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Effects of  SF6 decomposition 
components and concentrations 
on the discharge faults 
and insulation defects in GIS 
equipment
Yuan Zhuang1, Xiaotong Hu1, Bin Tang2, Siwei Wang1, Anyang Cui1, Keyong Hou3, 
Yunhua He4, Liangqing Zhu1*, Wenwu Li1* & Junhao Chu1

Gas-insulated switchgear (GIS) is widely used across multiple electric stages and different power 
grid levels. However, the threat from several inevitable faults in the GIS system surrounds us for the 
safety of electricity use. In order to improve the evaluation ability of GIS system safety, we propose 
an efficient strategy by using machine learning to conduct  SF6 decomposed components analysis 
(DCA) for further diagnosing discharge fault types in GIS. Note that the empirical probability function 
of different faults fitted by the Arrhenius chemical reaction model has been investigated into the 
robust feature engineering for machine learning based GIS diagnosing model. Six machine learning 
algorithms were used to establish models for the severity of discharge fault and main insulation 
defects, where identification algorithms were trained by learning the collection dataset composing 
the concentration of the different gas types  (SO2,  Sof2,  So2f2,  cf4, and  CO2, etc.) in the system and 
their ratios. Notably, multiple discharge fault types coexisting in GIS can be effectively identified 
based on a probability model. This work would provide a great insight into the development of 
evaluation and optimization on solving discharge fault in GIS.

Sulfur hexafluoride  (SF6) is widely used in Gas-Insulated Switchgear (GIS) because of its excellent insulation 
property, heat dissipation, and arc extinguishing performance. On the other hand, owing to the subtle insulation 
defects in the manufacturing process, discharge faults will be caused during the operation of the GIS equipment. 
As a result,  SF6 will be decomposed into lower sulfur fluorides under discharge induced by insulation  defects1,2. 
These products will threaten the safety of the entire power grid system. When the  SF6 decomposes into other 
products under discharge, the insulating performance of GIS will be reduced. It will further threaten the safety 
of GIS equipment. Although  SF6 is non-toxic, some  SF6 decomposition products are toxic such as  S2F10,  SF4, 
 SOF2,  SO2F2,  SOF4, and HF, which will threaten the GIS equipment and environmental  protection3,4. Therefore, 
an effective pre-diagnosis method for discharge faults is necessary for the current industrial GIS system to rec-
ognize and maintain insulation defects. However, owing to the complexity of the equipment and the numerous 
factors of discharge fault, these internal defects are generally difficult to be recognized and further maintained.

One of the key parameters for effectively evaluating the discharge fault is the  SF6 decomposed components. 
Many detection techniques have been applied to the analysis of  SF6 decomposition products, such as gas chroma-
tography, gas detection tubes, electrochemical methods, and spectral  methods5. Moreover, various decomposition 
components, such as  CF4,  CO2,  SOF2, and  SO2F2, can effectively reflect the severity of the discharge fault and the 
type of insulation  defects6,7. Since the relationship between  SF6 decomposition products and electrical faults is 
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quite complicated, the discharge fault classification obtained by traditional component analysis is not reliable 
enough. While the use of machine learning can clarify the numerical boundaries of different fault types in the 
data field, which will facilitate the application in automation. Therefore, it is significant to systematically study the 
data of decomposition products by machine learning training based on the Decomposed Components Analysis 
(DCA) method, and further obtain an identification model for discharge fault. Wang et al. used an Adaptive 
Fuzzy Neural Inference System (AFNIS) to identify four Partial Discharge (PD)  faults8. Tang et al. summarized 
the physical meanings of three characteristic parameters  CF4/CO2,  SOF2/SO2F2, and  (SOF2 + SO2F2)/(CF4 + CO2). 
These characteristic parameters are suitable for Support Vector Machines (SVM) to detect the type of insulation 
fault under  PD9. Ding et al. found that corona discharge and spark discharge can be distinguished by testing 
the concentration ratio of  (SOF2 + SO2)/(SO2F2)10. Their experiment indicated that the  (SOF2 + SO2)/(SO2F2) 
concentration ratio of corona discharge generally ranges from 0 to 1, while that of spark discharge ranges from 
1 to 5. Although many effective methods and parameters have been applied to identify the discharge faults in 
GIS equipment, the machine learning dataset in most of the researches is limited to one series of experiments. 
Such a specific environment will make it difficult to reach a general conclusion. In addition, an identification 
model based on various environmental data and an optimal algorithm is lacking. More importantly, the coexist-
ence state of multiple insulation defects in the discharge fault is currently short of the identification  model11,12.

In this paper, four main insulation defect types (particle, pollution, gap, protrusion) were taken into consid-
eration. These insulation defects will gradually lead to three severity types of the fault discharge (corona, spark, 
arc). These two types of identification based on  SF6 decomposition component will be helpful for rapid diagnosis 
of the cause and condition of fault discharge. First, a large amount of discharge fault data from different experi-
ments was analyzed. Then, two types of functions were used to preprocess the data. The empirical probability 
functions were fitted according to the Arrhenius model of a chemical reaction and the characteristic of the data 
distribution, while the tensile functions derived from experience for stretching data. After data preprocessing 
with these functions, various machine learning algorithms were used and compared to obtain a robust and reli-
able model to describe the relationship between the feature components of  SF6 decomposition and discharge 
fault. As a result, the severity of the discharge fault can be determined by  SO2F2/SO2 in the K-Nearest Neighbor 
(KNN) model. The insulation defects under PD can be described by the parameters  (SOF2 + SO2F2)/(CF4 + CO2) 
and  CF4/CO2 in the Gaussian Distribution model. Based on the probability functions used in both models, two 
coexistence states of multiple insulation defects, biased corona discharge state, and surface pollution defects can 
also be recognized. These findings would provide new insight into handling the actual problems in the discharge 
fault and further promoting the development of the relevant GIS system.

Methods
The decomposition of  SF6 courses with the breaking of S-F chemical bonds and the fractured bond number is 
proportional to the discharge energy. Although more energy is required for breaking S-F bonds,  SF4 and  SF2 
are the main decomposition products of  SF6, because they are more stable than  SF5 and  SF3 with their sym-
metrical structure. The  SF5,  SF3, SF products are easy to combine with the free F atoms, so they are not stable. 
Furthermore, the secondary ionization rate of  SFx under the reaction of partial discharge(PD) is very small. This 
means that the decomposition products of  SF6 will mainly be obtained by the first  ionization13–15. Owing to the 
existence of  H2O and  O2 in GIS, the  SF6 decomposition products further react with  H2O and  O2, thus making 
the decomposition more complex, such as  SOF2,  SO2F2, and  SO2

7,16. In addition, carbon atoms presenting in the 
gas chamber will react with the element F and O to form  CF4 and  CO2. These main possible split process in GIS 
can be represented by the formula (1) and Fig. 1.

Figure 1.  The main chemical reaction process for the decomposition products of  SF6.
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Compared with the simple reaction of  SF2 and  SF3, the process of  SF4 and  SF5 reacting to generate character-
istic gases  SOF2,  SO2F2, and  SO2 is complicated with more intermediates referred. This further indicates that it 
is hard to identify the decomposition process of  SF6 from the decomposition mechanism, because of the various 
source of the characteristic gas, together with the variable complexity of different ways. Considering the complex 
decomposition process of  SF6, DCA, a method for analyzing the discharge faults according to the  SF6 decomposi-
tion, cannot identify the discharge fault type efficiently. Instead, machine learning is a wise strategy to train the 
identification model. In this model, severity and insulation defects of discharge fault need to be chosen as the 
targets, which are important for GIS system to maintain the insulation defects timely.

Data collection and usage instructions. The discharge faults originate from the various insulation 
defects in GIS devices. These defects mainly include four types: protrusion, particle, pollution, and gap. The 
manifestations of these discharge faults will also show different stages, which can be roughly divided into three 
categories: corona discharge (PD), spark discharge, and arc discharge. These two types of identification based on 
 SF6 decomposition component will be helpful for rapid diagnosis of the cause and condition of fault discharge. In 
this work, the  SF6 decomposition data from real GIS system was gathered by infrared absorption spectrometry 
and gas  chromatography17,18. Then, the data recorded per 12 h from 24 to 72 h after the fault occurs were selected 
into the sample set. As a result, a total of 222 samples were used for training, and 24 samples were used for test-
ing. Most of them were collected from laboratory simulations and field cases of the published articles, while 
the others were provided by China Southern Power Grid from the field measurements of GIS faults. Also, all 
machine learning algorithms share this data set. The data collection and processing are summarized in Table 1. 
Furthermore, in order to clarify the composition of the data, Table 2 has listed the types of failures involved in 
our research and the corresponding amounts of training data and test data.

Identification model for severity of discharge fault. The  SF6 decomposition component data for 
training are from the faulted GIS equipment (Guangxi Power Grid Co. Ltd.) and the relative  references11,19–23. 
Some data from other references were also collected to construct a testing  dataset11,23,24. The type of severity of 
the discharge fault in GIS equipment can be expressed according to the energy level of internal discharge faults, 
which are divided into corona discharge (low), spark discharge (middle), and arc discharge (high). According 
to the level of energy, the arc discharge was labeled as a single scalar of 3, the spark discharge was labeled as 2, 
and the corona discharge was labeled as 1. Based on the traditional DCA method, the ratio of the concentrations 
of  SO2F2 and  SO2 was regarded as the effective features to represent the severity of the discharge  fault12,25,26. In 
order to make sure and further quantify the relationship between the severity of discharge fault and concentra-
tion ratio of  SO2F2/SO2, six different algorithms (Neural Network, SVM, Linear Regression, K-Nearest Neighbor, 
Random Forest, and Gaussian Distribution) were employed to learn the data for effectively recognizing the dis-
charge fault type. However, without considering the coexistence of multiple discharge faults, the original model 
fails to provide a good identification model. In this model, a clear boundary will always exist between the two 
discharge fault states. Such a steep boundary is easy to cause misjudgment.

To improve the prediction ability of models, the empirical probability functions (2)–(4) listed below are 
required to assign different weights to the data for machine learning. These empirical probability functions were 
obtained based on statistic point analyzation and the Arrhenius model of a chemical reaction. Details on how to 

(1)e− + SF6 → SFx + (6− X)F + e−,X = 1, 2, 3, 4, 5

Table 1.  The selected analytical methods, decomposition products, and time delay for different discharge fault 
analysis

Fault types Analytical methods Data Time delay

Severity types (arc, spark, corona) Six machine learning methods (Neural Network, SVM, Linear 
Regression, K-Nearest Neighbor, Random Forest, and Gauss-
ian Distribution)

SO2F2,  SO2
Per 12 h (from 24 to 72 h)

Insulation defect types (particle, pollution, gap, protrusion) SOF2,  SO2F2, CF4,  CO2

Table 2.  The relationship among the fault types, training data, and testing data

Fault type Number of training data Number of test data

Severity type

Arc discharge 12 0

Spark discharge 28 4

Corona discharge 21 3

Insulation defect type

Protrusion defect 48 7

Particle defect 18 2

Pollution defect 47 4

Gap defect 48 4
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induce these functions will be discussed in the results. In these functions, the variable x represents  SO2F2/SO2, 
while the dependent variable f (x) means different weights for different values of  SO2F2/SO2.

Then the empirical probability functions were used to adjust the original label 3, 2, 1 of the three discharges 
data: arc discharge data corresponds to the value of 2+ f1(x) , while spark discharge data corresponds to the value 
of 2− f2(x) . The corona discharge data corresponds to the value of 1+ f3(x)(0.5 ≤ x),3− f3(x)(x < 0.5). These 
corresponding relations between the discharge type and label value are shown in Fig. 2.

After pretreating the feature of the sample data, models with better recognition ability could be obtained 
by machine learning. Finally, KNN was chosen to establish the discharge fault severity model and tested by the 
testing dataset prepared before.

Identification model for insulation defects of discharge fault. With a similar process,  SF6 decom-
position component data from another group of references were collected to create the identification model 
for insulation defects of discharge  fault8,12,27–31. Some of them were isolated to form test  datasets12,31. The types 
of insulation defects of the discharge fault can be divided into four main categories including particle defect 
(labeled as 1), pollution defect (labeled as 2), gap defect (labeled as 3), and protrusion defect (labeled as 4). Three 
characteristic parameters,  CF4/CO2,  SOF2/SO2F2, and  (SOF2 + SO2F2)/(CF4 + CO2), can be considered as the 
typical features in order to better distinguish these four insulation  defects6. However, the parameter  SOF2/SO2F2 
should not be used as a characteristic  ratio32–35. Because the GIS internal adsorbent has changeable absorption 
rates for different  SF6 decomposed products, thus making the parameter  SOF2/SO2F2 more dispersive. In addi-
tion, the difference in parameter  SOF2/SO2F2 between the overheat faults and discharge faults is not obvious. 
This makes the use of this parameter is not conducive for overheating fault to be distinguished from the dis-
charge fault in further applications.

In the case of selecting  CF4/CO2 and  (SOF2 + SO2F2)/(CF4 + CO2) as the features, the data points were dis-
tributed on a two-dimensional plane. The x coordination is represented by function (5), while the y coordina-
tion is represented by function (6). Considering the data points in a two-dimensional distribution, it’s hard to 
fit empirical probability functions. Instead, tensile functions (5)–(6) were used to extend the steep boundary 
between data points of different insulation defects. This adjustment allows the data of insulation defect to have 
comparable value on the coordinate axes of the characteristic parameters  (SOF2 + SO2F2)/(CF4 + CO2) and  CF4/
CO2, which is of great significance for machine learning training.

(2)f1(x) = −4x2 + 1(0 ≤ x ≤ 0.5)

(3)f2(x) =
0.6

1+ e4×(3.7−x)
+

0.4

1+ e0.5×(8−x)
(x ≥ 0.5)

(4)f3(x) = 1− f1 − f2

Figure 2.  The empirical probability functions used to adjust the original labels 3, 2, 1 of the three discharge 
types.
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Regarding the characteristic parameters  (SOF2 + SO2F2)/(CF4 + CO2), plenty of studies have shown that when 
the process of discharge involves overheating faults and solid insulation materials, the production of  CF4 and 
 CO2 will be less than various sulfur containing characteristic products. Therefore, it can be found that the char-
acteristic parameters  (SOF2 + SO2F2)/(CF4 + CO2) of the partial discharge samples are very large. In general, the 
characteristic parameter lg(SOF2 + SO2F2)/(CF4 + CO2) would be applied instead. However, it is worth noting that 
if the organic insulation material is not involved in the fault, this characteristic parameter could not reflect the 
overall regularity and should not be  used36.To build a universal model, which must be capable of covering both 
situations that organic insulating materials are involved or not, the linear shrinking is adopted as the compromise. 
Meanwhile, the reduced scale is set to 40, which is the result of data fitting. This adjustment can reduce the data 
scale without affecting the overall regularity. For the characteristic parameter  CF4/CO2, the logarithmic coordi-
nate is also used, while an offset has been added. This is because there are samples with the  CF4/CO2 value much 
less than 1. Using logarithmic coordinates alone will shrink this parameter value, and adding offsets can avoid it.

After the pretreatment, six machine learning methods were also used in the sample training of this model. 
Two of them were chosen to build highly recognizable models. Considering the increase of parameters and clas-
sified objects, contour lines were used to present the model results. Finally, Gaussian Distribution was selected 
to describe the type of insulation defect of the discharge fault and tested by the testing dataset prepared before.

Results and discussion
The  SF6 decomposition component data as mapped in Fig. 3 are the sample points for training the fault discharge 
severity model. The sample point set of each discharge fault is distributed in a certain area. From the linear fit-
ting results, the corresponding slope values of different areas are also different. Arc discharge has the biggest 
slope and the slope of spark discharge is smaller, while the slope of corona discharge is the smallest. For different 
types of discharge,  SO2F2/SO2 exhibits an aggregation distribution at different centers. This indicates that there 
is a strong correlation between the concentration ratio of decomposition product  SO2F2/SO2 and the discharge 
fault types. Furthermore, this means that the concentration ratio of  SO2F2/SO2 can be used to distinguish the 
discharge fault type with a different energy.

Figure 4a shows the relationship between discharge fault type and the concentration ratio of  SO2F2/SO2 
calculated by direct machine learning based on six different algorithms. It cannot give a good model to describe 
the discharge fault type. The reason is that there is a clear boundary between the two discharge fault states, 
especially the sudden change of the SVM model between 12 and 14. Moreover, the coexistence of two discharge 
fault types in GIS equipment was ignored and the data has not been preprocessed into a probabilistic form. With 

(5)g1 : y = (SO2 + SO2F2)/40(CF4 + CO2)

(6)g2 : x = log10(
CF4

CO2
+ 1)

Figure 3.  Relative distribution relationship between the  SO2,  SO2F2 concentration, and discharge fault types 
(arc, corona, and spark discharge). The linear fitting results are used to guide the visualizations.
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the discharge energy increasing, the discharge fault type will experience five states: corona discharge, corona-
spark discharge coexistence, spark discharge, spark-arc discharge coexistence, and arc discharge. This process is 
continuous and progressive, while the discharge fault types corresponding to the component data are discrete. 
The non-correspondence between the two led to poor machine learning results.

Therefore, the original data need to be preprocessed with different weights. This weight adjustment is aimed to 
reduce the probability of sample points appearing in the edge area, so that the samples which being unstable (both 
two discharge state exist in this area) in the overlapping area of the two discharge types in Fig. 4a would tend to 
be unified. It will facilitate machine learning to fit a suitable curve model to match the distribution of data and 
the true chemical process. Therefore, it is necessary to establish a continuous function correspondence between 
the concentration ratio of  SO2F2/SO2 and the discharge fault energy: in general, the three empirical probability 
functions (2)–(4) are mainly based on data fitting and chemical kinetics analysis, as a process of extracting new 
features through statistics, transformation and operation in machine learning. The empirical probability of arc 
discharge can be described by a function that drops sharply in the range of 0–0.5. Since the decline is very steep, 
the form of the function may not be unique. The  SO2F2/SO2 ratio of corona discharge is high in general, and the 

Figure 4.  (a) The relationship between fault discharge type and the concentration ratio of  SO2F2/SO2 calculated 
by direct machine learning. (b) The relationship between fault discharge type and the concentration ratio of 
 SO2F2/SO2 calculated by the machine learning with adjusted data, which can well describe the energy of the 
discharge fault.
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probability has a significant increase at the ratio of about 4. Given that the chemical reaction rate usually satisfies 
the Arrhenius model, it was originally expressed by:

where M is the amount of the reactant; ∂M/∂t represents the reaction rate of the temperature at T (thermo-
dynamic temperature); kB is the Boltzmann constant; T is the absolute temperature; A0 is a constant; t  is the 
reaction time; �E (eV) is the activation energy of the reaction, which is constant for the same reactant of the 
same chemical reaction. If the amount of the initial state reactant is M1 , the corresponding reaction time is t1 ; the 
other state is M2 , and the corresponding time is t2 . In the case of temperature T being constant, the cumulative 
digestion amount from t1 to t2 can be given by

Function (8) indicates that the consumption of reactants or the accumulation of products has an exponential 
relationship with respect to the activation energy �E of the reaction. Also, the data characteristics are illustrated 
in Fig. 3 that the slope value log(nso2)/log(nso2F2) of the linear cluster of fault discharges is constant. As referred 
to the Arrhenius model and the data characteristics, the s-shaped f2(x) that rises sharply at the ratio interval of 
4–5 was chosen as the empirical probability function for corona discharge. For spark discharge, the empirical 
probability function can be derived from the normalization principle.

Figure 4b shows the results of re-machine learning obtained by adjustment of the empirical probability 
functions. It can be found that KNN and the Random Forest algorithm were more easy and suitable, both of 
them presented an obvious and gentle gradient step shape, which is more realistic. For the KNN-based machine 
learning algorithm suitable for the modeling in this situation, the explanation can be that: (1) the KNN algorithm 
mainly relies on the surrounding limited samples, rather than discriminating the sample’s overall class domain to 
determine the category. Therefore, for the sample set divided with more overlapping domains, the KNN method 
not only is suitable for classification, but it also has a strong transition compared with other algorithms, which is 
in good agreement with our empirical probability model. (2) The KNN algorithm has the characteristics of high 
precision and insensitivity to outliers with the weighted average of different distances. It is suitable for classifying 
rare events, which is consistent with the GIS equipment discharge faults in our analysis object.

Figure 5 shows the test results for the discharge fault severity model trained by KNN. The three types of dis-
charge fault follow a step-shaped distribution of energy levels. In arc discharge area, the value of  SO2F2/SO2 ranges 
from 0 to 0.4. In the spark discharge area, it ranges from 0.4 to 4.2 and the value of  SO2F2/SO2 is bigger than 10 
in the corona discharge area. It’s worth noting that the dot between spark discharge and corona discharge gives 
a predicted value below 1.5, which means that it is dominated by corona discharge. Based on this, the gradual 

(7)∂M/∂t = A0e
−

�E
kBT

(8)M2 −M1 =

∫ t2

t1

e
−

�E
kBT dt = e

−
�E
kBT �t

Figure 5.  The identification model for severity of discharge fault trained by KNN method under characteristic 
parameter  SO2F2/SO2 and the result of the test points.
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change of  SO2F2/SO2 from 4.2 to 10 illustrates the biased corona discharge state, a transition state from corona 
discharge to spark discharge.

Furthermore, the decomposition process of  SF6 under different discharge types can be predicted in this model. 
In the initial corona discharge, a small amount of S–F bond is broken and react with trace oxygen in the reaction 
zone to produce low fluoride  (SO2F2 mainly). In a biased corona discharge state, the S–F bond breaks further but 
very slowly. When the concentration ratio of  SO2F2/SO2 is greater than the critical point at 4.2, the discharge fault 
enters a high energy state with a large number of S–F bond breaking. Because of the existence of oxygen in the 
reaction zone, the concentration of  SO2 increases rapidly, and the concentration ratio of  SO2F2/SO2 decreases 
with the increase of energy. It can be inferred that  SF6 has a very large fracture degree of S-F bond under high-
energy discharge, and the fracture speed becomes much faster after the biased corona discharge  state21. Based 
on this, the point at 4.2 can be used as a critical point between high and low energy discharge states, which is of 
great significance for high energy discharge fault warning. In addition, it was also found that the point  SO2F2/
SO2 = 1 falls in the span of spark discharge. This characteristic can be used to explain the inability to compare 
the content relationship between  SO2 and  SO2F2 in spark  discharge26,37.

Figure 6 shows the sample data organized with the parameters  CF4/CO2 and  (SOF2 + SO2F2)/(CF4 + CO2). A 
certain aggregation and continuity of the distribution of insulation defect types for each discharge fault can be 
discovered. Figure 7 gives the two better models from the six: random forest distribution and Gaussian Distribu-
tion. The parallel line boundary of the Random Forest model is simple and effective in the fault judgment, while 
the Gaussian Distribution model has a good smooth slope and fits well with the actual data distribution. For 
the high conformity of Gaussian Distribution in this application scenario, the explanation can be considered: 
when the data presents a nonlinear trend, the Gaussian process regression can be combined with the Bayesian 
probability algorithm to give the probability of the predicted value and the confidence interval in the form of 
multidimensional Gaussian Distribution. This non-linear classification property and the idea of   considering the 
sample probability distribution are in good agreement with the probability model.

Figure 8 shows the test results for the insulation defect model obtained by Gaussian Distribution. It can be 
roughly seen that four kinds of insulation defects have their clustering areas, which are labeled as N (protrusion 
defect), G (gap defect), M (pollution defect), and P (particle defect) respectively. Compared with the results 
(the hidden lines showed between different clustering) of the code tree method, it can be seen that the classifi-
cation of insulation defects is consistent, except for some pollution defects in region N and  G38. The pollution 
defects near the boundary between region N and region G, where  (SOF2 + SO2F2)/40(CF4 + CO2) ≈ 0.15, are 
interpreted as insulator surface pollution defects which are caused by secondary effects of other  defects21. In 
this area, the low value of  CF4/CO2 shows that F atoms produced by the fracture of the S–F bond react more 
with the metal, which reduces the amount of  CF4 and leads to the severe deterioration in metal. While the 
value of  (SOF2 + SO2F2)/40(CF4 + CO2) changes a lot from gap defect to protrusion defect. Considering the 
same decomposition degree of  SF6, the value of  (SOF2 + SO2F2)/40(CF4 + CO2) mainly depends on the number 

Figure 6.  The combination of  (SO2 + SO2F2)/(CF4 + CO2) and  CF4/CO2 performs well because of the discrete 
characteristic except for the conflict between the pollution defect and gap defect.
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of carbon atoms from the degraded organic insulation. As a result, the insulator surface pollution defects are 
caused by secondary effects of gap defect with less degraded organic insulation or protrusion defect with more 
degraded organic insulation. Such an effect means that the coexistence of multiple insulations, which is worth 
noting during the GIS maintenance. By revealing the surface insulator pollution defects which code tree method 
does not have, this model explains why some identification models misjudge at the  boundary39. In addition, the 
pollution defects in the M region represents internal insulator pollution defects. The model was also compared 
with models with more characteristic  parameters34. It can be concluded that, even with the addition of the  SOF2/
SO2F2 characteristic parameter, the sample points of the pollution defect of insulation still overlap with other 
defects. This comparison proves the existence of multiple discharges and supports the feasibility of using only 
two parameters  CF4/CO2 and  (SOF2 + SO2F2)/(CF4 + CO2).

Figure 7.  (a) The relationship between insulation defects of fault discharge and the characteristic parameters 
 (SO2 + SO2F2)/(CF4 + CO2) and  CF4/CO2 calculated by the Random Forest method with the contour model. (b) 
The relationship between insulation defects of fault discharge and the characteristic parameters  (SO2 + SO2F2)/
(CF4 + CO2) and  CF4/CO2 calculated by the Gaussian Distribution method with the contour model.
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Conclusions
In general, a well-trained machine learning model obtained by optimized data from the different environments 
can describe the severity of fault discharge and the type of insulation defect after pre-processing. In the severity 
model obtained by KNN, a biased corona discharge state is revealed as a transition state from corona discharge 
to spark discharge, where  SO2F2/SO2 ranges from 4.2 to 10. Meanwhile, the critical point at 4.2 is of great sig-
nificance for high energy discharge fault warning, because of the rapid fracture of S–F bond and energy increase 
after this point. In the insulation defect model obtained by Gaussian Distribution, the region near the boundary, 
where  (SOF2 + SO2F2)/40(CF4 + CO2) ≈ 0.15, is considered as a multiple discharge coexistence area. In this area, 
surface insulator pollution defects will be caused by secondary effects of gap defect with less degraded organic 
insulation or protrusion defect with more degraded organic insulation. Such an effect is worth noting during 
GIS maintenance. Considering the data from a different environment and preprocessing the data uniformly, this 
model reveals some states not mentioned before. In addition, some improvement measures can help our model 
performs better in the application, such as more sample data of real added, more possible insulation defects 
considered, and clearer decomposition mechanism of  SF6 discussed. In this case, the probability model would 
be more reliable on the evaluation of the fault of the GIS system.
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