.	 Harding, E. J., Paul, E. S. & Mendl, M. Cognitive bias and affective state. Nature 427, 312. https​://doi.org/10.1038/42731​2a (2004).
	 4.	 Burman, O. H., Parker, R. M., Paul, E. S. & Mendl, M. T. Anxiety-induced cognitive bias in non-human animals. Physiol. Behav. 

98, 345–350 (2009).
	 5.	 Sreenivas, N. K. & Rao, S. Egocentric bias and doubt in cognitive agents. In Proceedings of the 18th International Conference 

on Autonomous Agents and MultiAgent Systems, AAMAS ’19, 286–295 (International Foundation for Autonomous Agents and 
Multiagent Systems, 2019).

	 6.	 Hegselmann, R. & Krause, U. Opinion dynamics and bounded confidence models, analysis and simulation. J. Artif. Soc. Soc. 
Simul.5, (2002).

	 7.	 Sobkowicz, P. Opinion dynamics model based on cognitive biases of complex agents. J. Artif. Soc. Soc. Simul.. https​://doi.
org/10.18564​/jasss​.3867 (2018).

	 8.	 Del Vicario, M., Scala, A., Caldarelli, G., Stanley, H. & Quattrociocchi, W. Modeling confirmation bias and polarization. Sci. 
Rep. 7, 40391. https​://doi.org/10.1038/srep4​0391 (2017).

	 9.	 Lerner, J. S., Li, Y., Valdesolo, P. & Kassam, K. S. Emotion and decision making. Annu. Rev. Psychol. 66, 799–823. https​://doi.
org/10.1146/annur​ev-psych​-01021​3-11504​3 (2015).

	 10.	 Simon, H. A. Reason in Human Affairs (Stanford University Press, Stanford, 1983).
	 11.	 Brown, R. & Kulik, J. Flashbulb memories. Cognition 5, 73–99. https​://doi.org/10.1016/0010-0277(77)90018​-X (1977).
	 12.	 McCloskey, M., Wible, C. G. & Cohen, N. J. Is there a special flashbulb-memory mechanism?. J. Exp. Psychol. Gen. 117, 171–181. 

https​://doi.org/10.1037/0096-3445.117.2.171 (1988).
	 13.	 Walker, W. R., Vogl, R. J. & Thompson, C. P. Autobiographical memory: unpleasantness fades faster than pleasantness over time. 

Appl. Cogn. Psychol.11, 399–413. https​://doi.org/10.1002/(SICI)1099-0720(19971​0)11:5<399::AID-ACP46​2>3.0.CO;2-E (1997).
	 14.	 Rubin, D. C. & Berntsen, D. Life scripts help to maintain autobiographical memories of highly positive, but not highly negative, 

events. Mem. Cogn. 31, 1–14. https​://doi.org/10.3758/BF031​96077​ (2003).
	 15.	 Bluck, S. & Li, K. Z. Predicting memory completeness and accuracy: Emotion and exposure in repeated autobiographical recall. 

Appl. Cogn. Psychol.15, 145–158. https​://doi.org/10.1002/1099-0720(20010​3/04)15:2<145::AID-ACP69​3>3.0.CO;2-T (2001).
	 16.	 Arnold, M. B. Emotion and personality (Columbia University Press, New York, 1960).
	 17.	 Lazarus, R. S. Progress on a cognitive-motivational-relational theory of emotion. Am. Psychol. 46, 819–834. https​://doi.

org/10.1037/0003-066X.46.8.819 (1991).
	 18.	 Marinier, R. III. & Laird, J. Computational modeling of mood and feeling from emotion. Proc. Annu. Meet. Cogn. Sci. Soc. 29, 

461–466 (2007).
	 19.	 Huys, Q. J., Pizzagalli, D. A., Bogdan, R. & Dayan, P. Mapping anhedonia onto reinforcement learning: A behavioural meta-

analysis. Biol. Mood Anxiety Disord. 3, 12. https​://doi.org/10.1186/2045-5380-3-12 (2013).
	 20.	 Lewis, P. A. & Critchley, H. D. Mood-dependent memory. Trends Cogn. Sci. 7, 431–433. https​://doi.org/10.1016/j.tics.2003.08.005 

(2003).
	 21.	 Yates, J., Clare, L. & Woods, B. You’ve got a friend in me: Can Social Engagement mediate the relationship between mood and 

MCI?. Innov. Aging1, 1179. https​://doi.org/10.1093/geron​i/igx00​4.4295 (2017).
	 22.	 Brink, P. & Stones, M. Examination of the relationship among hearing impairment, linguistic communication, mood, and social 

engagement of residents in complex continuing-care facilities. Gerontologist 47, 633–641. https​://doi.org/10.1038/42731​2a0 
(2007).

	 23.	 Shevchenko, Y. The Influence of Mood on Decision-Making. Ph.D. thesis, University of Mannheim (2018).
	 24.	 Bagalman, E. & Cornell, A. S. Prevalence of Mental Illness in the United States: Data Sources and Estimates. Congressional 

Research ServiceR43047, (2018).
	 25.	 Dayan, P. & Niv, Y. Reinforcement learning: The good, the bad and the ugly. Curr. Opin. Neurobiol. 18, 185–196. https​://doi.

org/10.1016/j.conb.2008.08.003 (2008) (Cognitive neuroscience.).
	 26.	 Eldar, E., Rutledge, R. B., Dolan, R. J. & Niv, Y. Mood as representation of momentum. Trends Cogn. Sci. 20, 15–24. https​://doi.

org/10.1016/j.tics.2015.07.010 (2016).
	 27.	 Eldar, E. & Niv, Y. Interaction between emotional state and learning underlies mood instability. Nat. Commun. 6, 6149. https​://

doi.org/10.1038/ncomm​s7149​ (2015).
	 28.	 Clark, J. E., Watson, S. & Friston, K. J. What is mood? a computational perspective. Psychol. Med. 48, 2277–2284. https​://doi.

org/10.1017/S0033​29171​80004​30 (2018).
	 29.	 Barger, S. D., Messerli-Bürgy, N. & Barth, J. Social relationship correlates of major depressive disorder and depressive symptoms 

in switzerland: nationally representative cross sectional study. BMC Public Health 14, 273. https​://doi.org/10.1186/1471-2458-
14-273 (2014).

	 30.	 Teo, A. R., Choi, H. & Valenstein, M. Social relationships and depression: Ten-year follow-up from a nationally representative 
study. PLoS One 8, e62396. https​://doi.org/10.1371/journ​al.pone.00623​96 (2013).

	 31.	 Kessler, R. et al. Prevalence and effects of mood disorders on work performance in a nationally representative sample of U.S. 
workers. Am. J. Psychiatry 163, 1561–8. https​://doi.org/10.1176/appi.ajp.163.9.1561 (2006).

	 32.	 Shippee, N. D. et al. Differences in demographic composition and in work, social, and functional limitations among the popula-
tions with unipolar depression and bipolar disorder: Results from a nationally representative sample. Health Qual. Life Outcomes 
9, 90. https​://doi.org/10.1186/1477-7525-9-90 (2011).

	 33.	 Bonsall, M. B., Geddes, J. R., Goodwin, G. M. & Holmes, E. A. Bipolar disorder dynamics: Affective instabilities, relaxation 
oscillations and noise. J. R. Soc. Interface 12, 20150670. https​://doi.org/10.1098/rsif.2015.0670 (2015).

	 34.	 Goldbeter, A. Origin of cyclicity in bipolar disorders: A computational approach. Pharmacopsychiatry 46, S44–S52. https​://doi.
org/10.1055/s-0033-13415​02 (2013).

	 35.	 Lopez, A. Markov Models for Longitudinal Course of Youth Bipolar Disorder. Ph.D. thesis, University of Pittsburgh (2008).
	 36.	 Urošević, S., Abramson, L. Y., Harmon-Jones, E. & Alloy, L. B. Dysregulation of the behavioral approach system (bas) in bipolar 

spectrum disorders: Review of theory and evidence. Clin. Psychol. Rev. 28, 1188–1205. https​://doi.org/10.1016/j.cpr.2008.04.004 
(2008).

	 37.	 Alloy, L. B. & Abramson, L. Y. The role of the behavioral approach system (BAS) in bipolar spectrum disorders. Curr. Dir. Psychol. 
Sci. 19, 189–194 (2010).

	 38.	 Rolls, E. T. Memory, Attention, and Decision-Making: A Unifying Computational Neuroscience Approach (Oxford University 
Press, Oxford, 2007).

	 39.	 Dudai, Y. How big is human memory, or on being just useful enough. Learn. Mem. 3, 341–365. https​://doi.org/10.1101/lm.3.5.341 
(1997).

https://doi.org/10.1038/427312a
https://doi.org/10.18564/jasss.3867
https://doi.org/10.18564/jasss.3867
https://doi.org/10.1038/srep40391
https://doi.org/10.1146/annurev-psych-010213-115043
https://doi.org/10.1146/annurev-psych-010213-115043
https://doi.org/10.1016/0010-0277(77)90018-X
https://doi.org/10.1037/0096-3445.117.2.171
https://doi.org/10.1002/(SICI)1099-0720(199710)11:5<399::AID-ACP462>3.0.CO;2-E
https://doi.org/10.3758/BF03196077
https://doi.org/10.1002/1099-0720(200103/04)15:2<145::AID-ACP693>3.0.CO;2-T
https://doi.org/10.1037/0003-066X.46.8.819
https://doi.org/10.1037/0003-066X.46.8.819
https://doi.org/10.1186/2045-5380-3-12
https://doi.org/10.1016/j.tics.2003.08.005
https://doi.org/10.1093/geroni/igx004.4295
https://doi.org/10.1038/427312a
https://doi.org/10.1016/j.conb.2008.08.003
https://doi.org/10.1016/j.conb.2008.08.003
https://doi.org/10.1016/j.tics.2015.07.010
https://doi.org/10.1016/j.tics.2015.07.010
https://doi.org/10.1038/ncomms7149
https://doi.org/10.1038/ncomms7149
https://doi.org/10.1017/S0033291718000430
https://doi.org/10.1017/S0033291718000430
https://doi.org/10.1186/1471-2458-14-273
https://doi.org/10.1186/1471-2458-14-273
https://doi.org/10.1371/journal.pone.0062396
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1186/1477-7525-9-90
https://doi.org/10.1098/rsif.2015.0670
https://doi.org/10.1055/s-0033-1341502
https://doi.org/10.1055/s-0033-1341502
https://doi.org/10.1016/j.cpr.2008.04.004
https://doi.org/10.1101/lm.3.5.341


12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20895  | https://doi.org/10.1038/s41598-020-77715-6

www.nature.com/scientificreports/

	 40.	 Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186. https​://doi.
org/10.1016/j.cell.2014.03.001 (2014).

	 41.	 Deese, J. & Kaufman, R. A. Serial effects in recall of unorganized and sequentially organized verbal material. J. Exp. Psychol. 54, 
180–187. https​://doi.org/10.1037/h0040​536 (1957).

	 42.	 Murdock, B. B. Jr. The serial position effect of free recall. J. Exp. Psychol. 64, 482–488. https​://doi.org/10.1037/h0045​106 (1962).
	 43.	 Richards, B. A. & Frankland, P. W. The persistence and transience of memory. Neuron 94, 1071–1084. https​://doi.org/10.1176/

appi.ajp.163.9.15610 (2017).
	 44.	 Wozniak, P. A., Gorzelanczyk, E. J. & Murakowski, J. A. Two components of long term memory. Acta Neurobiol. Exp. 55, 301–305 

(1995).
	 45.	 Rubin, D. C., Hinton, S. & Wenzel, A. The precise time course of retention. J. Exp. Psychol. Learn. Mem. Cogn. 25, 1161–1176. 

https​://doi.org/10.1176/appi.ajp.163.9.15611 (1999).
	 46.	 White, K. G. Forgetting functions. Anim. Learn. Behav. 29, 193–207. https​://doi.org/10.1176/appi.ajp.163.9.15612 (2001).
	 47.	 Conte, R. & Paolucci, M. On agent-based modeling and computational social science. Front. Psychol. 5, 668. https​://doi.

org/10.1176/appi.ajp.163.9.15613 (2014).
	 48.	 Jackson, J. C., Rand, D., Lewis, K., Norton, M. I. & Gray, K. Agent-based modeling: A guide for social psychologists. Soc. Psychol. 

Pers. Sci. 8, 387–395. https​://doi.org/10.1176/appi.ajp.163.9.15614 (2017).
	 49.	 Eberlen, J., Scholz, G. & Gagliolo, M. Simulate this! An introduction to agent-based models and their power to improve your 

research practice. Int. Rev. Soc. Psychol. 30, 149–160. https​://doi.org/10.1176/appi.ajp.163.9.15615 (2017).
	 50.	 Fletcher, K., Parker, G., Paterson, A. & Synnott, H. High-risk behaviour in hypomanic states. J. Affect. Disord. 150, 50–56. https​

://doi.org/10.1176/appi.ajp.163.9.15616 (2013).
	 51.	 Rizvi, S. J., Pizzagalli, D. A., Sproule, B. A. & Kennedy, S. H. Assessing anhedonia in depression: Potentials and pitfalls. Neurosci. 

Biobehav. Rev. 65, 21–35. https​://doi.org/10.1176/appi.ajp.163.9.15617 (2016).
	 52.	 Ecker, U. & Lewandowsky, S. Computational constraints in cognitive theories of forgetting. Front. Psychol. 3, 400. https​://doi.

org/10.3389/fpsyg​.2012.00400​ (2012).
	 53.	 Wixted, J. T. The psychology and neuroscience of forgetting. Annu. Rev. Psychol. 55, 235–269. https​://doi.org/10.1176/appi.

ajp.163.9.15619 (2004).
	 54.	 Oberauer, K. & Lewandowsky, S. Forgetting in immediate serial recall: Decay, temporal distinctiveness, or interference?. Psychol. 

Rev. 115, 544–76. https​://doi.org/10.1186/1477-7525-9-900 (2008).
	 55.	 Baddeley, A. Working memory. Science 255, 556–559. https​://doi.org/10.1186/1477-7525-9-901 (1992).
	 56.	 Baddeley, A. D. & Hitch, G. Working memory. vol. 8 of Psychology of Learning and Motivation, 47 – 89, https​://doi.org/10.1016/

S0079​-7421(08)60452​-1 (Academic Press, Cambridge, 1974).
	 57.	 Page, M. P. A. & Norris, D. The primacy model: A new model of immediate serial recall. Psychol. Rev. 105, 761–781. https​://doi.

org/10.1186/1477-7525-9-902 (1998).
	 58.	 Burgess, N. & Hitch, G. Memory for serial order: A network model of the phonological loop and its timing. Psychol. Rev. 106, 

551–581. https​://doi.org/10.1186/1477-7525-9-903 (1999).
	 59.	 Lewandowsky, S. & Farrell, S. Short-term memory: New data and a model. In Ross, B. H. (ed.) Advances in Research and Theory, 

vol. 49 of Psychology of Learning and Motivation, 1 – 48, https​://doi.org/10.1016/S0079​-7421(08)00001​-7 (Academic Press, 
Cambridge, 2008).

	 60.	 Rubin, D. C. & Wenzel, A. E. One hundred years of forgetting: A quantitative description of retention. Psychol. Rev. 103, 734–760. 
https​://doi.org/10.1186/1477-7525-9-904 (1996).

	 61.	 Wixted, J. T. & Ebbesen, E. B. Genuine power curves in forgetting: A quantitative analysis of individual subject forgetting func-
tions. Mem. Cogn. 25, 731–739. https​://doi.org/10.3758/BF032​11316​ (1997).

	 62.	 Wixted, J. T. & Ebbesen, E. B. On the form of forgetting. Psychol. Sci. 2, 409–415 (1991).
	 63.	 Kahana, M. J. & Adler, M. Note on the power law of forgetting. bioRxivhttps​://doi.org/10.1101/17376​5 (2002).
	 64.	 Levine, L. J. & Pizarro, D. A. Emotion and memory research: A grumpy overview. Soc. Cogn. 22, 530–554. https​://doi.org/10.1521/

soco.22.5.530.50767​ (2004).
	 65.	 Burke, A., Heuer, F. & Reisberg, D. Remembering emotional events. Mem. Cogn. 20, 277–290. https​://doi.org/10.3758/BF031​

99665​ (1992).
	 66.	 Berntsen, D. Tunnel memories for autobiographical events: Central details are remembered more frequently from shocking 

than from happy experiences. Mem. Cogn. 30, 1010–1020. https​://doi.org/10.3758/BF031​94319​ (2002).
	 67.	 Rozin, P. & Royzman, E. B. Negativity bias, negativity dominance, and contagion. Pers. Soc. Psychol. Rev. 5, 296–320. https​://

doi.org/10.1207/S1532​7957P​SPR05​04_2 (2001).
	 68.	 Baumeister, R. F., Bratslavsky, E., Finkenauer, C. & Vohs, K. D. Bad is stronger than good. Rev. Gen. Psychol. 5, 323–370. https​

://doi.org/10.1037/1089-2680.5.4.323 (2001).
	 69.	 Klein, J. G. Negativity in impressions of presidential candidates revisited: The 1992 election. Pers. Soc. Psychol. Bull. 22, 288–295. 

https​://doi.org/10.1098/rsif.2015.06701 (1996).
	 70.	 Ito, T. A., Larsen, J. T., Smith, N. K. & Cacioppo, J. T. Negative information weighs more heavily on the brain: The negativity 

bias in evaluative categorizations. J. Pers. Soc. Psychol. 75(4), 887–900 (1998).
	 71.	 Skowronski, J. J. & Carlston, D. E. Social judgment and social memory: The role of cue diagnosticity in negativity, positivity, and 

extremity biases. J. Pers. Soc. Psychol. 52, 689–699. https​://doi.org/10.1098/rsif.2015.06702 (1987).
	 72.	 Dreben, E. K., Fiske, S. T. & Hastie, R. The independence of evaluative and item information: Impression and recall order effects 

in behavior-based impression formation. J. Pers. Soc. Psychol. 37, 1758–1768. https​://doi.org/10.1098/rsif.2015.06703 (1979).
	 73.	 Bower, G. H. Mood and memory. Am. Psychol. 36, 129–148. https​://doi.org/10.1098/rsif.2015.06704 (1981).
	 74.	 Snyder, M. & White, P. Moods and memories: Elation, depression, and the remembering of the events of one’s life. J. Pers. 50, 

149–167. https​://doi.org/10.1111/j.1467-6494.1982.tb010​20.x (1982).
	 75.	 Erk, S. et al. Emotional context modulates subsequent memory effect. NeuroImage 18, 439–447. https​://doi.org/10.1098/

rsif.2015.06705 (2003).
	 76.	 Canli, T., Zhao, Z., Brewer, J., Gabrieli, J. & Cahill, L. Event-related activation in the human amygdala associates with later 

memory for individual emotional experience. J. Neurosci. 20, RC99. https​://doi.org/10.1523/JNEUR​OSCI.20-19-j0004​.2000 
(2000).

	 77.	 Drace, S. & Desrichard, O. Mood congruence effect in autobiographical recall: Is mood a mediator ?. Psihologija 46, 217–228 
(2013).

	 78.	 Cochran, A. L., Schultz, A., McInnis, M. G. & Forger, D. B. A Comparison of Mathematical Models of Mood in Bipolar Disorder, 
315–341 (Springer International Publishing, Cham, 2017).

	 79.	 Grant, B. et al. Prevalence, correlates, and comorbidity of bipolar i disorder and axis i and ii disorders: Results from the national 
epidemiologic survey on alcohol and related conditions. J. Clin. Psychiatry 66, 1205–15. https​://doi.org/10.4088/JCP.v66n1​001 
(2005).

	 80.	 Cochran, A. L., Schultz, A., McInnis, M. G. & Forger, D. B. Testing frameworks for personalizing bipolar disorder. Transl. Psy-
chiatry 8, 36. https​://doi.org/10.1038/s4139​8-017-0084-4 (2018).

	 81.	 Daugherty, D. et al. Mathematical models of bipolar disorder. Commun. Nonlinear Sci. Numer. Simul. 14, 2897–2908. https​://
doi.org/10.1098/rsif.2015.06708 (2009).

https://doi.org/10.1016/j.cell.2014.03.001
https://doi.org/10.1016/j.cell.2014.03.001
https://doi.org/10.1037/h0040536
https://doi.org/10.1037/h0045106
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.3389/fpsyg.2012.00400
https://doi.org/10.3389/fpsyg.2012.00400
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1176/appi.ajp.163.9.1561
https://doi.org/10.1186/1477-7525-9-90
https://doi.org/10.1186/1477-7525-9-90
https://doi.org/10.1016/S0079-7421(08)60452-1
https://doi.org/10.1016/S0079-7421(08)60452-1
https://doi.org/10.1186/1477-7525-9-90
https://doi.org/10.1186/1477-7525-9-90
https://doi.org/10.1186/1477-7525-9-90
https://doi.org/10.1016/S0079-7421(08)00001-7
https://doi.org/10.1186/1477-7525-9-90
https://doi.org/10.3758/BF03211316
https://doi.org/10.1101/173765
https://doi.org/10.1521/soco.22.5.530.50767
https://doi.org/10.1521/soco.22.5.530.50767
https://doi.org/10.3758/BF03199665
https://doi.org/10.3758/BF03199665
https://doi.org/10.3758/BF03194319
https://doi.org/10.1207/S15327957PSPR0504_2
https://doi.org/10.1207/S15327957PSPR0504_2
https://doi.org/10.1037/1089-2680.5.4.323
https://doi.org/10.1037/1089-2680.5.4.323
https://doi.org/10.1098/rsif.2015.0670
https://doi.org/10.1098/rsif.2015.0670
https://doi.org/10.1098/rsif.2015.0670
https://doi.org/10.1098/rsif.2015.0670
https://doi.org/10.1111/j.1467-6494.1982.tb01020.x
https://doi.org/10.1098/rsif.2015.0670
https://doi.org/10.1098/rsif.2015.0670
https://doi.org/10.1523/JNEUROSCI.20-19-j0004.2000
https://doi.org/10.4088/JCP.v66n1001
https://doi.org/10.1038/s41398-017-0084-4
https://doi.org/10.1098/rsif.2015.0670
https://doi.org/10.1098/rsif.2015.0670


13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20895  | https://doi.org/10.1038/s41598-020-77715-6

www.nature.com/scientificreports/

	 82.	 Barrios, C., Goodnick, P. J. & Chaudhry, T. A. Rapid cycling bipolar disorder. Expert Opin. Pharmacother. 2, 1963–1973. https​
://doi.org/10.1098/rsif.2015.06709 (2001).

	 83.	 Coryell, W. et al. The long-term course of rapid-cycling bipolar disorder. Arch. Gen. Psychiatry 60, 914–920. https​://doi.
org/10.1001/archp​syc.60.9.914 (2003).

	 84.	 Steinacher, A. & Wright, K. A. Relating the bipolar spectrum to dysregulation of behavioural activation: A perspective from 
dynamical modelling. PLoS One 8, 1–10. https​://doi.org/10.1371/journ​al.pone.00633​45 (2013).

	 85.	 Chang, S.-S. & Chou, T. A dynamical bifurcation model of bipolar disorder based on learned expectation and asymmetry in 
mood sensitivity. Comput. Psychiatry 2, 205–222. https​://doi.org/10.1162/cpsy_a_00021​ (2018).

	 86.	 Murray, G. & Harvey, A. Circadian rhythms and sleep in bipolar disorder. Bipolar Disord. 12, 459–472. https​://doi.
org/10.1055/s-0033-13415​023 (2010).

	 87.	 Kaladchibachi, S. A., Doble, B., Anthopoulos, N., Woodgett, J. R. & Manoukian, A. S. Glycogen synthase kinase 3, circa-
dian rhythms, and bipolar disorder: A molecular link in the therapeutic action of lithium. J. Circ. Rhythms 5, 3. https​://doi.
org/10.1186/1740-3391-5-3 (2007).

	 88.	 Myin-Germeys, I. et al. Emotional reactivity to daily life stress in psychosis and affective disorder: an experience sampling study. 
Acta Psychiatr. Scand. 107, 124–131. https​://doi.org/10.1055/s-0033-13415​025 (2003).

	 89.	 Pizzagalli, D. A., Jahn, A. L. & O’Shea, J. P. Toward an objective characterization of an anhedonic phenotype: A signal-detection 
approach. Biol. Psychiatry 57, 319–327. https​://doi.org/10.1016/j.biops​ych.2004.11.026 (2005).

	 90.	 Berrios, G. E. Of mania: Introduction. Hist. Psychiatry 15, 105–124. https​://doi.org/10.1177/09571​54X04​04182​9 (2004).
	 91.	 Romans, S. E. & McPherson, H. M. The social networks of bipolar affective disorder patients. J. Affect. Disord. 25, 221–228. https​

://doi.org/10.1055/s-0033-13415​027 (1992).
	 92.	 McKenzie, L. E. et al. Social contacts and depression in middle and advanced adulthood: Findings from a us national survey, 

2005–2008. Int. J. Soc. Psychiatry 59, 627–635. https​://doi.org/10.1055/s-0033-13415​028 (2013).
	 93.	 Acevedo, M. & Krueger, J. I. Evidential reasoning in the prisoner’s dilemma. Am. J. Psychol.118, 431–457 (2005).
	 94.	 Ng, G. T. T. & Au, W. T. Expectation and cooperation in prisoner’s dilemmas: The moderating role of game riskiness. Psychon. 

Bull. Rev. 23, 353–360. https​://doi.org/10.3758/s1342​3-015-0911-7 (2016).
	 95.	 Verhoeff, T. A continuous version of the prisoner’s dilemma. Computing science notes (Technische Universiteit Eindhoven, 1993).
	 96.	 Killingback, T. & Doebeli, M. The continuous prisoner’s dilemma and the evolution of cooperation through reciprocal altruism 

with variable investment. Am. Nat. 160, 421–438 (2002).
	 97.	 Jaggi, N. & Vij, D. Fourier tranform infrared spectroscopy. In Handbook of Applied Solid State Spectroscopy (ed. Vij, D. R.) , 

411–450, https​://doi.org/10.1007/0-387-37590​-2_9 (Springer, Boston, 2006).
	 98.	 Alloy, L. B., Olino, T., Freed, R. D. & Nusslock, R. Role of reward sensitivity and processing in major depressive and bipolar 

spectrum disorders. Behav. Ther. 47, 600–621. https​://doi.org/10.1016/j.beth.2016.02.014 (2016).
	 99.	 Nusslock, R., Abramson, L. Y., Harmon-Jones, E., Alloy, L. B. & Hogan, M. E. A goal-striving life event and the onset of hypo-

manic and depressive episodes and symptoms: Perspective from the behavioral approach system (BAS) dysregulation theory. J. 
Abnorm. Psychol. 116, 105–115. https​://doi.org/10.1037/0021-843X.116.1.105 (2007).

	100.	 Rosenquist, J., Fowler, J. & Christakis, N. Social network determinants of depression. Mol. Psychiatry 16, 273–81. https​://doi.
org/10.1038/mp.2010.13 (2010).

	101.	 Goldbeter, A. A model for the dynamics of bipolar disorders. Prog. Biophys. Mol. Biol. 105, 119–127. https​://doi.org/10.1016/j.
pbiom​olbio​.2010.11.007 (2011) (BrainModes: The role of neuronal oscillations in health and disease).

	102.	 Bennett, D. & Niv, Y. Opening burton’s clock: Psychiatric insights from computational cognitive models. https​://doi.org/10.31234​
/osf.io/y2vzu​ (2018).

	103.	 Gilboa, E. & Revelle, W. Personality and the Structure of Affective Responses. In Emotions: Essays on Emotion Theory (eds. van 
Goozen, S. H. M., Van de Poll, N. E. & Sergeant, J. A.), chap. 5, 135–159 (Lawrence Erlbaum Associates, Inc., 1994).

	104.	 Revelle, W. Personality and motivation: Sources of inefficiency in cognitive performance. J. Res. Pers. 21, 436–452. https​://doi.
org/10.1016/j.cpr.2008.04.0042 (1987).

	105.	 Gendolla, G. H. E., Brinkmann, K. & Richter, M. Mood, motivation, and performance: An integrative theory, research, and 
applications. In Mood and Human Performance: Conceptual, Measurement, and Applied Issues (eds. Lane, A. M.), chap. 2, 35–61 
(Nova Science Publisher, Inc., New York, 2007).

	106.	 Kizilbash, A. H., Vanderploeg, R. D. & Curtiss, G. The effects of depression and anxiety on memory performance. Arch. Clin. 
Neuropsychol. 17, 57–67. https​://doi.org/10.1016/S0887​-6177(00)00101​-3 (2002).

	107.	 Koenen, K. C. et al. Childhood iq and adult mental disorders: A test of the cognitive reserve hypothesis. Am. J. Psychiatry 166, 
50–57. https​://doi.org/10.1016/j.cpr.2008.04.0044 (2009).

	108.	 Cannon, M. et al. Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: Results 
from a longitudinal birth cohort. Arch. Gen. Psychiatry 59, 449–456. https​://doi.org/10.1001/archp​syc.59.5.449 (2002).

	109.	 Lerner, D. et al. Work performance of employees with depression: The impact of work stressors. Am. J. Health Promot. 24, 
205–213. https​://doi.org/10.4278/ajhp.09031​3-QUAN-103 (2010).

Author contributions
N.S. and S.R. conceived the model and experiments, N.S. implemented the code and analysed the results. All 
authors reviewed the manuscript.

Competing Interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1098/rsif.2015.0670
https://doi.org/10.1098/rsif.2015.0670
https://doi.org/10.1001/archpsyc.60.9.914
https://doi.org/10.1001/archpsyc.60.9.914
https://doi.org/10.1371/journal.pone.0063345
https://doi.org/10.1162/cpsy_a_00021
https://doi.org/10.1055/s-0033-1341502
https://doi.org/10.1055/s-0033-1341502
https://doi.org/10.1186/1740-3391-5-3
https://doi.org/10.1186/1740-3391-5-3
https://doi.org/10.1055/s-0033-1341502
https://doi.org/10.1016/j.biopsych.2004.11.026
https://doi.org/10.1177/0957154X04041829
https://doi.org/10.1055/s-0033-1341502
https://doi.org/10.1055/s-0033-1341502
https://doi.org/10.1055/s-0033-1341502
https://doi.org/10.3758/s13423-015-0911-7
https://doi.org/10.1007/0-387-37590-2_9
https://doi.org/10.1016/j.beth.2016.02.014
https://doi.org/10.1037/0021-843X.116.1.105
https://doi.org/10.1038/mp.2010.13
https://doi.org/10.1038/mp.2010.13
https://doi.org/10.1016/j.pbiomolbio.2010.11.007
https://doi.org/10.1016/j.pbiomolbio.2010.11.007
https://doi.org/10.31234/osf.io/y2vzu
https://doi.org/10.31234/osf.io/y2vzu
https://doi.org/10.1016/j.cpr.2008.04.004
https://doi.org/10.1016/j.cpr.2008.04.004
https://doi.org/10.1016/S0887-6177(00)00101-3
https://doi.org/10.1016/j.cpr.2008.04.004
https://doi.org/10.1001/archpsyc.59.5.449
https://doi.org/10.4278/ajhp.090313-QUAN-103
www.nature.com/reprints


14

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20895  | https://doi.org/10.1038/s41598-020-77715-6

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	Analyzing the effects of memory biases and mood disorders on social performance
	Background
	Forgetting. 
	Emotions and memory. 
	Mood and memory. 
	Types of mood disorders. 
	Bipolar disorder. 
	Depression and mania. 


	Model of agent psychology and interactions
	Interaction model. 
	Emotion and mood. 
	Memory encoding. 
	Rate of forgetting. 
	Mood and memory retrieval. 
	Modeling mood disorders. 
	Mania and depression. 
	Bipolar disorder. 
	Social interactions and mood disorders. 


	Agent types and design
	Agent attributes. 
	Agent types. 
	Rational agents. 
	Manic agents. 
	Depressed agents. 
	Bipolar agents. 


	Results
	Comparing payoffs of all agent types. 
	Effect of varying the population composition. 
	Effect of diversity of connections in depressed agents. 
	Effect of forgetting. 
	Effect of emotional bias. 
	Effects of mood-based retrieval. 
	Effect of reward sensitivity. 

	Conclusion
	References


