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Quantum transport 
in a chain of quantum dots 
with inhomogeneous size 
distribution and manifestation 
of 1D Anderson localization
Moon‑Hyun cha1,2 & Jeongwoon Hwang3*

The effect of inhomogeneous quantum dot (QD) size distribution on the electronic transport of one-
dimensional (1D) QD chains (QDCs) is theoretically investigated. The non-equilibrium Green function 
method is employed to compute the electron transmission probabilities of QDCs. The ensemble 
averaged transmission probability shows a close agreement with the conductivity equation predicted 
by Anderson et al. for a disordered electronic system. The fidelity of quantum transport is defined as 
the transmission performance of an ensemble of QDCs of length N (N-QDCs) to assess the robustness 
of QDCs as a practical electronic device. We found that the fidelity of inhomogeneous N-QDCs with the 
standard deviation of energy level distribution σε is a Lorentzian function of variable Nσε2. With these 
analytical expressions, we can predict the conductance and fidelity of any QDC characterized by (N, 
σε). Our results can provide a guideline for combining the chain length and QD size distributions for 
high-mobility electron transport in 1D QDCs.

Electronic quantum transport through an array of quantum dots (QDs) has been an interesting research topic 
for low-dimensional systems at low temperature. Experimentally, a long-range ordered array of QDs, or QD 
solid, can be synthesized from colloidal  QDs1–7. One interesting aspect of QD solid is that the coupling strength 
between QDs can be continuously tuned by adjusting the interdot separation and surface  passivation8,9. This 
controllability allows the engineering of optical, electrical, thermal, and mechanical properties of QD  solids2. 
With QD as a building block, bottom-up fabrication of electronic and optoelectronic devices with the desired 
properties may be possible.

Notably, even the best synthesis method for colloidal QDs can produce QDs with a 3%-5% standard deviation 
in  size2. Molecular beam epitaxy-grown QD arrays also exhibited a Gaussian statistical distribution in dot  size10,11. 
While previous theoretical studies on QDs mainly examined the electronic properties of small QD  systems12–17, 
a recent study examined the effect of impurity QDs on the electron transport in two-dimensional (2D) QD sol-
ids, in which the impurity QD was introduced as a perturbation to a periodic  potential18. However, a systematic 
analysis on the quantum transport of an array of QDs with inhomogeneous size distribution is still lacking.

When QDs are different only in size, the statistical distribution of the dot size is converted into a statistical 
distribution of quantized QD energy levels, originating from the quantum-size effect by the relation E ∝ 1

r2
 in 

the case of a spherical  QD14. In QD solids, the relative size of the QD affects the relative position of the energy 
level, such as the lowest unoccupied molecular orbital (LUMO) 1s level, between adjacent QDs. As can be seen 
from the layered 2D heterostructures, the electrical contact type and electrical performance are greatly affected 
by the band alignment, i.e., difference in band gap and band edge positions. Similarly, the electronic properties 
of QD solids will be influenced by the relative size of the constituent QDs.

QDs can be integrated into a desired  configuration3,5, and QD solids with high electron mobility can be 
applied to the channel material of field effect transistors. In addition to the low cost and solution processability 
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over a large  area1–3, the compatibility with flexible and stretchable substrates makes QD solids beneficial for device 
application 3. If it is unavoidable to have a size distribution in QDs during a synthesis, it is important to know how 
much inevitable randomness quantitatively changes the transport properties for electrical performance control.

In this study, we investigate quantum transport in one-dimensional (1D) chains of non-uniform QDs by 
calculating the transmission probability. The non-equilibrium Green function (NEGF) method is employed 
for calculating the transmission probability spectra. First, a conductance measure is defined and calculated to 
evaluate the transport capability of individual QD chains (QDCs). Subsequently, we explore the effect of the 
chain length and energy level distribution on the transport performance of an ensemble of QDCs. It is found that 
the ensemble-averaged transmission probability exhibits the same analytical behavior predicted for disordered 
electronic  systems19. Finally, for an ensemble of QDCs, we calculate the proportion of ensemble members with 
the conductance measure higher than a criterion, which is defined as the fidelity of the QDC and found to be 
a Lorentzian function of the chain length and variance of the energy level distribution. Thus, the system size 
(length) and size variance of constituent QDs carry the information about ensemble-averaged conductance and 
fidelity. Our theoretical study can provide an in-depth understanding of QDCs with inhomogeneous QD size 
distributions and suggest ways to manipulate their electrical properties.

Results and discussion
We compute transmission probability through QDCs as a function of energy in a coherent tunneling regime. 
The Hamiltonian of an N-QDC and contacting (left and right) leads is given by H = HQDC +HL +HR +HT . 
Here, HQDC is the Hamiltonian of the QDC:

where d†i  creates an electron in the ith QD and ti is the interdot tunneling matrix element. We neglect the inter-
action between electrons to solely focus on the effect of the randomness of energy levels. HL(HR) describes the 
left (right) electrode as a non-interacting electron gas system:

where a†kL
(

a†kR

)

 creates an electron of momentum k in the left (right) electrode. Finally, the tunneling Hamilto-
nian between the QDC and electrodes is given as

where the tunneling matrix element tk1(tkN ) describes the coupling between the left (right) electrode and the 
first (last) QD. The transmission probability of an electron of energy ε is given as 20

where Gr
S =

[

(ǫ+iη)I −HQDC −�L −�R

]−1 is the retarded one-particle Green’s function of the system of QDs 
and the advanced Green’s function corresponds to the Hermitian conjugate of the retarded one, i.e. Ga

S =
(

Gr
S

)† . 
The broadening function ŴL(R) = i

(

�L(R) −�
†
L(R)

)

= −2Im
(

�L(R)

)

, where �L(R) is the self-energy of the QDC 
arising from its coupling to the left (right) electrode and Ŵ = ŴL = ŴR in this study. A zero-voltage quantum 
conductance is directly proportional to the transmission probability based on the Landauer formula 21, i.e., the 
conductance G = e2

h T for a single eigen channel.
Figure 1(a) illustrates a QDC with varying energies, where the different energy levels of QDs are presented 

as circles with different colors. First, we consider a chain of uniform N QDs (uniform N-QDC), where N is the 
number of serially connected QDs in the chain. By uniform QDC, we mean εi = ε0 = 0 for all dots and ti = t0 for 
all pairs of nearest neighbors. For N = 5, our calculation results agree well with the previous  studies22,23 as shown 
in Fig. 1(b). When the energy distribution is introduced, Γ = 1t gives the maximum transmission probability; 

(1)HQDC =
N
∑

i=1

εid
†
i di +

N−1
∑

i=1

ti

(

d†i+1di +H .c.
)

,

(2)Hα =
∑

k

εkαa
†
kαakα , α = L or R,

(3)HT =
∑

k

tk1d
†
1akL +

∑

k

tkNd
†
NakR +H .c.,

(4)T(ǫ) = Tr
(

ŴLG
a
S(ǫ)ŴRG

r
S(ǫ)

)

,

Figure 1.  (a) Schematic description of a 1D chain of N QDs in contact with two metallic leads. Different colors 
represent different energies (i.e., sizes). (b) Dependence of dot-lead coupling Γ on the transmission probability 
of a uniform (i.e., εi = ε0) 5-QDC with the tunneling matrix element t = 0.5 eV.
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therefore, Γ = 1t is selected for this study. The magnitude of t0 only affects the band width in a uniform manner, 
that is, the width of the calculated transmission functions is uniformly scaled in energy (see Supplementary 
Information for details).

Then, we consider QDCs with a dot-size distribution. QDCs can be specified with two parameters, i.e., N and 
σε, the standard deviation of the energy level distribution. To examine the chain length effect, we first compute 
the transmission probability of uniform N-QDCs for N between 5 and 100, and the results are shown in Fig. 2(a) 
and (b). As N increases, the number of peaks symmetrically increases with respect to zero energy, and a line 
connecting the maxima of peaks approaches that of an infinite QDC without a contact effect (blue line). With 
uniform QDs, increasing N does not degrade the transmission probability. Next, a Gaussian-type energy distri-
bution is introduced with a mean value of 0 eV. We use the same value of ti = t0 for all pairs as a first approxima-
tion. For spherical QDs, we may assume hydrogenic electronic states, the energy level (E) of which is related to 
its radius (r) by E ∝ 1

r2
14. For a small size variation ( �r < r ), the energy deviation can be expressed as 

E
′ ∝ 1

(r+�r)2
∼ 1

r2

(

1− 2�r
r

)

 , i.e., E′ ∼ E
(

1− 2�r
r

)

 . The reported size deviation of 5% can be converted into an 
energy deviation of 10%. For instance, for a PbS QD system, the LUMO level binding energy of which is approxi-
mately 4 eV24, the 10% standard deviation in energy is σε = 0.4 (eV). However, for QDs of different sizes, σε of 
0.4 eV can be either greater or smaller than a 10% (5%) standard deviation in energy (size).

A QDC of (N, σε) corresponds to randomly collected (and randomly arranged) N QDs among a bunch of 
QDs of which the statistical distribution is meaningful. Considering the fact that the coupling strength between 
QDs can be continuously tuned 2, the tunneling matrix element t is fixed as 0.5 eV in the remaining part of the 
study. For each N (i.e., 5, 10, 20, 30, 40, and 50), an ensemble of QDCs (more than 4000 samples when N = 5–20 
and more than 2000 samples when N = 30–50) is generated with varying σε (from 0.02 to 0.5). The computed 
transmission probability functions of the arbitrarily chosen QDCs of N = 10 (N = 50) with σε = 0.02, 0.15, and 0.3 
are shown in Figs. 2(c) and (d), respectively. As σε increases, the area under the transmission probability func-
tion is reduced, indicating a lowered transport capability. For an ensemble calculation, a set of pseudo-random 
numbers with a Gaussian distribution is generated via Python Standard Library 25 (See Supplementary Informa-
tion Fig. S2 for more discussion).

To evaluate the transport capability of individual QDCs, we define a conductance measure. While the trans-
mission function is calculated at zero temperature, we may include thermal effect in the transmission probability 
around the Fermi level as T̄ ≡

∫

dǫf (ǫ)(1−f (ǫ))·T(ǫ)
∫

dǫf (ǫ)(1−f (ǫ))
 , where f (ǫ) is the Fermi–Dirac distribution. By approximating 

f(1 − f) as a rectangular function with a width of 2kT centered at ǫF , which is assumed to be 0 eV in this study, T̄ 

can be approximated to 
∫ kT
−kTdǫT(ǫ)
∫ kT
−kTdǫ

 . If we take kT to be the thermal energy scale at room temperature, 

T̄ =
∫ 0.025eV
−0.025eV T(ǫ)dǫ

0.05eV  . For any choice of kT, the maximum value of T̄ is 1 for a transparent transport. The ensemble-
averaged T̄ is shown in Fig. 3(a) as a function of N, which clearly shows that that the conductance measure 
decreases faster with the chain length when σε is larger. Notably, our numerical results exhibit the same analytical 
behavior predicted by Anderson et al., where resistivity is predicted by scaling  theory19. Specifically, we obtain

(5)T̄(N , σε) =
1

1+ ρ(N , σε)
,

Figure 2.  Effect of system size and energy variance on transmission probability. (a) Transmission probability 
of uniform QDC for N = 5 and 10. (b) As N increases, a line connecting the maxima of transmission probability 
peaks approaches that of an infinite QDC, shown as the blue line. Transmission probability of typical QDCs 
with σε = 0.02, 0.15, and 0.3 for (c) N = 10 and (d) N = 50,  respectively26.
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where resistivity ρ(N , σε) = α(e2N/�loc − 1) with resistivity constant α and localization length λloc, which are 
fitting parameters of our study. It is found that α is the same for all σε , that is α = 2.94 as shown in Fig. 3(a), and 
λloc depends on σε . From the analytical expression of T̄(N , σ), the localization length is related to the standard 
deviation of energy level distribution σε by the relation �loc = 6.8

σε2
 (in the unit of QD size) as shown in Fig. 3(b). It 

can be interpreted that when the variance ( σε2) of energy level distribution is 6.8, the electronic state is localized 
on one QD. This relation clearly shows that the localization length decreases as the randomness of the system 
increases. Furthermore, the scaling theory of  localization27 is applied to plot the scaling function β(g)≡ dlng(L)

dlnL  , as 
shown in Fig. 3(c). In the scaling function β(g), g(L) is the conductivity (1/ρ ) as a function of system size L (i.e., 
N in our case). Remarkably, β(g) follows the same asymptotic form predicted by Abrahams et al.27 for dimension 
d < 2; β(g) is linearly dependent on ln[g(L)] for small g ( → 0) and asymptotically approaches a constant value 
d − 2 (= − 1 for one-dimensional system) for large g ( → ∞).

Now, we define the fidelity ( 0 ≤ f ≤ 1) of quantum transport in QDC as a proportion of members of the 
ensemble that have T̄ higher than a criterion. This definition corresponds to a classification of systems into two 
groups exhibiting current on-state and off-state, where the criterion of 0.5 is chosen. In a statistical terminology, 
fidelity is a cumulative probability P

(

T̄ > 0.5
)

 of a continuous variable T̄ . Analyses with the different choices 
of criterion value are presented in Fig. S3 and S4 of Supplementary Information. The fidelity of N-QDCs with 
σε between 0 and 0.5 is calculated and presented in Fig. 4. Figure 4(a) and (b) clearly show that a longer chain 
is more susceptible to the size variations. Fidelity is higher than 0.8 for all N when σε ≤ 0.1, but it shows a fast 
decrease with larger σε. This result indicates that for a highly transparent transport of relatively long QDC, it is 
necessary to synthesize QDs of nearly uniform energy levels with a standard deviation of 0.1 in energy or 1%–2% 
standard deviation in size. Interestingly, by fitting the calculated data points in Fig. 4(a) and (b), we obtain a 
simple analytical expression for fidelity as a function of Nσε

2:

which is a Lorentzian function of Nσε
2 or N/λloc that can be interpreted as the system size (chain length) scaled 

by the localization length. If we plot fidelity as a function of Nσε
2, all the data points of various N-QCDs for vary-

ing σε fall into the same line, as shown in Fig. 4(c). To our surprise, this analytical expression makes it possible 
to predict the fidelity of any ensemble of QCDs characterized by (N, σε

2), in addition to the ensemble-averaged 
T̄ . Interestingly, for different choices of the criterion value, the fidelity function retains the Lorentzian shape 
allowing us to predict fidelity of any ensemble of QCDs. A general expression for the relation between N and σε

2 
can be obtained from Eq. (6) as Nσε

2 = 1−f
f  . For example, when the fidelity of N-QDCs is 0.5, the relation 

σε = 1√
N

 holds. Moreover, at this point, T̄ becomes 0.5 because ρ becomes 1 by Eq. (5). From the distribution of 

T̄ (see Supplementary Information Fig. S5) σε = 1√
N

 is estimated to be the transition point, where the majority 
of the ensemble population is reversed based on the median value T̄ = 0.5 . The relation between N and σε

2 can 

also be recognized in the color map shown in Fig. 4(d), i.e., σε = 1√
N

√

1−f
f  . We note that the relation 

σε = 1√
N

√

1−f
f  resembles the expression for the localization length �loc = 6.8

σε
2 , or σε = 2.6√

�loc
.

We also examine the effect of sorting the order of QDs by size or energy. Assuming that the surface of QD is 
well passivated and the shapes of the QDs are the same, the energy level can be solely determined by the size of 

(6)f (N , σε) =
1

1+ (Nσε2)
2
,

Figure 3.  Manifestation of 1D Anderson localization in quantum dot chains with inhomogeneous size 
distribution. (a) Ensemble-averaged T̄ (marked as points) for each σε follows the same analytical behavior 

1

1+α(e2N/�loc−1)
 (shown as solid lines) predicted by Anderson et al.19 with a different resistivity constant (i.e., 

α = 2.94). (b) The localization length is inversely proportional to σε
2, which is plotted in the unit of QD size. The 

inset is the magnified version for a clear view. (c) Asymptotic forms of the scaling function β(g) agree well with 
the prediction of Abrahams et al.27 for dimension d < 2, where g is the conductivity and L is the system size (i.e., 
N, in our case)26.
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QD. For N = 5–30, we calculate the fidelity of QDCs that are ordered in the increasing QD size. In this case, the 
fidelity decreases much slowly with σε as compared with the randomly arranged case. This result indicates that 
the energy level difference between coupled QDs (i.e., coupled by the tunneling matrix element) is an important 
parameter for modulating transport capability. Up to σε = 0.3 (~ 4% in size for the specific PbS QD), the fidelity 
is over 0.95, but it drastically decreases afterward (see Fig. S6). It can be understood that by sorting the energy 
levels in a monotonically increasing order, the energy difference between the leftmost (rightmost) QD and the 
left (right) leads is greatly enlarged while the energy level at the center of the chain is around the Fermi level. On 
the basis of this result, we can suggest a way to enhance the electrical performance of QDCs by a post physical 
process. That is, we may use a centrifuge to arrange QDC in an increasing size order (i.e., mass) and thus in a 
decreasing energy order.

Finally, the current analysis is rigorously applicable to serially aligned 1D QDCs. For the QD ribbons of finite 
width or 2D QD solids, the analytical expression for ρ(N , σε) will be the same up to a proportionality constant 
(i.e., (e2N/�loc − 1) with different λloc) because it is the universal behavior of disordered electronic  systems19,27; 
however, the resistivity constant α may differ. At the same time, the requirements for high-mobility transport 
can be relieved in those systems because there can be several pathways to go through QD arrays. This is an issue 
for future studies to explore.

Conclusion
We have investigated the effect of QD size distribution on quantum transport through 1D QDCs. Ensemble-
averaged transmission probability exhibits 1D Anderson localization, which manifests itself in the analytic 
expression of averaged transmission probability and scaling behavior of conductivity. With the analytical expres-
sion, the ensemble-averaged conductance of N-QDC with any value of σε can be predicted. Fidelity is defined to 
evaluate the transport performance of ensembles of QDCs. When σε (≤ 0.1) , all the systems show high fidelity 
even in a 1D structure where the transport path is quite limited. The fidelity of any N-QDC is a function of Nσε

2 
and can be predicted from a general expression. This study can provide an in-depth understanding of QDCs 
with inhomogeneous QD size distributions. Our finding is in good agreement with the predicted 1D localiza-
tion properties, which indicates that 1D QDCs with an inhomogeneous size distribution can act as a material 
platform to realize the 1D localization of electron states. Moreover, our numerical results can provide a guideline 

Figure 4.  Fidelity of QDCs characterized by (N, σε). (a) Fidelity versus σε and (b) fidelity versus N, which 
show that the longer the chain, the more susceptible it is to the size variations, and vice versa. The solid lines 
correspond to the analytical function f (N , σε) shown in (c). (c) Fidelity as a function of Nσε

2 (~ N/λloc). 
Calculated data of various N-QCDs for varying σε fall into the same line. (d) 2D color map of fidelity with 
varying N (from 5 to 50) and σε (from 0.02 to 0.5)26.
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for high-mobility electron transport in 1D QDCs, that is, how uniform the QD sizes should be for a given length 
of array, and suggest a way to construct artificial solids with varying electrical performances.
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