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Triple‑negative breast cancer (TNBC) accounts for 15–20% of breast cancer cases in the United 
States, lacks targeted therapeutic options, and is associated with a 40–80% risk of recurrence. Thus, 
identifying actionable targets in treatment‑naïve and chemoresistant TNBC is a critical unmet medical 
need. To address this need, we performed high‑throughput drug viability screens on human tumor 
cells isolated from 16 patient‑derived xenograft models of treatment‑naïve primary TNBC. The models 
span a range of TNBC subtypes and exhibit a diverse set of putative driver mutations, thus providing a 
unique patient‑derived, molecularly annotated pharmacologic resource that is reflective of TNBC. We 
identified therapeutically actionable targets including kinesin spindle protein (KSP). The KSP inhibitor 
targets the mitotic spindle through mechanisms independent of microtubule stability and showed 
efficacy in models that were resistant to microtubule inhibitors used as part of the current standard 
of care for TNBC. We also observed subtype selectivity of Prima‑1Met, which showed higher levels of 
efficacy in the mesenchymal subtype. Coupling pharmacologic data with genomic and transcriptomic 
information, we showed that Prima‑1Met activity was independent of its canonical target, mutant p53, 
and was better associated with glutathione metabolism, providing an alternate molecularly defined 
biomarker for this drug.

Triple-negative breast cancers (TNBC) are known for their heterogeneous response to standard chemotherapy, 
with approximately 50% of newly diagnosed tumors having incomplete response to chemotherapy in the neo-
adjuvant setting. TNBCs lack hormone receptor and HER2 targets, precluding use of some of the most effective 
targeted  treatments1,2. Notably, 30–40% of patients with localized disease that are treated with curative intent 
will have substantial residual cancer following neoadjuvant chemotherapy—and these patients have a very poor 
prognosis with a 40–80% risk of recurrence and death within 2–3 years of  diagnosis3–5. Despite major advances 
in targeted cancer therapeutics, chemotherapy consisting of various combinations of DNA-damaging agents 
(anthracyclines, phosphoramide mustards, and platinum salts) and mitotic inhibitors (taxanes) remain the most 
commonly used agents for primary  TNBC4,6,7. In patients with advanced disease, therapeutic resistance develops 
in virtually all cases and typically does so within only a few months.

High-throughput screening (HTS) is a powerful tool for repositioning established drugs towards novel clinical 
implications and for finding treatments that overcome drug resistance. However, the prognostic value of HTS is 
limited by the fidelity of the model systems being used, which should recapitulate critical aspects of the disease 
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being studied. Historically, the most heavily utilized models in HTS have been established cell  lines8,9, which 
may fail to recapitulate the behavior of primary cells and lack the heterogeneity seen in human  tumors10–12. 
For these reasons, many translational studies now rely on patient-derived xenograft (PDX) models, which are 
thought to more accurately recapitulate the genomic heterogeneity of the patient tumors from which they were 
 derived11,13–16. PDX models have been used to predict chemoresistance and uncover genetic mutations associated 
with drug  activity13,15,16. In this study, we used a panel of orthotopic xenograft models generated from patients 
with newly diagnosed primary TNBC, who had not yet received neoadjuvant chemotherapy (NACT), as a 
resource for identifying targeted therapies with preclinical activity in primary TNBC.

Results
Overview of the study. PDX models of treatment-naïve TNBC were established in alignment with an 
institutional review board-approved clinical trial (NCT02276443, Stacy Moulder, PI) at The University of Texas 
MD Anderson Cancer  Center17. Tumor cells obtained by three fine-needle aspiration cores were pooled and 
engrafted into the fourth mammary fat pads of non-obese diabetic/severe combined immunodeficient (NOD/
SCID) mice, and PDX lines were considered established after three consecutive passages in mice. When tumors 
reached ~ 1000  mm3, they were collected and tumor pieces were snap frozen in liquid nitrogen for whole exome 
sequencing, placed in RNAlater for RNA sequencing, and dissociated into single cell suspensions for orthotopic 
engraftment into new cohorts of mice. For drug screens, tumors were collected when they reached 1000  mm3 
and digested into single cell suspensions, and mouse cells were depleted using an antibody-based magnetic 
purification system as previously  described18,19. PDX-derived tumor cells (PDTCs) were then cultured in vitro 
for drug screening (Fig. 1).

Molecular attributes of the PDX cohort. We compared the genomes and transcriptomes of PDTCs 
from each PDX model to their respective patient tumor cells and to TNBC as a whole to establish the transla-
tional relevance of our models. In TNBC, TP53 was the most frequently mutated gene. TP53 mutation occurs 
in approximately 75% of cases, with more infrequent mutations occurring in other cancer-associated  genes20,21. 
TP53 mutation occurred in 47% of our PDX models (42% of samples when including patient data) with less fre-
quent mutations found in other genes, consistent with what has been previously described in  TNBC22 (Fig. 2A). 
We next applied the molecular sub-classification of  TNBC23 to our PDX collection, which revealed that our 
cohort consisted of two basal-like 1 (BL1), four basal-like 2 (BL2), one immune-modulatory (IM), four luminal 
androgen receptor (LAR), four mesenchymal (M), and one unstable (UNS) subtypes (Fig. 2B), thus providing 
a diverse sampling of molecular subtypes that captured all but mesenchymal stem-like. To determine whether 
the gene expression profiles of the patient tumor cells were retained in their corresponding PDX tumor, we cor-
related the profiles of each PDX tumor sample with each patient tumor sample. The analysis showed a strong 
positive Pearson correlation coefficient between each model and its respective patient tumor (Fig. 2C). Taken 
together, these data demonstrate that our collection of PDX models maintain characteristics of their respec-
tive patient tumors and are representative of the majority of TNBC subtypes from both mutational and tran-
scriptomic perspectives. Finally, we looked at the sub-clonal architecture of the nine matched patient and PDX 
derived models with high quality samples. While we cannot rule out undetected large-scale clonal expansion 
events, the exome sequencing revealed smaller shifts in the prevalence of subclones of approximately 30% (Sup-
plemental Fig. 1). Similarly, we observed that certain mutations were lost when comparing the patient and PDX 
samples (Fig. 2A). While this is a potential limitation in the translational relevance of these models, others have 
shown that the retention of the exact sub-clonal architecture is not necessary to recapitulate pharmacologic 
susceptibilities in vivo24,25.

Generation of chemical profiles. Next, we generated chemical profiles for PDTCs from each PDX model 
using the method schematized in Fig. 3A. In brief, PDTCs were seeded into 384-well plates and grown as non-
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Figure 1.  Schematic of experimental workflow. Diagram illustrating tumor collection from patient, serial 
propagation of patient tumor in mice, separation of patient-derived tumor cells from mouse stromal cells, and 
example of read-outs of whole exome sequencing, RNA-sequencing, and high-throughput chemical screens.
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Figure 2.  Characterization of PDX models. (A) Oncoplot of the most frequently mutated genes found in 
our PDX cohort and also found in  TNBC22. Genomic samples from patients are denoted with a PT_ prefix 
prepended to their respective PDX surrogate. (B) Molecular subtypes determined from PDX gene expression 
profile: BL1, basal-like 1; BL2, basal-like 2; IM, immunomodulatory; LAR, luminal androgen receptor; M, 
mesenchymal; UNS, unstable. (C) Correlative analysis of the 1000 most variant gene transcripts from RNA 
sequencing between patient tumors and PDX model.
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adherent suspensions in MammoCult medium (Supplemental Fig. 2A) and allowed to recover overnight. Next, 
the PDTCs were screened against a mechanistically annotated chemical library composed from the Broad 
Informer Library (CTRP_vr2), the NCI-approved clinical oncology library (version 5), and an in-house library 
of clinical oncology drugs totaling 634 chemical entities with a drug exposure window of 72 h, which was previ-
ously optimized using growth data (Supplemental Fig. 2B). We demonstrated a highly consistent Z′, a common 
measure of assay robustness, with an average performance greater than 0.75 across all PDX models. Further, 
we showed a high degree of technical reproducibility with an average minimum significance ratio below two, 
indicative of a highly robust and technically reproducible assay (Supplemental Fig. 3A,B). Primary screening 
assays were done with 3–4 technical replicates at three dose concentrations (10.0, 1.0, 0.1 uM), depending on 
the number of viable PDTCs isolated, which varied between PDX models. Drug effects were normalized to the 
vehicle control (DMSO 0.1% v/v) using the following formula FA = 1-(Xc/XDMSO), where  Xc is the luminescence 
signal for each data point and  XDMSO is the median luminescence from on-plate DMSO control wells. The nor-
malized data were then fit across the three-point dose–response curve and summarized by calculating the area 
under the fitted curve. One potential limitation of this method is that it fails to account for alterations in tumor 
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Figure 3.  Generation of high-throughput chemical profiles. (A) Schematic representation of the experimental 
procedures for high-throughput chemical screening assays. (B) Bi-directional hierarchical clustering of AUC 
values generated from the three-point dose–response curves. Color scale = AUC values ranging from 0 (Inactive) 
to 1 (Strong active), RCB, residual cancer burden, VB subtype, Vanderbilt molecular classification generated 
from PDX RNA-seq data. (C) Enrichment of subtypes in pharmacological clusters denoted by the color or 
branches.
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cell growth rate that may confound chemical  susceptibilities26. Another limitation of this data set is the limited 
resolution provided by a fixed-concentration three-point dose–response curve, which may fail to recapitulate 
chemical selectivity for very potent drugs. However, quantification of sub-maximal efficacy is still possible in 
those contexts. Despite these limitations, we were still able to draw a series of relevant conclusions from the drug 
screening results obtained using the methods outlined above.

Hierarchical clustering of the pharmacologic profiles across PDX models demonstrated that LAR and M 
subtypes tended to co-cluster (Chi-squared p = 0.37, p = 0.19 when cluster_1 was excluded as an orphan), while 
the basal-like subtypes were intermixed (Fig. 3B,C). Next, we used chemical target and pathway annotations to 
visualize the response of PDTCs to families of drugs used in the screen. Analysis of AUC data for compounds 
targeting the same pathway or with similar mechanism of action showed highly correlated response profiles 
(Supplementary Fig. 3C). These results are another metric attesting to the reproducibility and validity of the drug 
screeing results. Independent clustering of chemical entities revealed three sub-clusters, which we subsequently 
refer to as “inactive”, “selective”, and “pan-active” (Fig. 3B). Inactive describes those drugs that showed no or 
minimal activity in the majority of PDTCs, whereas pan-active describes drugs that exhibited broad activity 
across many models. Members of the anthracycline family (e.g., doxorubicin, epirubicin, and duanorubucin) 
were pan-active in these screens, further validating the use of these drugs as a front-line therapy in TNBC. Selec-
tive describes drugs showing large differences in susceptibility across models, and these can provide insight into 
therapeutically actionable targets that are relevant to specific molecular subtypes or can describe heterogeneity 
in molecular signaling cascades; thus, selective drugs are interesting from a personalized medicine standpoint.

Inhibition of mitotic spindle proteins. We first looked at molecularly defined pathway activity from sin-
gle sample gene set enrichment analysis (ssGSEA) to provide a starting point for rationalizing the observed drug 
activities. From this analysis, we selected the Hallmark pathway representations, which are a well-recognized 
and curated set of 50  pathways27. The mitotic spindle pathway was ranked as one of the most consistently active 
pathways across all PDTCs (Fig. 4A). Indeed, indirect targeting of the mitotic spindle using microtubule poisons 
such as paclitaxel is considered the mainstay neoadjuvant chemotherapy for  TNBC28. Yet multiple PDTCs tested 
here exhibited resistance to taxane-based therapies, which was a feature that was recapitulated in matched PDX 
models treated in vivo with paclitaxel (Supplemental Fig. 4). Given the clinical importance of this drug and 
the observation of resistance in treatment-naïve TNBC, we sought to identify alternate compounds that could 
inhibit the mitotic spindle with improved activity.

The panel of drugs that target the mitotic spindle in this library include agents that target microtubule stabili-
zation (e.g., taxanes), microtubule destabilization (e.g., vinca alkaloids), microtubule associated kinesin proteins 
(e.g., kinesin spindle protein [KSP] inhibitors), and mitotic kinases (e.g., AURKA inhibitors) (Fig. 4B). From 
the HTS data, we observed that taxanes had a broad spectrum of activity, including activity against PDTCs that 
were partially or fully resistant to paclitaxel in vitro (Fig. 4C). Vincristine sulfate and related molecules showed 
greater potency relative to taxanes; however, complete resistance was still observed in some cases (Fig. 4D). Thus, 
despite the potency of taxanes and vinca alkaloids, we observed sub- maximal efficacy in certain PDTCs, which 
reflect the presence of resistant clonal populations within these tumors. Further studies are warranted to identify 
mechanisms of resistance. However, the KSP inhibitor SB-743921, which was present in two of the sub-libraries, 
was pan-active and fully efficacious in all PDTCs tested and reduced the viability of PDTCs that were resistant 
to both taxane and vinca in vitro (Fig. 4D,E).

Subtype selective drug activity. Having observed the trend that LAR and M subtypes were separable 
using pharmacologic profiles (Fig. 3B,C), we next investigated the selectivity of targeted agents across molecular 
subtypes. To address this, drug activity was compared across molecular subtypes, excluding the IM and UNS 
classifications due to limited observations, using analysis of variance (ANOVA). From this analysis, we identified 
16 drugs that had at least one significant interaction (p < 0.05) between molecular classes (Fig. 5). Protein syn-
thesis inhibitors (homoharringtonine and omacetaxine mepesuccinate) and inhibitors of Kit/FLT3 (Chir 258) 
and VEGFR/MET (tivozanib) showed moderately higher levels of sensitivity in basal-like subtypes. LAR was 
characterized with significant loss of sensitivity to multiple drugs targeting NAE1 (pevonedistat and MLN4924), 
DNA-damaging agents (gemcitabine hydrochloride and cytarabine), and PAK4 inhibitors (PF-3758309) in addi-
tion to the targets mentioned above. Interestingly, the ROCK inhibitor Y-27632 displayed selectivity in LAR 
PDX models. PDX models from the M subtype had higher activity with Prima-1 and Prima-1Met.

Exploration of Prima‑1Met selectivity. Prima-1 and its analogue Prima-1Met (also known as APR-246) 
showed higher efficacy in the M subtype, with appreciable but lower efficacy in BL2 backgrounds (Fig. 6A). The 
primary mechanism of action for these drugs is to covalently modify mutant p53, resulting in a conformational 
change that restores  activity29. Because TP53 is the most frequently mutated gene in this cohort and in TNBC 
as a whole, we investigated whether there was a pharmacogenomic association between Prima-1Met activity and 
TP53 mutation status. ANOVA and post-hoc Sidak multiple testing correction revealed no significant inter-
action between Prima-1Met sensitivity and TP53 mutation status (p > 0.99). However, this analysis did identify 
a significant pharmacogenomic interaction between Chk1 inhibitor AZD7762 and TP53 mutation (p < 0.01), 
which confirms the findings of other  research30 and provides additional validation of this method (Fig. 6B). 
Overexpression of MDM2 can also phenocopy TP53 loss of function mutations, which prompted us to explore 
whether there was an association between the AUC of Prima-1Met activity and the gene expression of MDM2, 
which showed no significant correlation (Pearson p = 0.88, r = 0.05). Collectively, these data led us to explore 
potential alternate mechanisms to rationalize Prima-1Met activity.
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Prima-1Met has been shown to induce apoptosis by increasing the expression of TP73 and NOXA and depleting 
glutathione pools, resulting in increases in reactive oxygen species, independent of TP53 mutation  status31. In 
an unbiased correlative analysis between drug activity and ssGSEA pathways, we found significant correlations 
with glutathione metabolism and conjugation (Fig. 6C,D). These data are consistent with established alternate 
mechanisms of action for Prima-1Met and implicate Prima-1Met as working through a glutathione-dependent 
mechanism in this context.

Conclusions and clinical implications
In this study, we established and validated a preclinical pharmaco-genomic resource generated from PDX models 
from representative treatment-naïve tumors of patients with primary TNBC. We performed multiplexed high-
dimensional analysis including bulk whole exome and RNA sequencing as well as high-throughput chemical 
screening of human tumor cells to generate a resource for pharmaco-genomic and transcriptomic studies aimed 
at understanding and targeting TNBC. This resource expands upon other breast cancer-focused PDX biobanks by 
providing a molecularly diverse, TNBC-specific collection of models with matched pharmacologic  profiles12,16. 
In addition, the PDX models in our collection were derived from the primary breast tumors of untreated TNBC 
patients. Most published PDX collections to date have been generated from primary or metastatic tumors from 
pretreated  patients16. Thus, our collection provides a unique resource to study tumors that have not undergone 
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therapy-induced selection and to identify potential therapies for targeting resistance in the setting of primary, 
treatment-naïve breast cancer.

Other high-throughput chemical screens with PDTCs have identified a wide range of actionable suscepti-
bilities, which were largely recapitulated in our dataset. For example, Matossian et al. identified DNA synthesis, 
microtubule, and topoisomerase inhibitors as the top classes of drugs exhibiting activity against PDX-derived 
mesenchymal tumor  cells32. In a study by Bruna et al., anthracyclines, NAMPT and BCL-2 inhibitors were found 
to have the highest levels of activity against a subset of 10 basal-like TNBCs, while responses to taxanes and 
mTOR inhibitors were more  variable16. We observed varying degrees of activity to DNA synthesis, microtubule, 
and mTOR inhibitors in our study, while anthracyclines, BCL-2 and NAMPT inhibitors tended to be pan-active. 
In a study by Turner et al., a panel of 10 short-term cultures of PDTCs were screened against ~ 1300 drugs at 
a single concentration of 10 µM using bioluminescence as the primary read-out of  viability33. A panel of four 
basal-like TNBC PDX models were then prioritized and tested in combination with the proteasome inhibitor 
carfilzomib or the EGFR inhibitor afatinib against a library of 176 pan-active drugs identified in the primary 
screen. From this, the survivin inhibitor YM-155 demonstrated synergy when combined with afatinib. In our 
study, YM-155 was strongly active in all PDTCs while afatinib was moderately active, and carfilzomib was inactive 
in the majority of basal-like PDTCs. Another study testing a panel of 12 chemotherapeutic agents on basal-like 
PDTCs, demonstrated susceptibility towards bortezomib, dacarbazine, and  cyclophosphamide34. In our study 
bortezomib was pan-active while dacarbazine and cyclophosphamide were inactive, albeit we tested those drugs 
at greater than 100-fold lower concentrations. Cross comparisons of all of these datasets should take into account 
drug concentrations, conditions used for culturing PDTCs, and therapies that the tumors had been exposed to 
prior to the PDX model generation.

Exploratory analysis of the pharmacologic profiles generated from our PDX cohort identified multiple tar-
geted therapies with appreciable preclinical activity. Importantly, many of the drugs identified in our study have 
direct translational applicability, with pre-established pharmacokinetic and toxicity profiles already performed 
in other disease implications. These include targeted therapies to overcome intrinsic taxane resistance, which is 
considered a mainstay therapy in TNBC, using an alternate mechanism to target the mitotic spindle. Targeting 
mitotic proteins such as KSP has previously been proposed as an efficacious mechanism to target the mitotic 
spindle. Other research groups have observed potent inhibition of cell growth in immortalized cell lines and 
antineoplastic potential in xenograft models with KSP  inhibitors35. KSP inhibitors were also identified as a 
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potentially synergistic target when combined with vinblastine in TNBC using a computational approach that 
combined contrasting  phenotypes36. A first-in-human phase I/II clinical trial using SB-743921 in advanced solid 
tumors showed efficacy and a more favorable toxicity profile compared to  taxanes37. Our data, in combination 
with published literature, support revitalized interest in using KSP inhibitors, and further mechanistic studies 
in the context of TNBC are warranted.

Prima-1Met demonstrated selectivity towards the M subtype, which was independent of TP53 mutation status. 
A recently completed phase I clinical trial conducted in Sweden using single-agent Prima-1Met in hematologic 
and prostate malignancies showed measurable target engagement (i.e., induction of genes regulated by p53) 
in vivo. As of 2019, phase II/III clinical trials have begun in the United States using Prima-1Met in combina-
tion with azacitidine for myelodysplastic syndrome and acute myeloid  leukemia38. Others have proposed using 
Prima-1Met in TNBC due to the high rate of TP53  mutations39. In those studies, Prima-1Met was tested against a 
panel of TNBC cell lines with and without TP53 mutations to demonstrate p53-dependent  activity39,40. However, 
in our study we did not observe TP53 mutation-dependent activity but rather found glutathione pathways, an 
established alternate target of Prima-1Met, as a potential alternate biomarker predictive of activity. Thus, use of 
Prima-1Met has the potential to impact a large spectrum of TNBC patients who either harbor TP53 mutations 
or have alterations in glutathione metabolism. Further validation of these findings will be required to translate 
them into clinical settings.

Methods
Collection of patient‑derived materials. All research conducted in human patients followed national 
guidelines including the Common Rule (https ://www.hhs.gov/ohrp/human subje cts/commo nrule /) and the 
Health Insurance Portability and Accountability Act (HIPPA) privacy and security  rules41. All patients from 
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whom samples were collected for generation of PDXs gave informed consent and were enrolled in the ARTEMIS 
trial (NCT02276443) a MD Anderson IRB-approved protocol (2014-0185).

Animals. All experimental procedures were approved by the Institutional Animal Care and Use Commit-
tee (IACUC) at MD Anderson Cancer Center under IACUC protocol 00000978-RN01. Endpoints for animal 
experiments were selected in accordance with IACUC-approved criteria. Female NOD/SCID mice (NOD.CB17-
Prkdcscid/NcrCrl) were obtained from Charles River, National Cancer Institute Colony.

PDX cell preparation for drug screen. The fourth mammary fat pads of 3- to 5-week-old female NOD/
SCID mice were implanted with 50,000 PDX tumor cells suspended in 30 µL of DMEM/F12 (HyClone, Cat. No. 
SH30023.01) media mixed with Matrigel (Corning, Cat. No. 354234) (50:50). Cells in Matrigel were maintained 
on ice until engraftment. Tumors were monitored weekly. When tumors reached about 1000  mm3, they were 
harvested and dissociated into single cells and organoids by mechanical mincing, followed by digestion with 
collagenase (3 mg/mL; Roche) and hyaluronidase (0.6 mg/mL; Sigma-Aldrich) supplemented with 2% bovine 
serum albumin (Sigma-Aldrich) in DMEM/F12 containing antibiotics (penicillin (100 U/mL), streptomycin 
(100 µg/mL), and amphotericin B (0.25 µg/mL). Tumor digests were incubated on a rotating platform for 4 h 
at 37 °C. Digested PDX tumor cells were re-suspended in red blood cell lysis buffer (Sigma, Cat. No. R7757), 
then treated with 0.25% Trypsin-EDTA (Corning, Cat. No. MT25053CI) followed by 5 U/mL Dispase (Stemcell 
Technologies, Cat. No. 07913) and 1 mg/mL DNase I solution (Stemcell Technologies, Cat. No. 07900). Finally, 
cells went through magnetic-activated cell sorting using mouse cell depletion kits (Miltenyi Biotec: Mouse Cell 
Depletion Kit, 130-104-694) to remove mouse cells. On average, 40 million PDTCs were isolated and subjected 
to the drug screening process. For samples with residual material, we performed qPCR to determine the human 
to mouse DNA content in order to validate the purification process. This was done using a human RNaseP gene 
probe (20 × human RNaseP copy number assay, FAM-TAMRA, Life Technologies) and a mouse Trfc gene probe 
(20 × mouse Trfc copy number assay, VIC-TAMRA, Life Technologies). The relative ratio of human to mouse 
gDNA in each sample was calculated using the ΔΔCt method as described  previously19. The human DNA con-
tent was determined to be 99.4% for PIM010 and 94.1% for PIM091 after mouse cell depletion.

Administration of paclitaxel in vivo. Mice were randomly assigned to treatment or control arms and 
treatment was initiated when a palpable tumor was detected. Paclitaxel was formulated in Crem:Ethonal (1:1 
v/v) and dosed at 15 mg/kg once a week by intraperitoneal injection. Methylcellulose (0.5%) was used as a vehi-
cle control and dosed on the same schedule. Crem:Ethanol was made by adding 10 mL Kolliphor EL (Sigma, Cat 
No. C5135-500 g) to 10 mL ethanol (Pharmco-AAPER, USP grade, Cat: 64-17-5), followed by stirring for 3 h.

Development and optimization of a high‑throughput chemical screen. To optimize assay condi-
tions for establishing short-term cultures of PDTCs (Supplemental Fig. 2A), we generated a single 384-well plate 
assay to simultaneously optimize cell seeding densities, test different culture media, and determine the growth 
properties of PDTCs under each condition. Different culture media were tested in the presence and absence of 
serum over three different cell seeding densities, and cell growth was monitored using an ATP bioluminescent 
reporter (CellTiter-Glo) over 7 days (Supplemental Fig. 2B). From these experiments, we determined that Mam-
moCult medium maximally supported the viability and growth of PDTCs in vitro over 7 days in roughly half of 
the 24 models tested. In this medium, cells grew as either single-cell or self-associating non-adherent suspen-
sions (Supplemental Fig. 4A). PDTCs that maintained viability or proliferative capacity were prioritized for full 
screening. Medium supplemented with serum improved viability of some PDTCs; however, serum-containing 
medium was not considered for screening assays due to the potential of depleting stem-like populations and 
altering tumor cell behavior. It was also determined that seeding 2000 cells/well was optimal for the screens. 
Once culture conditions were optimized, a focused screen was performed to identify a library of compounds 
that could be used as controls for tumor cell killing. This library consisted of eight non-redundant toxic oncology 
drugs (top four shown in Supplemental Fig. 2C). Anisomycin was found to robustly decrease cell viability across 
all PDX models and was used as an on-plate control to monitor assay performance during screening.

Screening assays. Before plating, cell number and viability were determined by mixing 10 uL of culture 
media containing tumor cells with 10 uL trypan blue solution in a disposable counting slide, which was then 
read using a TC10 automated cell counter (Bio-Rab). Next, 2000 viable cells/well were transferred into barcoded 
384-µ well clear plates (Griener, Cat No. 781091) using a MultiDrop Combi Reagent dispenser (Thermo). All 
drug libraries were diluted in DMSO and arrayed on Echo certified low dead volume plates (LDV, Labcyte). 
Drugs were subsequently transferred from the LDV source plate into assay plates using an Echo liquid handling 
machine (Labcyte). Wells were treated such that the final concentration of DMSO in media did not exceed 1% 
(v/v).

Statistics and software. We processed the next-generation sequencing data using the BETSY  system42. 
We called variants and estimated gene expression values as previously  described19, except that we identified 
contaminating mouse host reads for subtraction using  Xenome43.  PyClone44 was used to identify sub-clonal 
populations in the patient and PDX data. Using this software, sub-clones were identified using a robustness score 
of greater than 0.5 and had to contain at least 2 mutations. Data organization and statistical analysis was per-
formed using an automated screening tracking workflow developed in Pipeline Pilot (2018 Server, BIOVIA) and 
R statistics. The log concentration was fitted to the normalized response using a cascade model which leverages 
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iteratively reweighted least squared to fit the response surface to a four-parameter logistic or linear model. AUC 
and  IC50 values were generated from the fitted dose–response curve. Dose–response figures used for this publi-
cation were rendered in Graphpad Prism. Identification of subtype selective molecules was performed using the 
AOV function in R. Pharmacogenomic associations with mutant TP53 and time series analysis of in vivo taxane 
data where performed and graphed using Graphpad Prism.

Data availability
Normalized data frames (PDTC by Drug AUC, Gene expression (TPM), and ssGSEA pathway scores) and 
open-source code that are critical to the analysis and generation of figures are available at https ://githu b.com/
ReidT Powel l/TNBC_profi les_1. Analytical workflows generated in proprietary environments are available upon 
reasonable request.
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