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Codon optimization with deep 
learning to enhance protein 
expression
Hongguang Fu1, Yanbing Liang1, Xiuqin Zhong1*, ZhiLing Pan2, Lei Huang1, HaiLin Zhang2, 
Yang Xu1, Wei Zhou1 & Zhong Liu3

Heterologous expression is the main approach for recombinant protein production ingenetic 
synthesis, for which codon optimization is necessary. The existing optimization methods are based 
on biological indexes. In this paper, we propose a novel codon optimization method based on deep 
learning. First, we introduce the concept of codon boxes, via which DNA sequences can be recoded 
into codon box sequences while ignoring the order of bases. Then, the problem of codon optimization 
can be converted to sequence annotation of corresponding amino acids with codon boxes. The codon 
optimization models for Escherichia Coli were trained by the Bidirectional Long-Short-Term Memory 
Conditional Random Field. Theoretically, deep learning is a good method to obtain the distribution 
characteristics of DNA. In addition to the comparison of the codon adaptation index, protein 
expression experiments for plasmodium falciparum candidate vaccine and polymerase acidic protein 
were implemented for comparison with the original sequences and the optimized sequences from 
Genewiz and ThermoFisher. The results show that our method for enhancing protein expression is 
efficient and competitive.

With the rapid development of biotechnology, heterologous expression has been utilized to generate recombi-
nant proteins for use in vaccines and  pharmaceuticals1,2. The codon is the basic unit of correspondence between 
nucleic acids carrying information and proteins carrying information and is also the basic link for information 
transfer in vivo. Codons that encode the same amino acid are called synonymous codons. While the usage prob-
abilities of synonymous codons are not the same during protein synthesis, a species or a gene typically prefers to 
use one or several specific synonymous codons called optimal codons, and this phenomenon is known as codon 
usage  bias3. Moreover, the codon usage bias of genes differs significantly among different functions.

Codon usage bias has a complex effect on protein expression levels when recombinant proteins are heterolo-
gously  expressed4. The frequency of codons in a DNA sequence is positively correlated with the corresponding 
tRNA in a species, and the tRNA concentration determines the number of amino acids available for protein 
translation extension, which in turn affects the efficiency of protein  synthesis5,6. Thus, the expression levels of 
proteins are highly correlated with codon usage bias. Rare codons tend to reduce the rate of translation and even 
cause translation  errors7. Furthermore, codon optimization is the most critical determinant of increasing protein 
 expression8. In gene synthesis, codon optimization involves recombination based on different criteria without 
changing the sequence of the amino  acid9 and can promote expression of the recombinant gene in different host 
 organisms9–11. Therefore, codon optimization for microorganisms is an essential part of gene synthesis.

In heterologous expression systems, to maximize protein expression from the DNA sequence of the original 
species in the host, codon optimization improves the translation efficiency of a target  gene12 by converting the 
DNA sequence of nucleotides of one species to that of another, such as converting human sequences to bacte-
rial or yeast sequences, plant sequences to human sequences, and fungal sequences to yeast sequences. Various 
codon optimization strategies have been developed by using a range of quantitative methods to generate different 
mRNA sequences, which can result in different levels of final protein expression. Most optimization strategies 
use codons with host bias to replace less frequently occurring  codons13–16. In addition, a strategy is proposed to 
adjust the original codon sequence to match the natural distribution of the host  codons13,17–19, the goal of which 
is to preserve the slow translation regions that are important for protein  folding9,10,20. This strategy has been 
recognized as the best way to optimize codons.
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In the industry, many biotechnology companies perform codon optimization, such as ThermoFisher (www.
therm ofish er.com) and Genewiz (www.genew iz.com), whose methods are based on the aforementioned strate-
gies and empirical indexes. As a consequence, their indexes for codon optimization mainly include the codon 
adaptation index (CAI)21, the frequency of relative synonymous codon  usage22, the codon bias  index23, optimal 
codon  usage7, and effective codon  number24. Among these indexes, the CAI is the primary index used to predict 
gene expression level because it indicates the extent to which the coding sequence represents the usage of codons 
in an  organism25.

In addition to the strategies considered to eliminate rare codons, there also exist parameters with important 
impacts on protein expression, such as the GC  content26, RNA secondary structure, cleavage sites, restriction 
endonuclease sites, repeats and certain added or deleted  motifs27,28. Many websites and software incorporate 
codon optimization algorithms with various determinants, such as DNA  Works29,  Optimizer30,  GeMS31, Gene 
 Designer14, Gene Designer  Synthetic32, ThermoFisher and Genewiz. To further optimize the DNA sequence, 
some researchers also perform plasmid-mediated replenishment of tRNAs corresponding to rare codons from 
the  host33. Currently, emerging high-throughput methods for gene synthesis and screening can also increase 
protein expression  levels34.

In fact, the method that directly replaces rare codons with host biased codons is straightforward and can 
be implemented easily. However, the optimized DNA sequences contain host biased codons, so the transcribed 
mRNA contains a high percentage of codon subsets, which results in an imbalance of different tRNAs and even-
tually leads to the depletion of tRNA and termination of  translation14. Additionally, the method that coordinates 
and replaces codons can make the adjusted codon sequence consistent with the natural distribution in the host, 
but this method is often complicated to implement and lacks flexibility.

The CAI is an important index with which to measure protein expression, but it is not comprehensive. There-
fore, we use the deep learning method instead of the index method. The CAI is used only as a reference index in 
this paper, and it is verified by biological experiments.

Recently, deep learning has shown impressive applicability in a variety of domains, entailing a series of 
machine learning algorithms. Biological and medical research is replete with big data, but the data are often 
perplexing. These problems might be more appropriately handled using deep learning  techniques35. The origi-
nal idea stems from applying deep learning techniques to obtain the distribution of codons for feasible codon 
optimization without any empirical rules.

In this study, the concept of a codon box is introduced as a method to recode DNA sequences. Next, a popular 
sequence annotation method in deep learning called Bidirectional Long-Short-Term Memory Conditional Ran-
dom Field (BiLSTM-CRF)36 was adopted to annotate amino acid sequences with codon boxes or codons directly. 
Finally, biological experiments were conducted to analyze and compare the protein expression in Escherichia coli 
(E. coli) with that obtained by Genewiz and ThermoFisher.

Results
Codon box. Regardless of the base order of the codons, or equivalently, if the codons contain the same A, T, 
G, and C bases, then they are taken as a set, which is called a codon box. For example, the codons ATG, TAG, 
AGT and GAT are taken as a whole codon box {agt}, as shown in Table 1. It is coincidental that the total number 
ofcodon boxes is 20, which is exactly equal to the number of amino acids in the universal codon table.

Table 1 also shows that the codon encoding a given amino acid can be uniquely determined by a codon 
box and the amino acid, that is, different codons in the same codon box cannot encode the same amino acid. 
For example, the codons encoding the amino acid Gly are GGT, GGC, GGA and GGG. The codon box {ggt} 
contains GGT, TGG and GTG. Therefore, once the amino acid Gly and the codon box {ggt} are given, GGT can 
be uniquely determined to encode Gly, as shown in Fig. 1. For other codon boxes, the corresponding codons 
encoding Gly are determined similarly. This critical property has not been identified previously and can play 
a key role in subsequent codon optimization.The codon box can be regarded as a coding method in machine 
learning that can simplify deep learning models, and a codon box and an amino acid together can uniquely 
determine a codon, which has not been reported previously. Furthermore, it was verified that the effect is better 
after introducing a codon box. The number of codon boxes was consistent with that of conventional amino acids. 
However, whether the use of codon boxes is directly relevant in biology needs further study.

Codon optimization with deep learning. The choices of synonymous codon pairs are not random in 
 individuals3, and different species are subject to different rules embedded in the distribution of their codons. 
To accurately capture the codon distribution of host genes, the codon optimization problem can be converted 
to that of a sequence annotation problem in deep learning, as shown in Fig. 2. BiLSTM-CRF is the most widely 
used sequence annotation algorithm, and the code for the BiLSTM-CRF annotation method is available at https 
://githu b.com/jiesu td/NCRFp p. In this paper, our focus is not the algorithm design for BiLSTM-CRF, as shown 
in Fig. 2a, which is simply a training tool for the E. coli codon optimization model. Our method, based on the 
codon box in Table 1, is available at https ://githu b.com/Devil 625/Codon _Optim izati on.git, whose flowchart is 
shown in Fig. 2b.

It is obvious that the outputs of the two kinds of annotation models were designed according to the codon 
distribution of host genes. To train the annotation models, the training data including 4906 genes were selected 
from the DNA sequences of E. coli available from the NCBI, 80% of which were used as the training set, 10% as 
the validation set, and 10% as the test set. In the models, every amino acid is considered to be a word, and the 
dimension of the word vector is an important parameter. Considering 20 kinds of amino acids and stop codons, 
a word vector with 21 dimensions is a proper selection for word-embedding vectors of amino acid sequences. 

http://www.thermofisher.com
http://www.thermofisher.com
http://www.genewiz.com
https://github.com/jiesutd/NCRFpp
https://github.com/jiesutd/NCRFpp
https://github.com/Devil625/Codon_Optimization.git
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In practical training, the CAI indicates that a word vector with 21 dimensions can yield a better result than one 
with 50 dimensions or 100 dimensions.

Because gene mutation cannot theoretically be avoided in sequence annotation, that is, the optimized codon 
sequence may encode a different amino acid, the model with fewer mutations is better. In the case of a muta-
tion, the mutant codon will be replaced with the original codon to ensure that the amino acid sequence remains 
unchanged. Surprisingly, there was almost no mutation in the training process.

Machine learning approach is a probabilistic model and therefore cannot rule out the possibility of muta-
tion. To date, we have performed many experiments with data from the related protein expression optimization 
literature, and have not found such mutation. To further study the probability of such mutation, we randomly 
generated 10,000 genes and found that the mutation probability was 0.00%. Therefore, this operation did not 
alter the effect of our model.

The other hyperparameters also have significant impacts on performance when training the BiLSTM-CRF 
model. In this paper, the main hyperparameters of our model were selected as follows: a 4-layer BiLSTM was 
selected, and the hidden layer dimension was 200; the dropout was 0.5; the batch size was 32; and the learning 
rate was 0.003. To verify the rationality of the codon box proposed in this paper, BiLSTM-CRF(a) and BiLSTM-
CRF(b) were trained in the same environment. The training times for BiLSTM-CRF(a) and BiLSTM-CRF(b) 
were approximately 40 h and 17 h on 1080 GPU, respectively; the test accuracy and training accuracy of BiLSTM-
CRF(a) were 0.52 and 0.76, respectively; and the test accuracy and training accuracy of BiLSTM-CRF(b) were 
0.52 and 0.77, respectively. BiLSTM-CRF(a) and BiLSTM-CRF(b) have almost the same model accuracy.

Because our goal in this paper was the optimization of DNA sequences, CAI is used as a main index of model 
comparison. The CAI is an important index with which to measure protein expression, but it is not compre-
hensive. Therefore, we use the deep learning method instead of the index method. The CAI is used only as a 
reference index in this paper, and it is verified by biological experiments. The average CAIs of BiLSTM-CRF(a) 
and BiLSTM-CRF(b) for the test set were 0.94 and 0.96, respectively. According to the statement on GeneScript’s 
optimization  website37, the ideal range for CAI is 0.8–1.0, and the lower the number is, the higher the chance 

Table 1.  Classification of codon boxes. According to the codon box concept, 64 codons can be divided into 
20 kinds of codon boxes. Furthermore, the codon boxes can be classified into three categories: Type-1 has only 
one kind of base; Type-2 has two kinds of bases; and Type-3 has three kinds of bases.

Type of codon box Codon box Amino acid Codon

Type-1

{aaa} Lys AAA 

{ccc} Pro CCC 

{ggg} Gly GGG 

{ttt} Phe TTT 

Type-2

{aac} Gln, Asn, Thr CAA, AAC, ACA 

{aag} Arg, Glu, Lys AGA, GAA, AAG 

{aat} Ile, Asn ATA, AAT 

{acc} His, Pro, Thr CAC, CCA, ACC 

{agg} Arg, Glu, Gly AGG, GAG, GGA 

{att} Ile, Leu, Tyr ATT, TTA, TAT 

{ccg} Ala, Arg, Pro GCC, CGC, CCG 

{cct} Leu, Pro, Ser CTC, CCT, TCC 

{cgg} Ala, Arg, Gly GCG, CGG, GGC 

{ctt} Leu, Phe, Ser CTT, TTC, TCT 

{ggt} Gly, Trp, Val GGT, TGG, GTG 

{gtt} Cys, Leu, Val TGT, TTG, GTT 

Type-3

{acg} Ala, Arg, Asp, Gln, Ser, Thr GCA, CGA, GAC, CAG, AGC, ACG 

{act} His, Ile, Leu, Ser, Thr, Tyr CAT, ATC, CTA, TCA, ACT, TAC 

{agt} Asp, Met, Ser, Val GAT, ATG, AGT, GTA 

{cgt} Ala, Arg, Cys, Leu, Ser, Val GCT, CGT, TGC, CTG, TCG, GTC 

Figure 1.  One-to-one mapping of amino acids and codon boxes with codons. An example of how an amino 
acid (Gly and its corresponding codon box can uniquely determine a codon.
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that the gene will be expressed poorly. Therefore, BiLSTM-CRF(b) is better than BiLSTM-CRF(a) in terms of 
training time and the CAI.

To compare the CAI of the original sequence with those of the Genewiz, ThermoFisher, BiLSTM-CRF(a), and 
BiLSTM-CRF(b) optimized sequences, six codon sequences (HPDF, PAE, MMPL3, FALVAC-1, PA and PTP4A3) 
were extracted from six papers on gene optimization and protein  expression138–42, as shown in Table 2, from 
which the 972 bp plasmodium falciparum candidate vaccine (FALVAC-1) and 564 bp polymerase acidic protein 
(PTP4A3) were randomly selected for biological experiments on protein expression.

As shown in Table 3, the Jaccard  index43 was used to measure the similarities of the optimized sequence from 
BiLSTM-CRF(b) with the original sequence and the sequences from Genewiz, ThermoFisher, and BiLSTM-
CRF(a). The average 20%-28% difference between BiLSTM-CRF(b) and ThermoFisher or Genewiz shows that our 
method is a new approach for discovering underlying features of data, and it is different from BiLSTM-CRF(a).

Figure 2.  Codon optimization flowcharts based on sequence annotation models. First, the original codon 
sequences are decoded into amino acid sequences. Then, they are annotated by the trained sequence annotation 
models. In the flowchart in (a), the amino acid sequence is annotated with 61 kinds of codons, except stop 
codons (named BiLSTM-CRF(a)), and in the flowchart in (b), the amino acid sequence is annotated with 
20 kinds of codon boxes (named BiLSTM-CRF(b)). The difference in (b) is that the optimized codons are 
determined from the codon boxes in Table 1 due to the one-to-one mapping of amino acids and codon boxes 
with codons mentioned in the previous section. Generally, the annotation model with fewer tokens is better, and 
the complexity of BiLSTM-CRF(b) is lower than that of BiLSTM-CRF(a).

Table 2.  CAI comparison between original sequences and optimized sequences. This table shows the 
CAIs of the sequences optimized by different optimization tools, among which the values for Genewiz and 
ThermoFisher are provided on their official websites (ThermoFisher: www.therm ofish er.com, Genewiz: www.
genew iz.com). BiLSTM-CRF(b) has the highest average CAI, showing that it has great potential to enhance 
protein expression.

DNA bp Original Genewiz ThermoFisher BiLSTM-CRF(a) BiLSTM-CRF(b)

HPDF 615 0.70 0.85 0.92 0.96 0.98

PAE 1839 0.76 0.81 0.92 0.96 0.98

MMPL3 2835 0.67 0.79 0.93 0.96 0.98

FALVAC-1 972 0.67 0.85 0.93 0.95 0.96

PA 561 0.60 0.83 0.93 0.97 0.98

PTP4A3 564 0.70 0.83 0.93 0.96 0.98

Average 1231 0.68 0.83 0.93 0.96 0.98

http://www.thermofisher.com
http://www.genewiz.com
http://www.genewiz.com
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Experimental results for FALVAC-1 and PTP4A3. Because the CAI is simply a factor that affects pro-
tein expression, to further validate the rationality of our codon optimization method, the FALVAC-1 protein 
(FALVAC-1 was constructed as a multivalent plasmodium falciparum vaccine antigen and expressed in E. coli) 
and PTP4A3 protein were expressed in E. coli, and their expression levels were analyzed by western blot analy-
sis. We compared three groups (Group 1, Group 2 and Group 3) of parallel experiments simultaneously for 
FALVAC-1 and PTP4A3, and compared the optimization effects of five sequences (namely, Original, Genewiz, 
Thermo, Opt-b and Opt-a, where Opt-b stands for BiLSTM-CRF(b) and Opt-a stands for BiLSTM-CRF(a)) in 
each group. The comparison of protein expression levels is shown in Fig. 3.

As shown in Fig. 3a and the corresponding Table 4, according to the optimization ratio, protein expression 
from the FALVAC-1 gene sequence optimized by Opt-b was significantly better than that obtained with the 
other methods. Furthermore, the protein expression obtained with Opt-b was better than that obtained with 
Opt-a, which indicates that the introduction of a codon box is necessary and useful. As shown in Fig. 3b and the 

Table 3.  Comparative analysis of Jaccard similarity. Jaccard similarity index between the optimized sequences 
of BiLSTM-CRF(b) and others.

DNA Original Genewiz ThermoFisher BiLSTM-CRF(a)

PTP4A3 0.68 0.74 0.80 0.85

PA 0.62 0.72 0.82 0.90

PAE 0.70 0.70 0.79 0.90

FALVAC-1 0.62 0.73 0.80 0.88

HPDF 0.70 0.73 0.80 0.90

MMPL3 0.65 0.69 0.76 0.89

Average 0.66 0.72 0.80 0.89

Figure 3.  Comparison of protein expression levels for FALVAC-1 and PTP4A3. (a) shows the results of western 
blotting for FALVAC-1. (b) shows the results of western blotting for PTP4A3.

Table 4.  Comparison of grayscale value ratios corresponding to Fig. 3a. The comparison of grayscale value 
ratios between FALVAC-1 and GAPDH. The optimization ratio is the ratio of each method’s average value to 
the original average value.

Original Genewiz Thermo Opt-b Opt-a

Group 1 0.221 0.875 0.548 2.178 1.669

Group 2 0.090 0.742 0.352 2.115 1.747

Group 3 0.245 0.901 0.331 1.935 1.762

Average value 0.186 0.839 0.410 2.076 1.726

Optimization ratio 1 4.511 2.204 11.129 9.462
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corresponding Table 5, when the original sequence is well expressed, although Opt-b is still the best method, 
the optimization ratio is not very significant, and all methods have approximately equal optimization ratios. The 
reason for this result is that the codon distribution of PTP4A3 is similar to that of E. coli genes. Hence, the result 
indicates that the new model is robust and reflects the distribution of host genes. Moreover, the experimental 
results are also clearly consistent with the theoretical predictions based on the CAI in Table 2.

In this paper, we chose two genes, namely, FALVAC-1 with a low expression level, which proved the effective-
ness of our algorithm, and PTP4A3 with a high expression level, which proved the stability of our algorithm. 
FALVAC-145 was constructed as a multivalent plasmodium falciparum vaccine antigen and expressed in E. coli, 
and  PTP4A346 was used as a negative control to prove that our algorithm will not cause low expression.

Furthermore, according to the method reported in the literature, the activities of each purified protein were 
detected by more experiments, as shown in Fig. 4. No significant difference in the protein’s activity among the 
five sequences (Original, Genewiz, Thermo, Opt-b and Opt-a) was demonstrated. This result proved that our 
optimization had no effect on the protein’s function.

Discussion
In this paper, we introduce the concept of codon boxes, via which DNA sequences can be recoded into codon 
box sequences while ignoring the order of bases. Then, the problem of codon optimization can be converted to 
sequence annotation of corresponding amino acids with codon boxes. Because deep learning is a good method 
to obtain the distribution characteristics of DNA sequences, it is theoretically more advantageous for tackling 
codon optimization than existing index optimization methods. According to the results of biological experi-
ments, compared with the codon optimization tools that are widely used in the industry, our method is likely 
competitive in terms of genetic engineering. Our optimization model was originally designed for E. coli in this 
paper, while its generality for other species, such as insect cells and yeasts needs further research in the future. 
Moreover, with the development of deep learning, the optimization method can be further improved to obtain 
better protein expression.

In fact, codon optimization can also be regarded as an inverse problem of codon sequences coding amino 
acid sequences. However, the inverse problem is not one-to-one mapping, and whether a learning mechanism 
for amino acid sequence to DNA sequence conversion exists is not clear. Because the deep neural network is a 
black box, the underlying biological reasons cannot be adequately explained at the present time. Therefore, it 
is reasonably expected that other experts will provide further biological insights into the learning mechanism 
in the future.

Table 5.  Comparison of grayscale value ratios corresponding to Fig. 3b. The comparison of grayscale value 
ratios between PTP4A3 and GAPDH. The optimization ratio is the ratio of each method’s average value to the 
original average value.

Original Genewiz Thermo Opt-b Opt-a

Group 1 2.448 2.863 3.006 3.033 3.017

Group 2 3.398 3.506 3.564 4.568 3.266

Group 3 1.727 0.901 3.073 3.145 3.594

Average value 2.558 3.147 3.238 3.780 3.292

Optimization ratio 1 1.23 1.266 1.400 1.287

Figure 4.  The assay of protein function for PTP4A3. In vitro phosphatase assays showed that the activities of 
proteins expressed by five sequences were almost equal (where p > 0.05). Different sequences are represented by 
different colors.
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Methods
Codon optimization. To obtain the final optimized sequence, we implemented a bidirectional long/short-
term memory neural network with a conditional random field layer (BiLSTM-CRF)44 that is able to annotate 
amino acid sequences with codons or codon boxes. First, the codon sequences can be decoded into the corre-
sponding amino acid sequence. The word-embedding vectors of amino acid sequences are regarded as inputs of 
BiLSTM-CRF. The model parameters were iteratively optimized on the training set using L2 regularization, and 
the model with the best performance on the validation set was chosen. BiLSTM-CRF provides each amino acid 
and its annotated codon or codon box token as the output. Because a codon box and an amino acid can be used 
to uniquely determine a codon, the optimized codon sequence can be obtained.

CAI. CAI is calculated as per formula (1):

where L is the number of codons, an wk is calculated as per formula (2):

where RSCUmax is the highest codon usage frequency for synonymous codons in highly expressed reference 
gene and RSCUi is the relative frequency of the unified codon of the first codon encoding the corresponding 
amino acids.

Protein expression. The original gene and optimized codons of PTP4A3 and FALVAC-1 were subcloned 
into the pET28a(+) vector with a hexahistidine affinity tag fused to the N terminus and transformed into 
E.coli(BL21(DE3)). All plasmids were ordered from Genewiz (www.genew iz.com/). Upon bacterial growth to 
an optical density of 0.6–0.8 at 600 nm in lysogeny broth containing 50 µg/ml kanamycin at 37 °C in a shaker at 
220 rpm, induction was carried out at 16 °C using 0.2 mM isopropyl-b-D-thiogalactoside (IPTG), and growth 
was continued at 16 °C for approximately 18 h. The cells were harvested by centrifugation and stored at − 80 °C 
or used for the subsequent steps.

Harvested cells were resuspended in lysis buffer (PBS). M protease inhibitor (phenylmethanesulfonyl fluo-
ride, PMSF) was added to the cell sample before lysis, and then, the cell lysate was obtained by ultrasonication. 
The cell lysate was centrifuged at 15,000 rpm for 45 min, after which the supernatant was collected. The protein 
concentration was determined by the Beyotime BCA Protein Assay Kit.

Then, a western blot analysis was carried out on the extracted samples, with anti-His as the primary antibody. 
Primary antibody incubation was followed by probing with the corresponding secondary antibody, and the blot 
was developed using Image Lab Touch Software.
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