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Blood RNA signatures predict 
recent tuberculosis exposure 
in mice, macaques and humans
Russell C. Ault1,2,3,4, Colwyn A. Headley1,2,3, Alexander E. Hare3,4, Bridget J. Carruthers2, 
Asuncion Mejias5 & Joanne Turner1,2*

Tuberculosis (TB) is the leading cause of death due to a single infectious disease. Knowing when 
a person was infected with Mycobacterium tuberculosis (M.tb) is critical as recent infection is 
the strongest clinical risk factor for progression to TB disease in immunocompetent individuals. 
However, time since M.tb infection is challenging to determine in routine clinical practice. To define 
a biomarker for recent TB exposure, we determined whether gene expression patterns in blood RNA 
correlated with time since M.tb infection or exposure. First, we found RNA signatures that accurately 
discriminated early and late time periods after experimental infection in mice and cynomolgus 
macaques. Next, we found a 6-gene blood RNA signature that identified recently exposed individuals 
in two independent human cohorts, including adult household contacts of TB cases and adolescents 
who recently acquired M.tb infection. Our work supports the need for future longitudinal studies 
of recent TB contacts to determine whether biomarkers of recent infection can provide prognostic 
information of TB disease risk in individuals and help map recent transmission in communities.

Tuberculosis (TB) is the leading killer due to a single infectious disease, causing over 1 million deaths per  year1. 
Despite renewed efforts to combat the TB epidemic, the current decline in TB incidence of 1.5% per year has 
fallen far short of the needed 4–5% annual decline to meet the 2020 goals for the World Health Organization’s 
(WHO) End TB  Strategy2. While approximately ¼ (1.7 billion) of the world’s population has been infected with 
its causative agent Mycobacterium tuberculosis (M.tb), only 5 to 10% of infected individuals will develop active TB 
disease during their lifespan, with the remainder controlling the infection in a state known as latent TB infection 
(LTBI)3,4. Recent global workshops have reemphasized targeting transmission of TB as critical to accelerating 
efforts to reduce the burden of TB disease throughout the  world5, 6. Two critical areas for understanding and 
preventing TB transmission are knowing where and when transmission occurs, and preventing infected indi-
viduals from progressing to active TB disease and thereafter transmitting the bacteria via the airborne  route7,8.

Historically, successful control of TB in nations has followed from a reduction in transmission to very low 
 levels7,9. Studies of close contacts, and in particular household contacts, of active TB cases are a critical tool for 
identifying new active TB cases from recent transmission and targeting therapy for preventing both subsequent 
disease and transmission. However, in high incidence countries where most of the burden of disease resides, 
more than 80% of TB transmission occurs outside of the  home10,11. Genotyping M.tb isolates from active TB 
cases coupled with comparative genomic analysis has permitted population-level identification of hotspots of 
localized transmission, but these data are mostly available retrospectively and thus do not allow real-time moni-
toring of TB transmission in a community, particularly in areas of high  incidence12. It thus remains unknown 
whether with current methods TB transmission can be appreciably disrupted in high incidence settings. This 
is in contrast to low incidence settings where both contact studies and targeting specific higher incidence com-
munities have been  effective13.

Recent infection is the single strongest clinical risk factor for developing active TB disease in immunocom-
petent persons, who comprise the vast majority of LTBI and active TB  cases14–19. However, time since exposure 
or infection is very difficult to ascertain in the clinical setting, and its estimate is often  unreliable20. Moreover, 
there are no known validated biomarkers of recent exposure or infection beyond conversion on a tuberculin skin 
test (TST) or IFN-γ release assay (IGRA), which requires longitudinal sampling. At the same time, treating all 
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LTBI + individuals in areas of high TB incidence to prevent the development of active TB is not feasible and would 
entail unnecessary risk to the vast majority of LTBI + individuals who will never develop disease. Mass LTBI treat-
ment also poses a theoretical risk of promoting drug resistant M.tb strains. Prospective gene expression-based 
(RNA) signatures of risk of developing active TB disease have been recently identified for LTBI + adolescents and 
adult healthy household contacts (HHCs)21–23. While the positive predictive value of these RNA signatures of risk 
of active TB is higher than TST/IGRAs, they are still significantly less than ideal: to prevent one case of active 
TB, ~ 37-64 LTBI + people not at risk need to be treated (vs. ~ 85 for TST/IGRA)21–24. It is currently unknown 
whether these RNA signatures correlate with time since infection. Importantly, their positive predictive value 
for TB progression and the number needed to treat could be dramatically improved if combined with accurate 
knowledge of time since infection in the same individual.

Building on this prior work, we assess RNA expression as a potential biomarker of recent exposure or infection 
with M.tb. Using our murine data, and recently published studies in cynomolgus macaques and  humans21,22,25,26, 
we show for the first time that RNA expression predicts recent infection/exposure in all three species. Moreover, 
in both macaques and humans, these RNA signatures of recent infection/exposure are independent of the recently 
identified signatures of individual prospective TB disease risk. Our work supports the need for future longitu-
dinal studies of recent TB contacts to determine whether biomarkers of recent infection can provide prognostic 
information of TB disease risk in individuals and help map recent transmission in communities.

Results
Blood genome-wide RNA expression accurately discriminates early vs. late M.tb infection 
time periods in C57BL/6 mice. While several published studies have made genome-scale measurements 
of the in vivo host response to M.tb at several time points in  mice27–29, none have addressed the question of 
whether these parameters can predict infection time point. To determine whether it is possible to predict time 
since M.tb infection in mice via a blood RNA signature, we measured genome-wide RNA expression in whole 
blood in C57BL/6 mice following low dose aerosol M.tb infection. Mouse cohorts were sacrificed every month 
post-infection for 5 months (n = 4 per time point) along with age-matched uninfected C57BL/6 mice (n = 1–2 
per time point). While M.tb colony forming units (CFUs) were not measured, it is well characterized that in this 
mouse strain lung bacterial burden increases exponentially from the day of M.tb infection until the peak of the 
adaptive immune response in the lungs at 1 month post-infection, thereafter remaining stable for approximately 
300 days30–32. Thus, lung CFUs do not predict time since infection in this model after one month post-infection.

Principle component analysis (PCA) of our whole dataset revealed that the blood transcriptional state of M.tb 
infection during the first five months was distinct from that of uninfected mice, with uninfected and infected 
mice being entirely separable along the  1st principle component (21.8% of data variance; Fig. 1A). When we per-
formed PCA on only M.tb infected mice, we found that early (30–60 days) and late (90–150 days) time periods 
were transcriptionally distinct, being separable along the 1st and 2nd principle components (18.8% and 16.5% 
of data variance, respectively; Fig. 1B). Only 1 mouse from the 60 day time point clustered with the late time 
period along the 2nd principle component.

To find a predictive RNA signature of time since M.tb infection, we used the Random Forest Classifier 
algorithm, without hyperparameter tuning due to low sample size, to predict early (30–60 days) versus late 
(90–150 days) infection time period. This analysis treated time as a binary variable. Using out-of-bag predictions 
(approximately threefold cross-validation) to obtain an unbiased estimate of predictive performance, we found 
that we could predict early versus late infection time period with 0.99 area under the curve (AUC) (95% CI 
0.96–1.00, P = 1.6 × 10–5; 87.5% sensitivity, 91.7% specificity for early infection; Fig. 1C). To assess whether each 
month post-infection could be predicted accurately, thus treating time as a continuous variable, we performed 
Random Forest Regression with threefold cross-validation and confirmed that days 30 and 60 were predicted 
to be earlier time points than days 90–150 (Fig. 1D). Days 90–150 were not resolved. Low group size precludes 
confident quantification of the degree to which days 30 and 60 can be separated. Probes used in these models as 
well as their feature importance for the regression model are shown in Table S1. We further assessed our classi-
fier model’s predictions on uninfected mice, which showed their similarity to the late (90–150 days) time points 
(Figure S1). Taken together, these data indicate that we can broadly discriminate early and late M.tb infection 
in this cohort of C57BL/6 mice based on the whole blood transcriptomic response. Treating time as a binary 
variable (Fig. 1C) or as a continuous variable (Fig. 1D) gave similar results.

Blood RNA signature discriminates early versus late M.tb infection time periods in cynomol-
gus macaques. While inbred mice are a suitable model for studying molecular components of the immune 
response to M.tb, they do not replicate the variable clinical outcomes of M.tb infection in humans. Cynomolgus 
macaques, an outbred non-human primate model for TB, do exhibit heterogeneity in clinical outcomes, with 
approximately half of macaques progressing to symptomatic active TB disease that can be verified radiologi-
cally and bacteriologically within the first 6 months of infection, and the remainder controlling the infection 
in a latent  state33,34. The lung pathology of M.tb infection in cynomolgus macaques also better replicates several 
features of human lung pathology than  mice34.

To determine whether our findings in the murine model translated to the more human-like cynomolgus 
macaque model of M.tb infection, we mined publicly available data from a longitudinal study of M.tb infection 
in  macaques25. In that study, cynomolgus macaques were infected with a low dose of M.tb in the lung, and their 
blood was sampled at 11 time points post-infection and 2 time points pre-infection for genome-wide RNA 
expression analysis. Importantly, while the study’s authors provided a broad, unsupervised analysis of their data 
according to time periods of infection, they did not assess our hypothesis that blood genome-wide RNA expres-
sion predicts time period or time point post-infection25. To test our hypothesis and allow comparison with our 
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mouse data and recently available human data, we restricted our analysis to 8 time points from 20 days through 
180 days (6 months) post-infection. To permit comparison of different computational models and allow a final 
unbiased estimate of predictive performance, we randomly divided the 38 macaques from this study into a train-
ing set and a test set, keeping the ratio of macaques with latent and active TB balanced in both groups (Figure S2).

Using ninefold cross-validation on the training set, we found that Regularized Logistic Regression, a linear 
method with regularization terms to reduce the number of probes in the signature, was not inferior to several 
nonlinear classification methods in predicting early (20–56 days) versus late (90–180 days) infection time period 
(Figure S3). We thus chose Regularized Logistic Regression to find a predictive RNA signature of time since 
M.tb infection in cynomolgus macaques. We found that this model predicted early (20–56 days) versus late 
(90–180 days) infection time period with an AUC of 0.78 in the training set (95% CI 0.72–0.85, P = 5.6 × 10–13; 
ninefold cross-validation; Fig. 2A), and an AUC of 0.81 in the test set (95% CI 0.71–0.91, P = 1.6 × 10–7; Fig. 2A).

Importantly, our model was trained and tested on macaques irrespective of their present or future TB disease 
status. If our model partially predicted disease status rather than only time period post-infection, the propor-
tion of samples from macaques with active disease would differ between predicted and actual early time period 
samples. However, we found that there was no change in the proportion of samples from macaques with active 

Figure 1.  Blood genome-wide RNA expression discriminates early versus late M.tb infection time periods in 
C57BL/6 mice. Principle component analysis of genome-wide RNA expression measured via microarray in 
(A) all mice (n = 6 uninfected mice, n = 20 M.tb infected mice) stratified by infection status and (B) only M.tb 
infected mice stratified by time period post-infection. (C) ROC curve for out-of-bag performance of Random 
Forest Classifier predicting time period post-infection (1–2 months versus 3–5 months; P from Wilcoxon test, 
95% confidence interval shown). (D) Random Forest Regression out-of-bag predictions of monthly time point 
post-infection. Fit curve calculated via the Loess method with 95% CI shown.
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Figure 2.  Blood RNA signature discriminates early versus late M.tb infection time periods in cynomolgus 
macaques. (A) ROC curves for Regularized Logistic Regression prediction of time period post-infection 
(20–56 days versus 90–180 days) from RNA expression in cynomolgus macaques on ninefold cross-validation 
in the training set (blue curve; n = 107 early time period samples, n = 103 late time period samples) and final 
model prediction on test set (red curve; n = 44 early time period, n = 40 late time period) (P from Wilcoxon 
test). (B) Comparison between early (20–56 days) (n = 107 train, n = 44 test) versus predicted early (n = 104 
train, n = 50 test) time period samples in proportion of samples from macaques that develop active TB (P from 
Fischer’s Exact test). Regularized Linear Regression predictions of time point post-infection for (C) ninefold 
cross-validation in the training set (n = 210) and for (D) final model prediction on the test set (n = 84). (E–F) 
Predictions from models trained and evaluated only on samples from the first 90 days post-infection (n = 134 
train, n = 55 test). Boxplots represent medians with interquartile ranges for the predictions at each time point 
(best fit line shown, P from Pearson test).
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disease in the predicted early time periods relative to the actual early time periods, in both the training and test 
sets (P = 1.0, P = 1.0 respectively; Fig. 2B). This was also true focusing on late time period predictions (P = 1.0 
training, P = 1.0 test; data not shown).

Next, to assess whether each month post-infection could be predicted in cynomolgus macaques, treating 
time as a continuous variable, we performed Regularized Linear Regression with ninefold cross-validation on 
the training set and confirmed that days 20–56 were predicted as earlier time points than days 90–180, in both 
the training set and in the test set (Fig. 2C–D). As in our murine model analysis days 90–180 were not resolved. 
Quantitatively, the median absolute error (MAE) of the model was 38.5 days (Pearson’s r = 0.48, P = 1.6 × 10–13) 
on the training set and 35.7 days (r = 0.54, P = 1.1 × 10–7) on the test set. Probes selected and used by the final 
trained regression model to predict in the test set are shown in Table S2. To assess whether we could predict 
specific time point of infection within the first 3 months, as suggested by our murine data, we trained a model 
on only time points from 20–90 days (Fig. 2E–F). The MAE of this model was 15.8 days on the training set and 
14.3 days on the test set (r = 0.52, P = 1.9 × 10–10 and r = 0.46, P = 4.7 × 10–4, respectively).

We further assessed our early versus late classifier model’s predictions on the pre-infection and 3–10 day time 
points (Figure S4). This showed that the pre-infection and 3–10 day time points were more similar to the late 
(90–180 days) time period than the distinct early (20–56 days) time period (Figure S4).

Taken together, these data indicate that we can broadly discriminate early and late M.tb infection in this cohort 
of cynomolgus macaques based on the whole blood transcriptomic response, and that we can moderately dis-
criminate between the first two months of infection. These predictions do not depend on disease status, and the 
accuracy of the predictions is quantitatively lower in cynomolgus macaques than in C57BL/6 mice, as reflected 
by the AUC analyses. Treating time as a binary variable (Fig. 2A) or as a continuous variable (Fig. 2C–F) gave 
similar results.

Blood RNA expression of 250 genes predicts time since active TB exposure in humans. We 
next sought to determine whether our findings in mice and cynomolgus macaques could translate to humans. 
Whereas the day of infection is known in animal models, the precise time of exposure resulting in infection is 
difficult to determine in humans, even in careful clinical studies. One surrogate for time of infection in humans 
is time of IGRA or TST conversion in people who were known to be IGRA/TST negative previously. This would 
synchronize a human study cohort to the time of an initial systemic T cell response to M.tb. To test this hypoth-
esis we accessed public data from South African adolescents who acquired latent M.tb infection during longitu-
dinal blood sampling every 6 months26. We found that Regularized Logistic Regression was unable to predict the 
first time point of known IGRA conversion from 6 months post-first known IGRA conversion (0.54 AUC, 95% 
CI 0.27–0.82, P = 0.64 on test set; Fig. 3A). Notably, the biological event of actual IGRA conversion in this cohort 
could have occurred anytime between the first time point of IGRA positivity and the preceding 6 months. Given 
our findings in mice and macaques that the RNA signature of time since M.tb infection occurs within a brief 
window of 2–3 months, we interpret these findings to mean that sampling blood every 6 months in humans is 
unlikely to constitute a cohort where actual time of IGRA conversion is synchronized sufficiently to discover an 
RNA signature of time since IGRA conversion.

Another study design that could identify RNA correlates of recent infection in humans is a household contact 
study wherein healthy contacts of active TB cases are enrolled within a certain time from the date of diagnosis of 
the active TB case and sampled longitudinally. Important limitations of this design that could reduce the power 
to detect RNA correlates of recent infection are that the precise time of infection is not known and individuals 
who are IGRA + at enrollment may have been infected either from the present exposure or in the more distant 
past. Cognizant of these limitations, we accessed publicly available data from the Grand Challenges 6-74 (GC6-
74) study of healthy household contacts (HHCs) of patients with active pulmonary  TB22. HHCs in this cohort 
were enrolled within 2 months of the diagnosis of the active TB index case and had blood samples drawn at 
baseline, 6 months and/or 18 months post-enrollment22. Because our mouse and macaque analysis suggests 
that blood transcriptional changes are most prominent in an early 3 month window post-infection, we focused 
our first analysis on the baseline and 6 month time points. This included data from Gambian and Ethiopian 
cohorts but excluded data from the South African cohort because 6 month time points were not available for 
South  Africa22. We used the same training/test split as the authors in the Gambian cohort but randomly split the 
Ethiopian cohort 50/50 between our training and test sets. Importantly, with this training/test split and our data 
pre-processing, we could predict risk of TB with 0.72 AUC (95% CI 0.60–0.83, P = 1.6 × 10–4; data not shown) 
in the training set by tenfold cross-validation and 0.70 AUC (95% CI 0.53–0.88, P = 0.0071; data not shown) in 
the test set using Regularized Logistic Regression. From the GC6-74 and the Adolescent Cohort Study (ACS) 
we used the RISK4 genes (BLK, CD1C, GAS6 and SEPT4), the post-hoc selected C1QC, TRAV27, ANKRD22, 
OSBPL10 genes and the 16 correlate of risk (COR) predictive genes together for this  analysis21,22. When we used 
these same genes to train a model to predict time since TB exposure, we obtained no predictive performance, 
whether the model was trained with these gene sets separately or together (P > 0.05 for all test set predictions; 
Fig. 3B). This suggests that genes selected for optimal prediction of prospective TB risk do not change across 
these two time points post-exposure.

To find a predictive RNA signature of time since TB exposure in these data, and as the study authors per-
formed for TB risk prediction, we used the Wilcoxon test on the training set to select transcripts that differed in 
expression between baseline and 6 month time  points22. Using Regularized Logistic Regression we found that 
these genes predicted baseline versus 6 month time points with 0.90 AUC (95% CI 0.84–0.96, P = 1.9 × 10–13; 
tenfold cross-validation; Fig. 3C) in the training set and 0.69 AUC (95% CI 0.56–0.81, P = 0.0039; Fig. 3C) in 
the test set. We further used the final genes selected by the model (250 genes, Table S3) on the training set to 
train a model to predict risk of TB. As expected, these genes exhibited no direct predictive performance for risk 
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of TB on the training or test sets (P = 0.85, P = 0.07, respectively; Fig. 3D). In summary, our findings with the 
household contact study design in humans parallel the results in macaques in that we can predict broad time 
period post-exposure via the whole blood transcriptomic response. Moreover, this transcriptomic signature 
of time period post-exposure to an active TB case is independent of the transcriptomic signature of risk of TB 
recently identified in the GC6-74 and ACS  studies21,22.

Figure 3.  Blood RNA expression of 250 genes predicts time since active TB exposure in humans. (A) ROC 
curves for prediction of time since first known IGRA + (0 vs. 6 months) in South African adolescents who 
acquire M.tb infection for tenfold cross-validation in the training set (blue curve; n = 17 0 month samples, n = 21 
6 month samples) and final model prediction on the test set (red curve; n = 10 0 month, n = 9 6 month) using 
Regularized Logistic Regression. (B) ROC curves for Regularized Logistic Regression prediction of time since 
active TB exposure (baseline vs. 6 months post-enrollment) in GC6-74 Gambia and Ethiopia test set (n = 37 
baseline samples, n = 31 6 months samples) using expression of genes from published signatures that predict 
prospective risk of active TB. (C) ROC curves for Regularized Logistic Regression prediction of time since 
active TB exposure for tenfold cross-validation on the Gambia and Ethiopia training set (blue curve; n = 67 
baseline, n = 48 6 months) and for final model prediction (contains 250 genes) on the Gambia and Ethiopia test 
set (red curve; n = 37 baseline, n = 31 6 months). (D) ROC curves for prediction of prospective risk of TB for 
tenfold cross-validation on the Gambia and Ethiopia training set (blue curve; n = 67 baseline, n = 48 6 months) 
and for final model prediction on the test set (red curve; n = 37 baseline, n = 31 6 months) using the 250-gene 
set that predicted time since active TB exposure. P values for all ROC curves are from Wilcoxon test, and 95% 
confidence intervals are shown.
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Time since TB exposure in humans is associated with alteration in CD4 + T cell proportion 
and immune activation pathways. Cell-type deconvolution algorithms have recently been used with 
genome-wide RNA expression data to help identify changes in immune cell proportions in the blood that are 
associated with TB disease, prospective TB disease risk and treatment  success26,35. To identify immune cell popu-
lations that are associated with time since TB exposure in the GC6-74 study, we used the leukocyte expression 
signature matrix ‘immunoStates’ and linear regression to infer leukocyte proportions for each subject’s  sample35. 
We found that the proportion of CD4 + α/β T cells was increased at 6 months versus baseline time point in the 
Gambian and Ethiopian cohorts (P = 0.0079; linear mixed model; Fig. 4A), but was not significantly changed at 
18 months (P = 0.20 vs. baseline; linear mixed model, included South African cohort; Fig. 4B). We saw no signifi-
cant differences in NK cell proportion over time in the Gambian and Ethiopian cohorts (Fig. 4C–D). Likewise, 
no other cell types estimated by the ‘immunoStates’ signature matrix showed significant differences over time in 
these cohorts (P > 0.05, linear mixed model, data not shown). This result with CD4 + α/β T cells and NK cells is 
consistent with the conclusion that the RNA signature of time since TB exposure is independent from the RNA 
signature of prospective TB risk, since both T cells and NK cells are known to decrease in circulation in active 
TB  disease26,36.

Our RNA signature of baseline versus 6 month time points post-exposure included 250 genes selected by 
Regularized Logistic Regression (Table S3). We utilized Ingenuity Pathway Analysis (IPA) to identify pathways 
associated with these genes. The majority of enriched canonical pathways (-log(p value) > 2) were associated 
with immune cell signaling, including B cells (B cell receptor and PI3K signaling), T cells (T cell receptor, PKCθ , 
regulation of IL-2 expression, 4-1BB and CD28 signaling), cytokines (IL-6, IL-15, IL-12, TNF, IL-8, IL-10 and 
IL-17A), innate immune cells (dendritic cell maturation and LPS-stimulated MAPK signaling) and humoral 
immunity (Fc Epsilon RI Signaling) (Fig. 4E, Table S4). Other enriched canonical pathways were related to cel-
lular injury and toxicity (apoptosis), metabolism, nervous system signaling, PPAR signaling, cell cycle regulation 
and intracellular & second messenger signaling (Table S4). Considering the overall direction of change in the 
immune pathways between 6 month versus baseline time points, the upregulation of several pro-inflammatory 
signaling pathways (IL-6, IL-8, FLT3 signaling, PI3K signaling in B Lymphocytes and Dendritic Cell maturation) 
and decrease in anti-inflammatory signaling (PPAR signaling) suggests that an increase in peripheral blood 
immune activation occurs at the 6 month time point after exposure (Fig. 4E).

To compare transcriptional modules altered in humans to those altered in mice and macaques, we used the 
recently defined disco score to identify concordantly and discordantly altered modules between these  species37. 
Several modules related to T cells and NK cells were enriched (adjusted P < 0.05) in each pairwise comparison 
between two species (human vs. mouse, human vs. monkey, and monkey vs. mouse) (Fig. 5). Several B cell-related 
modules were uniquely concordantly regulated between macaques and mice (Fig. 5).

Application of reduced 6-gene expression signature of time since active TB exposure to ado-
lescent M.tb infection acquisition cohort confirms its identification of recent infection in 
humans. Implementation of our newly discovered RNA signature of time since active TB exposure using 
qRT-PCR would require a more parsimonious gene set than the 250 genes heretofore described. To find a 
reduced gene signature we ran a forward search using the MetaIntegrator R  package38. This method identified 6 
genes, RP11-552F3.12, PYURF, TRIM7, TUBGCP4, ZNF608 and BEAN1, that recapitulated the performance of 
the 250 gene signature on baseline versus 6 month time point discrimination with 0.86 AUC (95% CI 0.80–0.93, 
P = 1.7 × 10–11; Fig. 6A) in our GC6-74 training set and 0.68 AUC (95% CI 0.55–0.81, P = 0.0055; Fig. 6A) in 
the test set. Independent validation of this signature requires a cohort wherein recent M.tb infection is docu-
mented and time points are available to test whether the signature allows discrimination between recent and 
more remote infection. While the cohort of South African adolescents who acquired latent M.tb infection did 
not permit discovery of an RNA signature of recent M.tb infection, we reasoned that the whole cohort would be 
powered for validation of our signature discovered in the GC6-74 household contact study  design26. Three genes, 
TRIM7, ZNF608, TUBGCP4, from our 6-gene signature were represented by detected probes in the microarray 
used in this study. These 3 genes discriminated the first time point of known IGRA conversion from all pre-
conversion time points (6 months and 12 months prior to known conversion) with 0.72 AUC (95% CI 0.58–0.87, 
P = 0.0030; Fig. 6B). These 3 genes likewise discriminated the first time point of known IGRA conversion from 
all sampled time points (6, 12 months prior to conversion and 6, 12 months after known conversion) with 0.68 
AUC (95% CI 0.56–0.81, P = 0.0039; Fig. 6B). Figure S5 shows the trajectory of the 3 gene score over time, being 
highest at the first time point of known IGRA conversion.

Given that time since active TB exposure is the single strongest clinical risk factor for developing TB disease 
in immunocompetent persons, the finding that time since exposure and risk of TB, as predicted by the blood 
transcriptomic response, are independent in the GC6-74 study of healthy household contacts suggests that these 
signatures could be combined to possibly better predict risk of TB when the time of exposure is  unknown17,19,20. 
While the GC6-74 study was not powered for this particular secondary analysis, we assessed whether the high-
est 6-gene score during longitudinal sampling allowed discrimination of subjects who did or did not progress 
to active TB disease during study follow-up. The highest 6-gene score did not discriminate progressors from 
non-progressors in the test set, whether the subjects were from South Africa (AUC 0.51, 95% CI 0.40–0.63, 
P = 0.60; Fig. 6C) or from Gambia or Ethiopia (AUC 0.63, 95% CI 0.46–0.80, P = 0.095; Fig. 6C). The same result 
was observed in the ACS cohort of IGRA + adolescents with unknown exposure history (AUC 0.55, 95% CI 
0.43–0.66, P = 0.78; Fig. 6C).

We additionally tested whether the 6-gene signature discriminated early from late time periods post-infection 
as defined in our analysis of animal models of M.tb infection. The 5 genes represented by detected probes of 
homologous genes in the mouse microarray data discriminated the early (30–60 days) versus late (90–150 days) 
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Figure 4.  Time since TB exposure in humans is associated with alteration in CD4 + T cell proportion and 
immune activation pathways. Changes in CD4 + T cell percentages (A,B) and NK cell percentages (C,D) in 
GC6-74 healthy household contacts cohort at baseline (n = 104 in A,C; n = 272 in B,D), 6 month (A,C; n = 79) 
and 18 month (B,D; n = 64) time points after active TB exposure were determined by cell-type deconvolution 
(P from linear mixed model). Boxplots represent medians with interquartile ranges. (E) Top immunity related 
enriched canonical pathways in the 250-gene RNA signature of time since exposure to active TB index case 
(6 months vs. baseline) by IPA (P from Fisher’s Exact test).
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infection time period with 0.80 AUC (95% CI 0.60 – 1.00, P = 0.012; Fig. 6D). Only 1 gene was represented by a 
detected probe in the macaque microarray data, and it alone did not discriminate the early versus late infection 
time period (0.52 AUC, 95% CI 0.45 – 0.58, P = 0.70; Fig. 6D). Of note, this study utilized a human microarray 
platform for the macaque samples, which may have contributed to reduced measurability of the macaque homo-
logues to these human  genes25. Because of the different measurement platforms between the animal and human 
data (microarray vs RNAseq) we could not directly apply our human 250 gene signature to the animal data.

Discussion
Early clinical studies in the pre-antibiotic era in the relatively isolated Faroe Islands shed light on the clinical 
features of primary infection with M.tb in humans, which often include fever, elevated erythrocyte sedimentation 
rate, X-ray abnormalities and, less often, erythema  nodosum39,40. With time of exposure to an active TB case pin-
pointed within a two week period, and sometimes to a single day, Poulsen determined that these clinical features 
accompany and/or follow TST conversion, which occurs within 6 weeks of  exposure14,39,40. While these clinical 
features of initial M.tb infection are transient and not specific to M.tb infection, a method to determine that a 
person is currently in the first 1–2 years post initial infection would have great prognostic value for near-future 

Figure 5.  Enriched transcriptional modules are concordantly or discordantly regulated during recent M.tb 
exposure or infection between mice, macaques or humans by disco analysis. P from CERNO statistical test.
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TB disease and could allow real-time geospatial mapping of recent TB transmission in  communities14,15,17,39,41–43. 
In our proof of concept analysis, we sought to determine whether it is possible to develop an RNA-based blood 
test to detect recent exposure or infection with M.tb. For TB disease risk prediction, we hypothesized that such 
a test could complement the recently developed RNA signatures of TB disease risk that are based on detecting 
incipient TB, which is the asymptomatic phase of early TB disease during which pathology progresses gradually 
before full-blown clinical  TB21,22,44,45. Because RNA signatures of incipient TB are only sensitive in the 1–3 months 
preceding symptomatic TB diagnosis, their current proposed use involves serially screening infected individuals 

Figure 6.  Application of reduced 6-gene signature of time since active TB exposure to adolescent M.tb infection 
acquisition cohort confirms its identification of recent infection in humans. (A) ROC curves for 6-gene score 
prediction of time since active TB exposure in the Gambia and Ethiopia training set (blue curve; n = 67 baseline 
samples, n = 48 6 months samples) and for the Gambia and Ethiopia test set (red curve; n = 37 baseline, n = 31 
6 months). (B) ROC curves for discrimination between time of first known IGRA + and all pre-conversion 
time points (blue curve; n = 27 0 month, n = 24 pre-conversion) and between time of first known IGRA + and all 
other time points (green curve; n = 27 0 month, n = 24 pre-conversion and n = 31 6 or 12 months after known 
conversion) in South African adolescents who acquire M.tb infection using 3-gene score from genes detected in 
microarray data. (C) ROC curves for prediction of prospective risk of TB using highest 6-gene score observed 
per individual in the ACS cohort (n = 74 nonprogressors, n = 31 progressors), GC6-74 Gambia and Ethiopia test 
set (n = 49 nonprogressors, n = 11 progressors) and GC6-74 South Africa cohort (n = 141 nonprogressors, n = 39 
progressors). (D) ROC curves for discrimination of early and late time periods post-infection in mice (blue 
curve; n = 8 early mice, n = 12 late mice) and macaques (green curve; n = 151 early samples, n = 143 late samples) 
using genes from the 6-gene signature that were detected in the respective microarrays. P values for all ROC 
curves are from Wilcoxon test, and 95% confidence intervals are shown.
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on a regular  basis45. We envision that a blood test for recent infection could be used concurrently with signa-
tures of incipient TB at initial testing to aid in the decision to start treatment or to rule out further screening in 
individuals who are initially negative for incipient TB. Using our mouse data and published macaque data, we 
have demonstrated a highly accurate RNA signature of recent infection with M.tb (1–2 vs. 3–5/6 months post-
infection). Using the GC6-74 cohort of HHCs of patients with active pulmonary TB, we discovered 250-gene 
and 6-gene human RNA signatures of recent exposure (0–2 vs. 6–8 months post-diagnosis of index case) that 
validated within a held-out test  set22. Using an independent cohort of adolescents who acquired M.tb infection 
during 6-month longitudinal sampling, we demonstrated that the 6-gene signature could discriminate the first 
known time point of IGRA conversion from pre-conversion time points and from 6–12 months later with modest 
accuracy (0.68 AUC)26. However, this 6-gene signature was unable to provide prognostic information of TB risk 
in the GC6-74 cohort or the ACS cohort. The incomplete time point sampling of most individuals, and 6-month 
sampling likely reduced the power to find an association between our 6-gene signature score and TB risk in these 
two studies. Nevertheless, we believe the sampling constraints and target populations of these studies, adults who 
are HHCs and adolescents with LTBI of unknown exposure history, both in highly endemic areas, are mostly in 
line with what may be feasible for applying transcriptional signatures of TB risk for targeted treatment to reduce 
TB  incidence45. Given that early blood transcriptional changes occurred within a short 3 month window in our 
mouse and macaque analyses, and the human data analyzed are not inconsistent with this brief timeline, we 
believe that blood RNA signatures for recent M.tb infection are too brief in duration to yield a useful biomarker 
to improve prediction of TB risk for targeted preventive therapy. Nevertheless, the finding that all three species 
exhibit an early blood transcriptional response to M.tb infection is highly novel and has implications for further 
research into common and different early immune responses to M.tb among these species.

Because the vast majority of TB disease burden can be accounted for epidemiologically by recent infection 
(past 1–2 years), we hypothesize that, on average, the factors influencing progression of disease have resolved 
by 2 years post initial infection in  humans3, 14. Therefore, we hypothesize that a biological correlate of recent 
infection that has the longest duration during that time when the outcome of early disease progression has 
not been resolved would have the highest chance of being useful as a complement to tests for incipient TB in 
predicting TB risk. Importantly, most or all biological correlates of recent infection will not play a causal role 
in determining who will or will not progress to TB disease because most infected individuals never develop TB 
disease. This is supported by the fact that our RNA signature of recent infection was independent of known 
RNA signatures of TB risk. Our RNA signature of recent infection is likely characteristic of a very early phase 
of infection when many factors defining the outcome of infection have yet to resolve. A biosignature of recent 
M.tb infection that is useful in predicting individual TB disease risk will derive its utility not from showing who 
among recently infected individuals will progress to TB disease but rather by discriminating between recently 
infected individuals who are still at some risk of TB disease and those infected remotely for whom the factors 
driving disease progression have resolved. The longer the duration of a biological correlate of recent infection, 
the higher sensitivity it will have for identifying recently infected individuals.

Our estimated cell type and pathway analyses suggest that both cellular and molecular signatures of immune 
activation associated with recent exposure and could be interrogated by other modalities such as epigenetics. 
Immune cell differences between recently acquired and remotely acquired infection have been reported by others 
in single cohorts without longitudinal  sampling20,46. The high enrichment of B cell signaling in our signature is 
interesting, and a recent case control study in a single cohort showed that several IgG and IgA antibodies to M.tb 
antigens strongly discriminated (AUC > 0.90) active TB contacts who converted on TST from non-converters 
both at first known conversion and 3 months  prior47.

Our analyses and these considerations suggest that sampling IGRA-, untreated HHCs every month (or more 
frequently) for one to two years, starting as soon as possible after the diagnosis of their respective index case and 
determining IGRA conversion events, would allow for the discovery of biosignatures of recent M.tb infection 
that could be useful for helping predict TB disease risk. Follow-up in such a cohort for TB progression would 
allow better assessment of how signatures of recent infection and signatures of incipient TB could be combined 
to improve TB risk prediction. The addition of chest X-rays with deep machine learning analysis could be useful 
to discover heretofore unknown, specific radiogenomic features of recent infection or incipient  TB48,49. After 
IGRA conversion, staggered sampling at different times could reduce the study’s burden on individual subjects 
and allow more precise estimation of the duration of any biomarker. Most follow-up in such a study would have 
to be performed on those who refuse preventive treatment, as treatment would need to be offered because recent 
infection is precisely documented. Another potential benefit of such a study is that validated biomarkers that 
associate strongly with TST/IGRA conversion but precede conversion, such as currently unvalidated IgG and 
IgA markers, could be used to identify M.tb infection before TST/IGRA conversion and thus reduce the burden 
of follow-up of recent contacts in TB control programs and potentially help reduce LTBI treatment  time47.

If deployed in population screening efforts, a test for recent M.tb infection could also allow real-time geo-
spatial mapping of recent TB transmission in communities. This could greatly help the application of current 
control methods to reduce TB transmission and disease in high incidence settings. While it is possible that our 
current 6-gene signature of recent M.tb infection could be evaluated in the future for this purpose, we think 
it would be more prudent to first find biomarkers of recent M.tb infection that have a longer duration and are 
useful for individual TB risk prediction. Being predictive of individual TB risk is more difficult to achieve than 
correlation with recent infection, as we have shown. Both applications are related, because the better a test for 
recent infection associates with disease progression in an otherwise unselected population of previously infected 
individuals, the more sensitive it will be for contact tracing and transmission studies. Nevertheless, biomarkers 
of varying duration could be jointly useful for the application of mapping recent transmission.

Our results in mice, macaques and humans, together with recent literature, suggest that future longitudinal 
studies of HHCs may be successful at identifying more accurate biomarkers of time since M.tb infection in 
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humans. Our study represents one of only a handful of studies since Poulsen’s early work showing that there are 
biological events in the early human response to M.tb infection that can be reproducibly  measured39. Future 
biomarker studies may enable the study of early events of infection in humans both routinely and ethically and 
permit the identification of immunological or other biological events that determine whether an exposed per-
son will develop TB disease or control the  infection5,50–52. This could greatly aid vaccine development for TB as 
no correlates of protection for TB are yet  known53. We also expect that more accurate biomarkers of time since 
M.tb infection will be excellent tools to help better understand the human phenotypes of IGRA reversion and 
persistent resistance to IGRA  conversion51,54.

Our current analysis has some limitations. Because most transmission occurs outside the household contact 
setting, many individuals in the GC6-74 study were TST + at enrollment (~ 51.4% in Ethiopia, ~ 36.3% in The 
Gambia), and follow-up TST in this study were incomplete, it is highly likely that many, and possibly the majority, 
of contacts in this study were not infected or re-infected from their index TB  case10,11,55. However, the 6-gene RNA 
signature discovered in this cohort was validated in adolescents where recent M.tb infection was documented 
via IGRA conversion in 100% of study  participants26. Finally, our current analysis excluded HIV co-infection.

Methods
Study design. The objective of this study was to identify blood RNA correlates of time since M.tb infection 
or exposure. We first infected mice with M.tb via the aerosol route and measured genome-wide RNA expression 
at pre-specified time points. Unsupervised analysis revealed potential discrimination between mice sacrificed at 
early time points (1–2 months) vs. late time points (3–5 months). Cross-validation without hyperparameter tun-
ing identified an unbiased RNA signature that accurately predicted early vs. late time period post-infection. We 
then retrospectively mined publicly available data from a prospective M.tb infected cynomolgus macaque cohort 
and a prospective healthy household contact human cohort to identify RNA signatures that predicted these same 
time periods post-infection. The human RNA signature was validated in an independent cohort, adolescents 
who were recently infected with M.tb during longitudinal sampling.

Mice. Specific pathogen-free, 6–12 week old, female C57BL/6 wild-type mice (The Jackson Laboratory, Bar 
Harbor, ME) were maintained in ventilated cages inside a biosafety level 3 (BSL3) facility and provided with ster-
ile food and water ad libitum. All protocols were approved by The Ohio State University’s Institutional Labora-
tory Animal Care and Use Committee. Mice experiments were performed in accordance with the U.S. National 
Institutes of Health Guide for the Care and Use of Laboratory Animals.

Mouse aerosol infection and blood collection. M.tb Erdman (ATCC no. 35801) was obtained from the 
American Type Culture Collection. Stocks were grown according to published  methods56. Mice were infected 
with M.tb Erdman using an inhalation exposure system (Glas-Col) calibrated to deliver 50 to 100 CFUs to the 
lungs of each mouse, as previously  described56,57. At specific time points post-M.tb infection, infected and age-
matched uninfected mice were sacrificed and blood collected (400 µL) from the heart into 1.2 mL Tempus rea-
gent and stored at − 80 °C. No formal randomization was employed for choosing cages of mice to be sacrificed 
at each time point. For the M.tb infected mice, sample size per time point was determined by using the number 
we routinely use for well-powered molecular and immunological studies in inbred mice. No blinding was per-
formed for the mouse study.

RNA processing and microarray hybridization. Whole blood RNA was processed, quantified using a 
NanoDrop 1000 Spectrophotometer (NanoDrop Technologies) and RNA integrity (RIN) determined by a 2100 
Bioanalyzer (Agilent). Samples with RIN ≥ 6.5 were submitted for hybridization onto Illumina Mouse WG 6-V2 
BeadChips and scanned on an Illumina BeadStation system. Microarray data are available in the Gene Expres-
sion Omnibus (GEO) database under accession number GSE124688.

Microarray data pre-processing. For our murine data, Illumina BeadStudio/GenomeStudio software 
was used to subtract background and scale average signal intensity for each sample to the global median aver-
age intensity across all samples. Probes with a detection P value ≤ 0.01 in at least 10% of mice were filtered for 
analysis. Thereafter R scripts were used to quantile normalize the data, set all values < 10 to 10 and  log2 transform 
the data. Probes were filtered by two-fold change in expression from the median in at least 10% of samples. For 
the macaque data (GSE84152), microarray data pre-processing was performed as previously  described25. The 
data from the human adolescent cohort of IGRA converters (GSE116014) was pre-processed identically as the 
macaque data, except that data were quantile normalized and no batch correction was performed. When these 
adolescent data were used to validate the 6-gene signature, the data were downloaded at the gene-level using the 
R MetaIntegrator package, before additional pre-processing38.

RNA-seq data pre-processing. Human data from the Grand Challenges 6–74 (GC6-74) cohort were 
downloaded at the gene count level from GEO (GSE94438). Genes with read count ≤ 5 in 50% of samples were 
excluded. Data were quantile normalized and  log2 transformed. To facilitate comparisons with a common RNA-
seq alignment pipeline, gene counts were obtained from the  ARCHS4 resource when comparing data from the 
Adolescent Cohort Study (GSE79362) and GC6-74 cohorts using the 6-gene  signature58. These data were other-
wise processed identically.



13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16873  | https://doi.org/10.1038/s41598-020-73942-z

www.nature.com/scientificreports/

Machine learning predictions. For predicting time since infection in mice, we used the Random Forest 
algorithm in R with default parameter  values59. Out-of-bag predictions were used to estimate model accuracy, 
which corresponds approximately to threefold cross-validation.

To predict time since infection in macaques, we randomly partitioned the macaques into training (70%) and 
test (30%) sets. We compared several different machine learning algorithms using the R caret  package60. These 
included: Random Forest (R ranger  package61), Gradient Boosted Machines (R gbm  package62), Support Vector 
Machines using Polynomial (R kernlab  package63) or RBF kernels (R kernlab  package63) and Regularized Logis-
tic Regression (R glmnet  package64). Ninefold cross validation was used in the training set to optimize model 
hyperparameters and assess predictive performance, with all samples related to individual macaques being 
partitioned into the same held-out fold to ensure unbiased cross-validation. The caret package implementation 
did not permit tenfold cross validation for this dataset, as in humans, but the results should be equivalent. Only 
Regularized Logistic Regression was used for predictions in the test set and Regularized Linear Regression for 
predicting each time point post-infection after Regularized Logistic Regression was shown to be superior in 
predicting time period post-infection.

To predict time since TB exposure, time since IGRA conversion or prospective risk of TB in humans, we 
used tenfold cross validation on the training set (either GC6-74 or Adolescent IGRA converter cohort), with 
each subject’s samples partitioned into the same held-out fold, to optimize Regularized Logistic Regression 
model hyperparameters before predicting on the test set. Prior to performing this procedure for time since TB 
exposure on the GC6-74 training set, we performed feature selection on genes by a Wilcoxon test (P < 0.05). 
Where longitudinal data were available for individual macaques or persons, each time point was considered as 
an independent sample.

Forward search to discover parsimonious 6-gene signature. A forward search was performed in 
the GC6-74 Gambia and Ethiopia training set on genes selected by a Wilcoxon test (P < 0.05) using the R MetaIn-
tegrator package as previously  described38,65. The stopping threshold for increase in AUC with the addition 
of each gene was varied until a signature comprising less than 10 genes and including both upregulated and 
downregulated genes at 6  months post-enrollment (vs. baseline) was obtained. The final signature’s score is 
calculated on normalized  log2 expression values as a difference between upregulated and downregulated genes: 
(RP11-552F3.12 + PYURF + TRIM7 + TUBGCP4)–(ZNF608 + BEAN1). When applying this score to microarray 
data, multiple detected probes that mapped to these genes, using the R biomaRt package, were  averaged66. Genes 
without corresponding detected probes were omitted from the calculation.

Cell type deconvolution, pathway and transcriptional module analysis. Cell type proportions 
in blood were estimated from RNA-seq data as previously described using the R MetaIntegrator  package26,35,38. 
Gene-level expression for this deconvolution was obtained from the  ARCHS4  resource58. For pathway analysis, 
the 250 genes comprising the signature of time since exposure to an active TB case (6 months vs. baseline) were 
analyzed using canonical pathway analysis with QIAGEN’s Ingenuity  Pathway Analysis platform (IPA, QIA-
GEN Redwood City, www.qiage n.com/ingen uity). To compare transcriptional modules that were concordantly 
or discordantly regulated between mice, macaques and humans at early and late post-exposure time points, we 
used the R disco and tmod packages with transcriptional modules from Li et al.67–69. Genes used in this analysis 
included all detected probes (mice and macaques) and genes (humans). Differential expression and ortholog 
assignment were performed as previously  described37. The 6-month time point in the GC6-74 cohort was taken 
as the early time point in humans based on the results in Figs. 5 and S3, as this time point had the highest 6-gene 
score (data not shown).

Statistical analysis. All statistical analyses were performed in R (version 3.4.3). Prediction performance 
was evaluated using receiver operator characteristic (ROC) curves. Statistical significance of the area under the 
curve (AUC) was assessed using the one-sided Wilcoxon test via the R verification  package70. ROC graphs and 
confidence intervals were obtained via the R pROC  package71. Pearson test was used for correlation analysis. Fis-
cher’s exact test (two-sided) was used to determine statistical significance of comparisons between proportions 
in evaluating the independence of the time since infection signatures from risk of TB disease in macaques. We 
used linear mixed models to assess the significance of cell type proportion changes with time since TB exposure 
via the R lme4  package72. Subject and site were included as random effects and time since exposure and site as 
fixed effects. These two-sided P values were obtained via the Satterthwaite approximation. The IPA canonical 
pathway P values were calculated by a one-sided Fisher’s Exact Test, with P < 0.01 considered as significant. 
The transcriptional module P values were calculated using the CERNO statistical test, with P < 0.05 considered 
as significant after Benjamini–Hochberg  correction37. For all other statistical tests, P < 0.05 was considered as 
significant.

Data availability
Mouse microarray data are available in the Gene Expression Omnibus database under Accession Number 
GSE124688. Published data used in this study are available in the Gene Expression Omnibus database under 
Accession Numbers GSE79362, GSE84152, GSE94438 and GSE116014.

Code availability
Source code for all analyses is publicly available in a GitHub repository: https ://githu b.com/remi1 0001/TB.

http://www.qiagen.com/ingenuity
https://github.com/remi10001/TB
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