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Spectral weight reduction 
of two‑dimensional electron 
gases at oxide surfaces 
across the ferroelectric transition
p. Jaiban1,2, M.‑H. Lu3, T. Eknapakul1, S. Chaiyachad1, S. H. Yao3, N. Pisitpipathsin4, 
M. Unruan4, S. Siriroj1, R.‑H. He5, S.‑K. Mo6, A. Watcharapasorn7,8, R. Yimnirun1,9, Y. Tokura10, 
Z.‑X. Shen11,12, H. Y. Hwang11,12, S. Maensiri1,13 & W. Meevasana1,13,14*

The discovery of a two‑dimensional electron gas (2DEG) at the LaAlO
3
/SrTiO

3
 interface has set a new 

platform for all‑oxide electronics which could potentially exhibit the interplay among charge, spin, 
orbital, superconductivity, ferromagnetism and ferroelectricity. In this work, by using angle‑resolved 
photoemission spectroscopy and conductivity measurement, we found the reduction of 2DEGs and 
the changes of the conductivity nature of some ferroelectric oxides including insulating Nb‑lightly‑
substituted KTaO

3
 , BaTiO

3
 (BTO) and (Ca,Zr)‑doped BTO across paraelectric‑ferroelectric transition. 

We propose that these behaviours could be due to the increase of space‑charge screening potential at 
the 2DEG/ferroelectric regions which is a result of the realignment of ferroelectric polarisation upon 
light irradiation. This finding suggests an opportunity for controlling the 2DEG at a bare oxide surface 
(instead of interfacial system) by using both light and ferroelectricity.

Since the discovery of a two-dimensional electron gas (2DEG) at the interface between the insulating oxides 
LaAlO3 and SrTiO3

1, 2DEGs at other interfaces/surfaces of transition-metal oxides, i. e. LaTiO3/KTaO3 2 and 
amorphous/crystalline oxide interfaces 3, have been demonstrated to exhibit a collection of novel proper-
ties, prompting applications in future multifunctional electronic  devices4,5. The appealing properties include 
 superconductivity6,7, magnetic  orders8–10, enhanced Seebeck  coefficient11, large negative electron  compressibility12 
and ferroelectric polarisation  switching13. From our previous study, by using angle-resolved photoemission 
spectroscopy(ARPES), we showed that a similar 2DEG can be formed on the bare SrTiO3 surface under exposure 
to intense ultraviolet  irradiation14. The carrier densities were up to the same order as in the interfacial systems, 
and could be controlled by the UV irradiation dose which induces oxygen vacancies at the  surface15–17. The 
corresponding changes of these carrier densities could also be observed from the surface  resistivity17. Besides 
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SrTiO3 measurements, our extended study found that a 2DEG can also be created on KTaO3 surfaces using the 
same methodology as for SrTiO3

18.
While the 2DEG states at both SrTiO3 and KTaO3 surfaces have many similar features, there is a clear differ-

ence in the 2DEG formation. At the non-polar surface of SrTiO3 , the 2DEG was absent right after cleaving and 
then started to form upon UV irradiation; however, at the polar surface of KTaO3 , the 2DEG could be found 
immediately after  cleaving18. So, the electrostatic nature of surface can certainly influence the 2DEG formation. 
Indeed, there are already studies showing that external stimuli (e.g. electric  field19,20 and UV irradiation  doses14–16) 
can vary the 2DEG electron density, suggesting all-oxide-device applications and fabrication methods. There were 
also theoretical predictions that 2DEG states, which are formed at the interface between a ferroelectric oxide and 
SrTiO3 , can be controlled via ferroelectric  polarisation21,22; experimentally, the control of 2DEG conductivity by 
using ferroelectric polarisation was observed in the modified structure of ferroelectric Pb(Zr0.2 Ti0.8)O3/LaAlO3

/SrTiO3 13 and LaAlO3/Ba0.2 Sr0.8 TiO3 23 and the modified surface of SrTiO3  24,25.
In this paper, instead of studying the interfacial system mentioned above, we are interested in studying the 

effect of ferroelectricity on the 2DEG state at the bare surface of a single oxide. Without interface, it is suitable 
for ARPES measurement which can directly measure the electronic structure of the 2DEG. Insulating lightly-
substituted K(Ta,Nb)O3 (KTN)26 samples are our choices for the ARPES measurement since they can host the 
surface 2DEG and also exhibit ferroelectricity which allowed us to observe any changes across transition tempera-
ture ( Tc ). Furthermore, we also performed irradiation-induced conductivity measurement on a number of other 
ferroelectric oxide samples with various Tc which allow us to deduce a picture consistent with the ARPES data.

Methods
Sample preparation. Our samples measured in the work include both paraelectric and ferroelectric (poly)
crystals. SrTiO3 (STO) (Crystal Base Co., Japan) and lightly electron-doped K1−x Bax TaO3 (flux-grown sam-
ples, x < 0.001 ) samples are single crystals with (001) crystal orientation, representing the normal-state ones. 
Ferroelectric samples with various transition temperatures are KNbx Ta1−x O3 (KTN) (x = 0.02, 0.03 and 0.05) 
with Tc ≈ 20–90 K estimated from Ref.26, BaTiO3 (BTO) with Tc = 393  K27, Ba0.85 Ca0.15 Zr0.1 Ti0.9 O3 (BCZT) 
with Tc = 377 K and ( Ba0.7 Ca0.3)1−1.5x Lax TiO3 (BCLT) with Tc from 340 to 383  K28. BTO is a single crystal 
from MTI Corp., USA. KTN samples are flux-grown single crystals (for preparation method, see Ref.29). BCLT 
with x = 0, 0.005, 0.01, 0.03 and BCZT are polycrystals prepared by solid state reaction method; for the growth 
method, see the supplementary information.

ARPES measurements. ARPES measurements (T = 10–160 K, hν = 45–85 eV) of in-situ cleaved sin-
gle-crystal samples were performed using a Scienta R4000 hemispherical analyser at beamline 10.0.1 of the 
Advanced Light Source with an energy resolution between 8 and 35 meV, and an angular resolution of 0.35◦.

Conductivity measurement. The conductivity measurement under synchrotron light was performed in 
situ at room temperature and a base pressure of 1.4× 10−8 torr (Synchrotron Light Research Institute, BL 3.2a). 
The measurements of irradiation-induced conductivity at the ferroelectric-sample surfaces were performed 
using a sourcemeter (Agilent B2901A) and a violet (405nm) laser with intensity ≈ 0.3W/cm2 ; the exposure to 
the violet laser is in between two gold electrodes 2 mm apart (see Fig. 3a).

Results and discussion
Figure 1a,b show the ARPES measurement of the normal-state undoped KTaO3 and SrTiO3 respectively where 
the insets show the corresponding Fermi surfaces. The surface carrier densities of KTO and STO, estimated 
from the Fermi surface area (e.g. n2D = k

2
F
/2π for circular shape), are both in the order of 1× 1014 cm−2 . These 

ARPES data indicate that the 2DEG states can be well formed on the surfaces of nearly insulating bulk crystals. 
The formation of 2DEG states can also be correspondingly observed from the surface conductance measurement 
upon intense irradiation as depicted in Fig. 1c,d. Upon increasing the exposure time, the conductances in the 
off states, whose contribution mostly come from the slow-changing 2DEG  states17, increase along the dash lines, 
quantitatively agreeing with the trends of the increases in surface carrier densities observed in ARPES  data14,18. 
By using these same ARPES and conductance measurements, we then performed further experiments on the 
ferroelectric samples to observe any change across their transition temperatures.

To study the effect of ferroelectricity on the 2DEG formation, we firstly performed the ARPES measurement 
on KNb0.36 Ta0.64 O3 with ferroelectric Tc ∼ 300 K. After cleaving many of these samples in vacuum at measure-
ment temperature of 20 K, no 2DEG was observed even after applying intense irradiation for hours. The contrast 
between this KNb0.36 Ta0.64 O3 and Ba-lightly-doped KTaO3 (Fig. 1a) already suggested some effect of ferroelec-
tricity to be investigated further in other ferroelectric samples. Unfortunately, since the KNb0.36 Ta0.64 O3 has high 
Tc , we could not perform a reliable ARPES measurement (due to strong thermal smearing at high temperature) 
across the ferroelectric transition. We then chose to perform ARPES measurements on KTN samples with x = 
0.02, 0.03 and 0.05, and Tc ≈ 20, 60, and 90 K respectively. As shown in Fig. 2, the conduction pockets were found 
in all KTN samples. These pockets are referred to as the 2DEGs formed at the polar surface of pure and Ba-lightly-
doped KTO confirmed by previous photon energy dependence measurements 18. Here, we could well observe 
the 2DEG states of the KTN samples at high temperatures (relative to Tc ). Then the ARPES intensity drops upon 
lowering the temperature. As shown in Fig. 2p–r, these changes can be well observed in the angle-integrated 
intensities. From these spectra in panels (p–r), the areas under the graph (i.e. proportional to the 2DEG density) 
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as a function of temperature are summarised in Fig. 2s; this reveals an onset behaviour of the 2DEG formation 
near the transition temperature of each sample. Besides the ARPES intensity, there also appears that the spectral 
line shapes become slightly broader at lower temperature; this is in contrast to other conductive oxides where 
features usually become sharper at lower  temperature30, suggesting that the change near the transition is intrinsic.

To look further into this change near the transition, we also study the temperature-dependent surface con-
ductivity across ferroelectric transition. As shown in the diagram of Fig. 3a, we applied UV irradiation on various 
Ba-based titanates with ferroelectric Tc between 340 - 390 K and then measured the increase in conductance 
( �G ) as a function of temperature. This UV exposure is for the same purpose for creating 2DEG on SrTiO3 where 
its dynamics observed from ARPES and conductivity measurements were found to correspond well with each 
 other14,17. As shown in Fig. 3c–h, the increases in conductance ( �G ) in all the samples show a similar trend of 
having a rapid change across a characteristic temperature T∗ . We define this T∗ as the temperature where the 
two straight lines fitted to data intersect each other. Then, we plot the extracted T∗ of each sample as a function 
of its ferroelectric Tc as summarised in Fig. 3b. This line-up indicates that surface conductance induced by the 
UV-irradiation is largely decreased below Tc . This is in agreement with the ARPES measurements in Fig. 2 which 
show that the 2DEG states could be well developed in the paraelectric state but become suppressed across the 
ferroelectric transition.

With these two independent experiments, it is interesting that the spectral weight reduction of 2DEGs and 
the changes of conductivity upon light irradiation were occurred similarly in both single- and poly- crystalline 
ferroelectric oxides. In fact, the ferroelectric properties in various systems are different depending on many fac-
tors, i.e, ferroelectric self-polarisation characteristic, domain formation and surface chemistry 31,32. The coupling 
between ferroelectricity and 2DEGs has been proposed to be originated from the interfacial coupling mechanism 
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Figure 1.  Irradiation-induced 2DEG states at the surfaces of (a) Ba-lightly-doped KTaO3 (from Ref.18) and (b) 
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end points in the off state.
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at their space-charge region 23,33,34. This phenomenon usually appears in nanoscale, hence, effects of domain wall/
substrate which cause some gradient on a much larger scale of microns 35,36 would be neglected.

Recent investigations show that 2DEG density can be modulated by controlling the ferroelectric polarisa-
tion 13,23,33. Combining with the previous research on ferroelectric La-doped BTO 37 reporting that the non-
eqilibrium charge carriers can be generated through UV irradiation which thus change the nature of charge 
distribution and local electric field in the ferroelectric materials. Hence, the spectral weight reduction of 2DEGs 
at ferroelectric state upon UV irradiation would be related to this mechanism. Overall, we proposed that irradiat-
ing the light on the ferroelectric state-oxide surfaces can align the ferroelectric polarisation through the excess 
of charge carriers which is not expected to occur in the paraelectric state. This ferroelectric realignment can 
then maximise the space-charge potential (i.e. formation of upward ferroelectric polarisation near the surface 33) 
which suppresses the formation of 2DEG density in our measured ferroelectric oxides below Tc.

conclusion
We have investigated the dynamics of 2DEG across the ferroelectric transition at the surfaces of several ferroelec-
tric oxide materials. It is found that both electron density and conductivity are pronouncedly decreased across 
the transition. Regarding the origin of this reduction, we propose that the ferroelectric polarisation realignment 
induced by light irradiation increases the space-charge potential which suppresses the formation of 2DEG as 
well as the changes of conductivity in the ferroelectric state. Finally, our findings present the comprehensive 
study between three-coupled degrees of freedom, i.e. 2DEGs, ferroelectricity, and light. This therefore offers the 
new pathways for novel applications which are not limited only to the interfacial systems, i.e. light sensitive high 
electron mobility transistor.
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