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Hepatic metabolic stability is a key pharmacokinetic parameter in drug discovery. Metabolic stability is 
usually assessed in microsomal fractions and only the best compounds progress in the drug discovery 
process. A high‑throughput single time point substrate depletion assay in rat liver microsomes 
(RLM) is employed at the National Center for Advancing Translational Sciences. Between 2012 and 
2020, RLM stability data was generated for ~ 24,000 compounds from more than 250 projects that 
cover a wide range of pharmacological targets and cellular pathways. Although a crucial endpoint, 
little or no data exists in the public domain. In this study, computational models were developed for 
predicting RLM stability using different machine learning methods. In addition, a retrospective time‑
split validation was performed, and local models were built for projects that performed poorly with 
global models. Further analysis revealed inherent medicinal chemistry knowledge potentially useful 
to chemists in the pursuit of synthesizing metabolically stable compounds. In addition, we deposited 
experimental data for ~ 2500 compounds in the PubChem bioassay database (AID: 1508591). The 
global prediction models are made publicly accessible (https:// opend ata. ncats. nih. gov/ adme). This is 
to the best of our knowledge, the first publicly available RLM prediction model built using high‑quality 
data generated at a single laboratory.

Hepatic metabolic stability is a key parameter in drug discovery because it can prevent a drug from attaining 
sufficient in vivo exposure, producing short half-lives, poor oral bioavailability and low plasma concentrations. 
It is essential to identify metabolic liabilities early in drug discovery so they can be addressed during lead 
optimization. Metabolic stability is typically first measured in vitro using liver microsomes and data from this 
assay is used to guide structural modifications to improve stability or select the best compounds for in vivo 
pharmacokinetic (PK) and efficacy testing. Liver microsomes are enriched with cytochrome P (CYP) 450 
enzymes, localized in the endoplasmic reticulum membrane, which are responsible for the metabolism of the 
majority (70–80%) of clinically approved  drugs1,2. The National Center for Advancing Translational Sciences 
(NCATS) determines metabolic stability initially with a high-throughput, substrate-depletion method (i.e. the 
in vitro half-life  (t1/2) approach) in rat liver microsomes (RLM).

The rationale behind using RLM as the matrix for initial screening is twofold: (1) rat is a key species for both 
initial in vivo PK  studies3 as well as later efficacy and toxicology studies; and (2) rat PK data predicts human 
PK data reasonably well with single-species allometric  scaling4,5. In vitro RLM data is routinely used to predict 
in vivo clearance in rats. This in vitro data is also useful to set up in vitro-in vivo correlations which can provide 
confidence in extrapolating in vitro data to in vivo clearance for other species, including humans. Our assay 
(96-well format; adaptable to 384-well format) consists of a validated automated liquid handling process for 
incubation and sample clean-up and a comprehensive LC/MS method to determine the percent of remaining 
parent compound at the end of incubation.

Although experimental metabolic stability data provides useful information, a prediction model will be 
extremely useful to help design new compounds and prioritize which compounds to synthesize first. Quantitative 
structure activity relationship (QSAR) models for predicting RLM stability exist in the  literature6,7, however, 
these are proprietary. Surprisingly, little or no literature exists that describes the use of modern deep learning 
approaches to develop QSAR models for RLM stability.

OPEN

1National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, 
USA. 2NY State Public Health, DOHMH 42-09 28th St, Long Island City, NY 11101, USA. 3School of Medicine, 
Virginia Commonwealth University, 1201 E Marshall St, Richmond, VA 23298, USA. 4The Graduate School 
of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York 10029, 
USA. 5These authors contributed equally: Vishal B. Siramshetty and Pranav Shah. *email: xin.xu3@nih.gov

https://opendata.ncats.nih.gov/adme
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-77327-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20713  | https://doi.org/10.1038/s41598-020-77327-0

www.nature.com/scientificreports/

NCATS has generated RLM stability data for nearly ~ 24,000 compounds from more than 250 therapeutic 
projects since 2012. The primary goal of this study is to build QSAR models using these structurally diverse 
compounds for predicting hepatic metabolic stability. Furthermore, a retrospective analysis of the historical data 
and prediction models was performed to identify best modeling strategies for ongoing and future projects at 
NCATS. Substructure analysis over a diverse chemical space revealed transformation rules that can potentially be 
useful to chemists in addressing problems with highly unstable compounds. Data for ~ 2500 compounds is made 
publicly available to encourage the community to develop and validate in silico models using a high-integrity 
reference data set. All prediction models were developed using open-source software and are made available to 
the scientific community.

Material and Methods
Materials. Dimethyl sulfoxide (DMSO, UPLC/MS grade), albendazole, buspirone, propranolol, loperamide, 
diclofenac, carbamazepine, antipyrine, potassium phosphate monobasic, and potassium phosphate dibasic were 
purchased from Sigma-Aldrich (St. Louis, MO). Acetonitrile (ACN, UPLC/MS grade) was purchased from 
Fisher Scientific (Hampton, NH). Gentest rat (Sprague–Dawley) liver microsomes (male, pooled, 20 mg/mL, 
Catalog #: 452501), Gentest NADPH Regenerating Solution A (Catalog #: 451220) and B (Catalog #: 451200), 
Axygen reservoirs (low-profile, Catalog #:RES-SW384-LP; high-profile, Catalog #: RES-SW384-HP) for holding 
reagents, and CoStar assay block plates (Catalog #: 3959) for microsomal incubation were purchased from 
Corning Inc. (Corning, NY). LC–MS/MS analysis plates (Catalog #: 186002643) were purchased from Waters 
Inc. (Milford, MA).

Microsomal stability assay. Microsomal stability of the test articles was determined in a high-throughput 
format using the substrate depletion  method8. It has been previously shown that in  vitro intrinsic clearance 
does not vary significantly between the three most used rat  strains9. Sprague-Dawley was chosen because it 
is the most common strain used in drug discovery. Experiments were performed using a Freedom Evo 200 
automated platform with a 96-channel (MCA96) head with EVOware software (version 3.2) (Tecan Inc., 
Männedorf, Switzerland). The system also includes an Inheco heating block and cooling block (Inheco, Munich, 
Germany). Six standard controls were tested in each run: buspirone, propranolol, diclofenac, loperamide, 
carbamazepine and antipyrine. The assay incubation system consisted of 0.5 mg/mL of rat microsomal protein, 
1.0 μM drug concentration, and NADPH regeneration system (containing 0.650 mM NADP + , 1.65 mM glucose 
6-phosphate, 1.65 mM  MgCl2, and 0.2 unit/mL G6PDH) in 100 mM phosphate buffer at pH 7.4. The incubation 
was carried out at 37 °C for 15 min. The reaction was quenched by adding 555 μL of acetonitrile containing 
0.28 μM albendazole, an internal standard. After a 20-min centrifugation at 3000  rpm at 4  °C, 30 μL of the 
supernatant was transferred to an analysis plate and was diluted fivefold using 1:2 v/v acetonitrile/water. Sample 
quantification and analysis were performed using a previously described  method10 with minor modifications.  t1/2 
values were capped at 30 min since for a 15-min assay, the data cannot be extrapolated beyond 30  min8.

RLM stability data set. A 15-min single-point assay allows measurement of highly unstable compounds 
 (t1/2 values from 1 to 5 min) while providing an upper  t1/2 limit of 30 min. This is a good working range for drug 
discovery, where the primary concern is identifying highly unstable  compounds11. Concerns decrease at  t1/2 
greater than 30 min and hence, compounds were classified as unstable  (t1/2 < 30 min), or stable  (t1/2 > 30 min)11–13. 
Compounds that have extremely short  t1/2 tend to have high clearance and low in  vivo oral bioavailability. 
Improving the  t1/2 beyond 30 min has generally been shown to decrease clearance and increase  bioavailability14,15. 
We employ this cutoff internally at NCATS and several projects have benefitted from this  approach16,17. The raw 
data set was preprocessed to generate training and test data for the purpose of building and validating prediction 
models. Compound structures were normalized following best practices recommended in the  literature18. LyChI 
identifiers (https:// github. com/ ncats/ lychi) were generated for all standardized structures to identify unique 
compounds. Further, compounds with conflicting experimental results were omitted. Finally, the processed 
data set comprised a total of 20,216 (Unstable: 11,534; Stable: 8682) compounds. Detailed steps involved in 
preprocessing the raw data set are provided in the supplementary information (Table S1).

Cross validation strategies. The preprocessed RLM data set was initially partitioned into training and 
test sets using ‘train_test_split’ module from Scikit-learn19, a Python library for machine learning. The split 
was performed a total of five times with the shuffle parameter set to True, following a five-fold cross-validation 
(5-CV). In each split, 80% of the shuffled data set was assigned to the training set and the remaining 20% to the 
test set. The training sets were used to build models and the test sets to validate them. This refers to the first cross-
validation scheme employed in this study.

In a typical drug discovery set up, compounds are tested in an appropriate assay and models are usually built 
using this data around the same time. These models are then used to predict the properties of compounds that 
are not yet synthesized. However, these compounds may or may not fall within the applicability domain of the 
model. In this context, ‘time-split’ was previously proposed as a cross-validation strategy that closely simulates 
a prospective validation  scenario20. Briefly, one would generate a model based on data available at a certain 
time point and test the model on data generated later. It was previously demonstrated on large data sets from 
Merck that the performance of models based on time-split cross-validation more closely resembles prospective 
validation than random-split cross-validation and  others21. The availability of chronological RLM stability data 
from 2012 to 2019 enabled us to perform a time-split cross-validation in this study. Therefore, we used data from 
each year to build models and validated them on the data that were generated in the next year. For each test 
year, all data available from the previous years combined is considered as the training set. Thus, a total of eight 

https://github.com/ncats/lychi
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time-split models were built for seven consecutive years (2012 to 2019) in a cumulative fashion (i.e., for 2019, all 
data generated until 2018 was used to build a model and tested on data from 2019). Distribution of data across 
the two stability classes over different years is provided in Fig. 1.

Modeling methods. Random Forest. Random Forest (RF)22 is an ensemble of decision trees that are fitted 
on various subsamples of the data and uses averaging to restrict overfitting and improve prediction accuracy. 
The ‘RandomForestClassifier’ method from Scikit-learn was used to build models. The number of estimators per 
model was set to 100 and the random state was set to an integer. The rest of the parameters were set to default.

Deep neural networks. Artificial neural networks (ANN) have been applied to a wide range of QSAR  tasks23,24. 
More recently, the ANNs have evolved into deep neural networks (DNN)25. Unlike an ANN, a DNN consists 
of multiple fully connected layers with two or more hidden layers between the input and output layers. In a 
feedforward neural network (referred to simply as DNN in the rest of the study), the information passed through 
the input layer flows in forward direction through the hidden layers to the output layer. The DNN models were 
implemented in Keras (https:// keras. io) using the TensorFlow (www. tenso rflow. org) backend. The number of 
hidden layers was adjusted based on the size of the input descriptor matrix. More details on model parameters 
are presented in supplementary information (Table S2).

Graph convolutional neural networks. Molecular graphs provide a natural way of describing chemical structures: 
nodes represent atoms and edges represent bonds. The recently emerged graph convolutional neural networks 
(GCNN)26,27 that can be operated on molecular graphs have been used extensively for molecular property 
 predictions28,29. The message passing variant of GCNN, as implemented in  ChemProp28, was employed in this 
study adhering to the default parameters. The graph features are internally computed when chemical structures 
and associated labels are provided as input.

Recurrent neural networks. A recurrent neural network (RNN) is a type of neural network that can store 
information within the network. RNNs are able to learn sequence data such as natural language. Long-Short-
Term-Memory (LSTM) networks are a type of RNN that use special units in addition to standard units to store 
information for longer periods of  time30. Former studies reported the use of LSTMs to learn directly from linear 
molecular representations such as simplified molecular-input line-entry system (SMILES)31–34. The LSTM 
networks built in this study were fed with canonical SMILES representations that are first encoded into one-hot 
vectors and then passed to the computing cell which performs as many computations as the length of the input 
SMILES in a loop. At each step, one character of SMILES is taken as input and the computed activation value 
is passed to the next step which takes the next character as input. In this way, the information from previous 
characters is persisted while the next characters are being processed. Finally, the network produces a prediction 
probability between 0 and 1.

Molecular descriptors. Four different molecular descriptors were used in this study. To represent the 
compounds in the physicochemical property space, RDKit descriptors were calculated using RDKit Descriptor 
calculation node in  KNIME35. Fingerprints on the other hand are bit vectors that encode chemical structures in 
their two-dimensional (2D) space. In this study, Morgan fingerprints (an extended-connectivity fingerprint)36 
containing 1024 bits with a radius of 2 were calculated using RDKit Fingerprint node in KNIME. Similarly, 
Avalon  fingerprints37 are hashed fingerprints that enumerate paths and feature classes. Avalon fingerprints 
of length 1024 bits were calculated using the same KNIME node. Both RF and DNN models use the RDKit 

Figure 1.  Time-split distribution of RLM stability data (2012 to 2019).

https://keras.io
http://www.tensorflow.org
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descriptors and the two fingerprints for model development. GCNNs directly use the 2D molecular graphs to 
generate graph featurization for every compound. The LSTM networks directly operate on SMILES notations.

Validation metrics. The performance of the models was assessed using different statistical measures. A 
receiver operating characteristic curve plots the true positive rate against the false positive rate and thus provides 
an estimate of the performance of a binary classifier. The area under the receiver operating characteristic curve 
(AUC-ROC) was calculated for this purpose. The sensitivity (or the true positive rate) of a model is the proportion 
of unstable compounds correctly predicted as unstable. Specificity (or the true negative rate) is the proportion 
of stable compounds correctly predicted as stable. Balanced accuracy (BACC)38 is an average of the proportions 
correctly predicted for each class (i.e., Sensitivity and Specificity). Cohen’s Kappa is another performance metric 
used to evaluate the models in this study. It was originally proposed to measure the agreement between two 
judges based on accuracy adjusted for a chance agreement. In the sense of classification, it is a measure of the 
agreement between the actual classes and the classes predicted by a  classifier39.

Here, TP = number of true positives; FN = number of false negatives, TN = number of true negatives, and 
FP = number of false positives. In the case of Kappa, pa is the proportion of observations in agreement and p∈ is 
the proportion in agreement due to chance.

Results
Metabolic stability assay performance. Six control compounds were run routinely in each assay plate. 
The assay reproducibility data for these compounds across 600 experiments, spanning a timeline of eight years 
are presented in Table 1. The minimum significant ratio (MSR)40 for all control compounds was around 2.0, 
which demonstrates excellent assay reproducibility over a wide range of metabolic stabilities. Since the  t1/2 data 
cannot be extrapolated beyond 30  min8, the standard deviation (S.D) and MSR values were not calculated for the 
highly stable control compounds. The inter-assay reproducibility (% CV) for most non-control compounds with 
at least 4 replicates was found to be < 20% indicating the robustness of our assay (Supplementary information 
Table S3).

Chemical space and data distribution. To understand the data at hand, distributions based on in vitro 
 t1/2 and different molecular properties (log P, total polar surface area and molecular weight) were examined. The 
post-processed data set is slightly skewed towards unstable compounds (~ 58%) compared to stable compounds 
(~ 42%). Further, nearly 40% of the majority class compounds were found to be extremely unstable  (t1/2 ≤ 5 min) 
(Data not shown). The time-split nature provides an alternative view of the data (Fig. 1). A majority of compounds 
belong in the 300–500 molecular weight range (Fig. 2a), have total polar surface area (TPSA) below 100 (Fig. 2b) 
and have log P values in the range of 2.5 to 7.5 (Fig. 2c). No significant differences were found between the classes 
in terms of their distribution based on different molecular properties.

To examine the chemical space coverage of the data set, the compounds were projected into a low-dimensional 
space using the t-distributed Stochastic Neighbor Embedding (t-SNE)  method41. RDKit descriptors were 
employed for generating the two-dimensional (2D) chemical space representation (Fig. 3) considering the 
computational costs involved in processing a large number of descriptors for more than 20,000 compounds. 

Sensitivity(Sens) =
TP

(TP+ FN)

Specificity(Spec) =
TN

(FP+ TN)

Balanced accuracy(BACC) =
Sensitivity + Specificity

2

Kappa =
pa − p∈

1− p∈

Table 1.  Reproducibility data for control compounds. Mean and S.D of the  t1/2 values were calculated for 
exemplary controls across 600 plates.

Compound t1/2 (min) MSR (102
√
2∗S.D)

Buspirone 3.8 ± 1.1 2.1

Propranolol 1.4 ± 0.3 1.7

Diclofenac 11.4 ± 2.6 1.8

Loperamide 8.9 ± 2.4 1.9

Antipyrine  > 30 N/A

Carbamazepine  > 30 N/A



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20713  | https://doi.org/10.1038/s41598-020-77327-0

www.nature.com/scientificreports/

Figure 2.  Distributions of the data based on: (a) Molecular weight, (b) TPSA, (c) and Log P.

Figure 3.  Visualization of the chemical space of RLM stability data set. The axes labels x and y indicate the first 
two dimensions of the t-SNE embedding.
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Each point in the 2D space represents a chemical compound and the color denotes the  t1/2 group as shown in 
the color palette. The algorithm tries to covert similarities between the compounds to joint probabilities and 
minimize the Kullback–Leibler  divergence42 between the joint probabilities of the high-dimensional data and 
the low-dimensional embedding. Since the number of descriptors was not too high, dimension reduction was 
not applied prior to projection of compounds into the 2D space.

Clearly, no simple separation could be detected between the stable compounds and the different subgroups 
of unstable compounds although compounds from the former group are dominant in number. A complex 
separation between the groups and presence of several small clusters comprising compounds from all three 
categories suggest that there might exist several compound pairs with a minor structural change leading to large 
differences in  t1/2. This was confirmed by performing a hierarchical clustering of the compounds. We used the 
same three  t1/2 groups that were used in visualizing the chemical space. Hierarchical clustering was performed in 
R 3.6.3 based on a Euclidean distance matrix, calculated using non-correlating RDKit descriptors (84 out of 119), 
and Ward linkage  method43,44. The output is represented as a circular dendrogram (Fig. 4) generated using the R 
package ‘polarClust’ (https:// github. com/ backl in/ polar Clust), while retaining the color palette used for chemical 
space visualization. Rand  Index45 was calculated in order to quantitatively assess the quality of clustering with 
respect to the original class labels. While the Rand Index was found to be 0.68 when all three  t1/2 groups were 
clustered, the value increased to 0.92 when only the first two groups were considered (i.e., excluding compounds 
with  t1/2 > 30 min). This could be explained by the presence of many compounds whose actual  t1/2 values could 
not be exactly determined. Overall, the clustering results were mixed because there appeared different types 
of clusters: some with an overrepresentation of stable compounds (Fig. 4a); some with large number of highly 
unstable compounds (Fig. 4b) and some compounds from all three groups (Fig. 4c).

Cross‑validation results. Since our initial idea was to build models using the complete training data 
and perform five-fold cross-validation, we first present results for all methods and descriptor types. A total 
of eight models were evaluated  at this stage and there were only modest differences between them (Fig.  5; 
supplementary information, Table S4). In the case of RF and DNN models, no significant differences were found 
between the performances of RDKit descriptors and two fingerprints (Morgan and Avalon). RDKit descriptors 
seem to provide the best balance between model sensitivity and specificity in the case of RF. Similarly, Morgan 
fingerprints provided the highest balanced accuracy for the DNN models. The LSTM model provided the worst 
performance of all models evaluated at this stage. On the other hand, the GCNN model provided the highest 
AUC and BACC. Although none of the models unequivocally outperformed the remaining models, the GCNN 
model provided the highest Cohen’s Kappa (0.64).

Next, we performed time-split cross-validation to evaluate the models prospectively. Since the number of 
compounds generated in 2013 is higher than the total number of compounds available from the year 2012, we 
decided to begin time-split validation when at least 5000 compounds were available from the previous years. 
Thus, the data generated from years 2012, 2013 and 2014 (6448 compounds) were used to build a model that is 
validated on the data generated in the year 2015 (2576 compounds), and so on. In each case, the model is named 

Figure 4.  Hierarchical clustering of the RLM stability data set. Exemplary regions that represent: (a) abundance 
of highly stable compounds; (b) abundance of highly unstable compounds; and (c) a mixture of compounds 
belonging to different  t1/2 groups; are highlighted.

https://github.com/backlin/polarClust
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after the year from which the test data was employed (e.g., Model 2015 is based on training data generated until 
2014 and validated on test data from 2015). Thus, a series of five models (Model 2015 to Model 2019) were 
built and evaluated. Only the best performing descriptors were employed for RF (RDKit descriptors) and DNN 
(Morgan fingerprint).

Time-split validation results are presented in Fig. 6 and supplementary information (Table S5). GCNN 
remained the best performing method in all years except 2017 where RF performed slightly better, both in 
terms of AUC (Fig. 6a) and BACC (Fig. 6b). RF and DNN followed GCNN in terms of performance. Across all 
years, the LSTM method consistently provided the worst performance. While none of these methods showed a 
constant rise or decline over the five years, GCNN provided the most consistent performance.

Global models versus local models. Ten medicinal chemistry projects with the highest number 
of compounds measured in the RLM assay were examined in detail (Fig. 7). The names of the projects were 
anonymized (NCATS1 to NCATS10) for the purpose of this study.

For each project, data from the three most recent years was considered, provided there were at least 50 
compounds measured in each year (NCATS1, NCATS4, NCATS5, NCATS9 and NCATS10). When recent data 
were not available, we considered those three consecutive years between 2012 and 2019 where the highest 
number of compounds had been tested for a project (NCATS2, NCATS3, NCATS6, NCATS7 and NCATS8). 
The time-split models that were previously built for individual years were used to predict these test sets. It must 

Figure 5.  Results of the eight models evaluated in five-fold cross-validation. (a) Performance measured as 
AUC. (b) Performance measured as BACC. The standard deviation of the average over five folds is represented 
as an error bar for each model.

Figure 6.  Time-split validation results for the four modeling methods. (a) Performance measured as AUC. (b) 
Performance measured as BACC.
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be noted that the actual number of compounds per year might vary slightly from those reported in Fig. 7a due 
to chemical structure standardization and other preprocessing steps. The performance of models (in terms of 
BACC) for these projects are presented in Fig. 7b.

The BACC values for every project, except NCATS7, reached values greater than 0.75 for at least one of the 
three years and for some projects, even higher BACC values were achieved. The performance for most projects 
increased with time, most likely due to presence of similar compounds in the training set. Next, we built local 
models for projects that fared poorly (NCATS5 and NCATS7) with the global models. The BACC improved 
drastically when we employed the local model approach for the poorly performing projects. Particularly, in the 
case of NCATS5, the performance increased consistently (Table 2) with a local model in contrast to the global 
model where there was a sharp decline in year three. This could be due to introduction of novel chemotypes 
that were not covered by the training data accumulated at the end of second year. We also noticed that the best 
performing local model for NCATS5 was based on DNN using Morgan fingerprints and not GCNN which 
performed the best in our global models. Overall, the global models did not perform superiorly for every project, 
suggesting that local models should be developed for projects that may not benefit from the former approach. 
Thus, no method demonstrated a clear advantage and determining the best approach may not be straightforward.

Matched molecular pair analysis. Based on the consistent findings from both chemical space 
distribution and hierarchical clustering, we sought to perform detailed analysis of the data set to explore and 
identify medicinal chemistry rules that could potentially serve as guidance for the chemists in tackling metabolic 
stability issues during lead optimization. Availability of a large number of compounds in the data set facilitated 
a large-scale matched molecular pair analysis (MMPA). A matched molecular pair can be defined as a pair of 
compounds that differ at only one site through a minor structural transformation that leads to a difference in 
an associated property  value46,47. In a recent  analysis48, we showed the utility of MMPA in analyzing human 
and mouse cytosol stability data. The extracted rules were experimentally validated and the extent of their 
applicability on newly generated data was demonstrated. Herein, well-defined structural changes that lead to 
an increase in  t1/2 can be considered potentially useful to address microsomal metabolism liabilities of small 
molecules. The complete matched pairs analysis was performed in KNIME using the Vernalis and RDKit nodes 

Figure 7.  Top 10 NCATS projects chosen for retrospective analysis. (a) Distribution of compounds for all 
10 projects across multiple years. (b) Performance of global models on data from the 10 projects in three 
consecutive years (Year 1, Year 2 and Year 3). The dotted line represents the BACC threshold of 0.7.

Table 2.  Performance of the global and the local models generated for the project NCATS5.

Year # Compounds in Training Set # Compounds in Test Set BACC (global) BACC (local)

2017 1188 1018 0.61 0.60

2018 2206 620 0.76 0.71

2019 2862 338 0.57 0.75
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following the fragmentation scheme originally proposed by Hussain and  Rea49. In order to prospectively validate 
the transformations, the data set was randomly divided into two parts at a ratio of 80:20. The bigger partition was 
used to generate the rules that were supposed to be validated on the smaller partition. However, an upper cap of 
60 atoms per molecule was applied to the 80% partition which resulted in ~ 11,500 compounds. The rules were 
generated from this subset and validated on the remaining ~ 8,500 compounds.

67,000 unique transformations (only left to right transforms were considered) were identified after grouping 
the obtained matched pairs. Filtering them further by including only those with a frequency of at least 15 
instances in the training set resulted in a total of 397 matched pairs. Only those pairs that resulted in an increase 
in  t1/2 by at least 10 min were retained for further inspection. A total of 18 such transformations were identified 
that were present in 349 compound pairs within the training set. These transformations were applied to the 
remaining compounds using RDKit’s ‘Apply Transforms’ node which resulted in ~ 138,000 new compound pairs. 
The results were further filtered to retain only those pairs where the molecules on right side (generated after 
applying transformation) are already present in the RLM data set. This facilitates quantitative validation of the 
rules. A total of 286 such compound pairs, representing all 18 rules, could be identified through LyChI lookup. 
The transformations and all related statistics from both training and test data used for MMPA, are presented 
in Table 3.

Discussion
As drug discovery costs continue to rise, it is important to find alternatives to reduce costs and attrition of 
compounds in the discovery process. Developing and applying in silico tools is one way of reducing cost and 
optimizing the efficiency of the drug discovery process. Machine learning methods are popularly employed for 
developing QSAR models that construct relationships between chemical structure and biological properties 
including ADME. Classification QSAR models relate chemical structures represented as molecular descriptors 
to a categorical label for the property of interest (i.e. metabolic stability in our case). Several drug candidates have 
failed due to metabolism or pharmacokinetic  issues50 and thus it is critical to evaluate metabolic stability very 
early in drug discovery. While a lot of focus has been geared towards building clearance prediction tools using 
human liver microsome  data25,51–53, very little attention has been given to building such tools using rodent data. 
Clearance prediction models in rodent species, such as rats, are extremely important as a lot of pre-clinical work 
including efficacy, toxicity and pharmacokinetic evaluations are performed in rats. Using our 24,000 compound 
Tier I RLM library, we built classification models to predict clearance for test compounds. In addition to helping 
the chemists rank order compounds and prioritize synthesis, these classification models aid the chemists in 
identifying potentially unstable compounds that could be optimized for metabolic stability. Using these models 
to prioritize synthesis will hopefully reduce attrition and get project teams to their lead compounds in fewer 
iterations. While a couple of RLM clearance models were already reported in  literature6,7, neither the models nor 
the data have been made publicly available. We also cannot reveal our entire data set at this time, owing to its 
proprietary nature, however we do make a subset of data public (AID: 1508591) along with the most predictive 
models. This is to the best of our knowledge, the first open-access RLM clearance model built using high quality 
data, generated at a single laboratory.

Based on five-fold cross-validation, GCNN performed better than other machine learning methods employed 
in this study (Fig. 6). To highlight the importance of our QSAR models, we performed a retrospective analysis on 
the 10 largest NCATS projects. As expected, the predictive power of the global model increased with increasing 
number of compounds in the training set. While this global model approach worked well for most projects, 
some projects performed poorly with this approach. In such cases, a local model strategy could be applied to 
increase the predictive power compared to the global model. The strengths and weaknesses of global and local 
QSAR approaches have been previously discussed in  literature54–57. One study introduced an automated QSAR 
procedure that involves automatic selection of the most predictive models from a pool of local and global 
QSAR  models56. The authors demonstrated that this model selection strategy resulted in a statistically significant 
improvement compared to regularly updating the global models. Our results are consistent with these findings 
and we would like to further explore model selection strategies as we generate new data in years to come.

While a lot of rat microsomal stability data exists in the literature, most of the studies focused on addressing 
specific project related questions. There are few rat liver microsomal stability data sets in literature and only two 
published  studies6,7 come close to the scope of the present study. The performance of our best QSAR model is 
similar if not slightly better than the two aforementioned studies (Table 4). These findings must be cautiously 
inferred since different data sets were employed in building all these models. Interestingly, one of these studies 
reported a chronological analysis of the predictive power of  models7. After building a model using data from 
one year, they picked 1000 random test set compounds each from four consecutive quarters and evaluated the 
performance on these subsets. The authors reported a decline in the sensitivity in the last two quarters and 
understood that the compounds from these subsets were dissimilar to the training set used to build the prediction 
model. Similarly, we noticed that for some projects the global QSAR model performance declined in year three. 
We assume that the reason for this decline is the introduction of new chemotypes, previously not covered by 
the training data.

One of the previous works that reported global QSAR models also identified good and bad structural 
features associated with RLM stability from their data set comprising ~ 24,000   compounds7. Using naïve 
Bayesian classifiers, the authors identified fingerprint features that were frequently found in stable and unstable 
compounds. It must be noted that their  t1/2 threshold to classify compounds into unstable or stable differs from 
ours. The fingerprint features identified were ranked using normalized Bayesian probability to identify the top 
features that are good or bad for stability. Although we did not use the same strategy to identify features within 
our RLM library, we checked for the presence of substructures proposed by Hu et al. within our data set but found 
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Table 3.  Detailed statistics on the 18 transformations selected from the MMPA. The compound pairs for 
each matched molecular pair are grouped into three categories based on the shift in  t1/2: positive (+ ve) shift; 
negative (−ve) shift; and undetermined (und).

Fragment (L) Fragment (R)

Training Test

Compound Pairs Average  t1/2 (min) Compound Pairs Average  t1/2 (min)

Total (+ ve/und/−ve) L R R/L Total (+ ve/und/−ve) L R R/L

    
25 (23/1/1) 6 29 10.8 68 (57/8/3) 9.4 28.4 7.7

    
41 (38/3/0) 9.5 29.7 9.8 49 (41/7/1) 9.3 29.0 8.6

  
  

19 (15/2/2) 11.8 23.8 6.5 9 (6/1/2) 11.2 13.5 1.5

  
  

15 (10/5/0) 13 24.3 6.5 5 (3/0/2) 5.2 7.9 1.3

  
  

17 (9/7/1) 16.3 27.8 5.3 6 (5/1/0) 9.5 21.5 6.3

  
  

15 (9/4/2) 13.9 24.3 5.1 3 (2/0/1) 11.0 12.9 5.5

    
17 (15/1/1) 11.8 25.3 4.8 7 (6/1/0) 8.2 17.9 2.8

    
15 (9/6/0) 16.1 28 4.3 10 (4/2/4) 13.5 16.3 3.0

    

15 (9/6/0) 17 27.8 4.3 8 (5/0/3) 9.9 17.2 2.0

    
15 (10/4/1) 13.5 24.4 3.8 5 (4/0/1) 11.3 16.0 2.2

  
  

18 (14/3/1) 12.8 23.1 3.8 10 (9/0/1) 7.4 16.6 2.2

    21 (19/2/0) 7.7 17.9 3.6 23 (16/0/7) 6.6 12.3 3.6

  
  23 (14/8/1) 13.3 23.4 3.5 43 (26/5/12) 11.1 18.3 4.0

    
25 (20/4/1) 12.1 27.3 3.5 11 (7/3/1) 15.7 25.2 2.2

  
  

21 (10/11/0) 19.3 29.4 3.4 10 (6/4/0) 16.8 29.5 3.4

  
  17 (14/3/0) 15.3 27.2 2.6 13 (7/4/2) 11.8 21.1 4.5

    

15 (15/0/0) 15.4 29.8 2.3 3 (3/0/0) 15.3 30.0 2.0

    

15 (15/0/0) 15.4 29.8 2.3 3 (3/0/0) 15.3 30.0 2.0
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only a handful of compounds comprising those features, suggesting that the chemical spaces from both studies 
may be distinct. Moreover, considering the origin of these features, we were unsure if the fragments identified 
via such analysis would facilitate synthetically feasible guidance for the chemists to address RLM metabolism 
liabilities. This led us to investigate alternate ways to analyze the chemical space.

Along these lines, we analyzed the complete data set for the presence of privileged structural motifs that might 
be overrepresented in stable or unstable compounds by performing RECAP (Retrosynthetic Combinatorial 
Analysis Procedure)  analysis58. RECAP generates fragments from molecules based on chemical knowledge. 
The generated fragments serve as building blocks which make it feasible for the chemists to introduce or replace 
them during lead optimization. 7000 fragments identified after RECAP analysis were further filtered to retain 
about 70 scaffolds (top 10 are presented in the supplementary information, Table S6) that contain a minimum 
of 3 and a maximum of 12 heavy atoms. None of these scaffolds were found to be overrepresented in either 
compound class. Although some were present more frequently in stable or unstable compounds (15 scaffolds were 
present at least five times more frequently in either of the classes), the differences did not appear too significant. 
Furthermore, as Hu et al. suggested, there were high chances that compounds comprising these scaffolds could 
be analogues sharing a common scaffold, and therefore might not represent a global trend. Thus, we decided 
against investigating RECAP-based scaffolds/fragments further.

Next, we performed a traditional matched pairs analysis to identify chemical structure transformations that 
could be useful for chemists to overcome metabolic stability mediated liabilities. As mentioned in the results, 
a total of 18 transformations were extracted from the training data chosen for MMPA and closely investigated. 
The following statistics were provided for each of these 18 transforms: number of compound pairs with a positive 
(+ ve) shift in  t1/2; number of pairs with a negative (−ve) shift; number of pairs with undetermined (und) shift 
(when both compounds had  t1/2 values above 30 min); the average of the  t1/2 of all compounds on the left and 
right sides; and the average of the differences in  t1/2 values between the right and left side compounds. All these 
transforms led to an average increase in  t1/2 by at least 10 min in the training data. However, only six of these 
18 transforms have at least the same impact on test data. Seven out of the remaining transforms improved  t1/2 
by at least five min, on average. The remaining 5 transforms could only lead to an increase in  t1/2 by less than 
five min although none of them on average resulted in a negative shift. Furthermore, each of these transforms 
represents compounds belonging to multiple projects, indicating the structural/therapeutic diversity of the 
compounds which in turn supports the hypotheses that some of these rules could be globally applied to improve 
microsomal stability of small molecules. Considering that CYP450 mediated metabolism is predominant in liver 
microsomes, we expected to detect transformations that resemble the common mechanisms of metabolism by 
the CYP  enzymes59. Several hundreds of compound pairs could be identified that represent N-dealkylation and 
release of heteroatoms such as halogens. However, the results (data not shown) were mixed since, on average, 
they did not demonstrate significant changes in  t1/2. While these represent some of the common mechanisms 
adapted by the medicinal  chemists60 to address microsomal stability issues, our results suggest that the protecting 
effect of such groups (e.g. fluorine) is dependent on the molecular context. Moreover, the complexities involved 
in generalizing the rules (global versus local) obtained via MMPA and their dependence on molecular context 
is well  acknowledged61.

Each in silico model has its limitations and the deficiencies of the experimental methods will be reflected in 
the model. For instance, it is well recognized that in vitro metabolic stability testing for highly lipophilic and 
highly insoluble compounds are inclined to  errors6 and thus, predictive values for such compounds may not 
be accurate. Apart from the models, we also provide a subset of the RLM stability data set comprised of ~ 2500 
compounds, which is by far the largest data set available for RLM stability within the public domain. The models 
and the data set are available at https:// opend ata. ncats. nih. gov/ adme. The users can also directly predict the 
RLM stability of new chemical compounds. Alternatively, the models can be downloaded as a self-contained 
package that can be installed and run locally. The data was also deposited in PubChem (AID: 1508591) and can 
be directly accessed from the database.

In summary, the work discussed here presents one of the largest in silico analysis of RLM metabolic stability 
using a curated data set comprising more than 20,000 compounds tested in the same laboratory. The resulting 
QSAR models could be an invaluable resource to the drug discovery and development community. This is also 
the first study to the best of our knowledge to release the RLM metabolic stability data for ~ 2500 compounds 
into the public domain. We explored different modeling strategies and proposed that the choice between global 
and local approach can be key depending on the data set at hand. Furthermore, the structural insights provided 
are expected to be useful in overcoming metabolic stability mediated liabilities.

Table 4.  Comparison of performance of our best RLM stability model with the literature models.

Metric Chang et al.6 Hu et al.7 NCATS RLM (Best Individual Model) NCATS RLM (Consensus Model)

BACC 0.81 0.77 0.82 0.83

Sensitivity 0.82 0.73 0.86 0.85

Specificity 0.80 0.80 0.77 0.81

Kappa 0.62 0.53 0.64 0.66

https://opendata.ncats.nih.gov/adme
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Data availability
The chemical structures for all compounds in the microsomal stability data set cannot be made publicly available 
because most of these compounds are part of current active projects at NCATS. However, a subset of the data set, 
along with the compound structures, is provided along with this study and has also been deposited in PubChem 
database (AID: 1508591). Furthermore, the best classification models are made available at https:// opend ata. 
ncats. nih. gov/ adme/.
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