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A comprehensive p75 neurotrophin 
receptor gene network 
and pathway analyses identifying 
new target genes
Antti Sajanti1, Seán B. Lyne2, Romuald Girard2, Janek Frantzén1, Tomi Rantamäki3, 
iiro Heino1, Ying Cao2, Cassiano Diniz4, Juzoh Umemori4, Yan Li2,5, Riikka Takala6,7, 
Jussi P. Posti1, Susanna Roine8, Fredrika Koskimäki8, Melissa Rahi1, Jaakko Rinne1, 
Eero Castrén4 & Janne Koskimäki1,9*

P75 neurotrophic receptor (p75NTR) is an important receptor for the role of neurotrophins in 
modulating brain plasticity and apoptosis. The current understanding of the role of p75NTR in cellular 
adaptation following pathological insults remains blurred, which makes p75NTR’s related signaling 
networks an interesting and challenging initial point of investigation. We identified p75NTR and 
related genes through extensive data mining of a PubMed literature search including published works 
related to p75NTR from the past 20 years. Bioinformatic network and pathway analyses of identified 
genes (n = 235) were performed using ReactomeFIViz in Cytoscape based on the highly reliable 
Reactome functional interaction network algorithm. This approach merges interactions extracted 
from human curated pathways with predicted interactions from machine learning. Genome-wide 
pathway analysis showed total of 16 enriched hierarchical clusters. A total of 278 enriched single 
pathways were also identified (p < 0.05, false discovery rate corrected). Gene network analyses showed 
multiple known and new targets in the p75NTR gene network. This study provides a comprehensive 
analysis and investigation into the current knowledge of p75NTR signaling networks and pathways. 
These results also identify several genes and their respective protein products as involved in the 
p75NTR network, which have not previously been clearly studied in this pathway. These results can be 
used to generate novel hypotheses to gain a greater understanding of p75NTR in acute brain injuries, 
neurodegenerative diseases and general response to cellular damage.

Neurotrophins are secreted dimeric proteins, including BDNF, the most well-known, as well as nerve growth 
factor (NGF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4)1,2. These neurotrophins and their receptors 
function in an extensively well-regulated mechanism resulting in a delicate equilibrium that is highly responsive 
to nervous system injury and  change3. Neurotrophins bind to two distinct types of receptors including p75 neu-
rotrophin receptor (p75NTR) with a lower affinity, as well as to the tropomyosin receptor kinases (Trk) receptors, 
which function as tyrosine kinase receptors with high affinity and  selectivity4. Precursor forms of neurotrophins 
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acts as potent ligands for p75NTR and can induce apoptosis, while lacking affinity to Trk  receptors5. The Trk 
receptors activate numerous downstream pathways including the MEK/MAPK pathway, extracellular signal-reg-
ulated kinase (Erk), the PI3K-Akt pathway, and the phospholipase C gamma  pathway6. In contrast the p75NTR 
does not have intrinsic tyrosine kinase activity, but rather associates with other transmembrane proteins including 
the Trks, Nogo and myelin associated glycoprotein (MAG) for its downstream  effects5.

This modulating role of p75NTR have been shown in several animal model studies. Inhibition of p75NTR and 
its associated Nogo co-receptor exerts a neuroprotective effect in models of middle cerebral artery  occlusion7. 
Similarly, a down-regulation of both Nogo and p75NTR promoted improved stroke recovery in another pre-
clinical model of middle cerebral artery  occlusion8. Nogo associates with p75NTR by MAG, oligodendrocyte 
myelin glycoprotein or Nogo that activates RhoA leading to inhibition of neurite  outgrowth5. In-line with down-
regulation exhibiting possible neuroprotective and stimulatory effects, activation of p75NTR by proneurotrophins 
in culture induces a pro-apoptotic effect on  neurons9. This is particularly interesting since cleaved neurotrophins 
promoted recovery through  Trks9. In another model of central nervous system (CNS) injury, a small-molecule 
modulator of the p75NTR receptor demonstrated that modulation of this receptor and its associated pathways 
results in improved outcomes following traumatic brain  injuries10. All of these studies point to the strong role 
of neurotrophins and p75NTR in the response to CNS injury.

Viewing the role of neurotrophins in exhibiting neuroprotective effects from a slightly different viewpoint, it 
has previously been suggested that Alzheimer’s disease (AD) amyloid β peptide also acts as ligand to p75NTR, 
but not Trk receptors while inducing neuronal  apoptosis11. This mechanism of p75NTR mediated apoptosis 
without Trk receptor activation likely plays a significant role in AD  pathogenesis11. Interestingly, further findings 
by Yao et al. (2015) demonstrated physiological neuroprotective effects of p75NTR ectodomain against amy-
loid β peptide toxicity in the brain of AD  patients12. In addition, AD patients have increased levels of p75NTR 
and proBDNF in hippocampal tissue samples and a greater proBDNF/BDNF ratio in cerebrospinal fluid that 
may result in imbalance of death and survival counter-regulation  mechanisms13. Of note, in AD an increased 
level of proNGF leads to p75NTR activation and apoptosis in the absence of  TrkA14. P75NTR has been shown 
to have similarities in the biology of Amyloid precursor protein (APP) which plays a significant role in AD 
 patophysiology15. Also, patients with amyotrophic lateral sclerosis (ALS), another neurodegenerative disease, 
revealed highly increased p75NTR ectodomain concentrations in urine when compared to healthy controls. In 
addition, high concentrations of p75NTR ectodomain correlated to progression of ALS  disease16.

Understanding the role that p75NTR and associated molecules may play in AD also supports the notion that 
these molecular mechanisms should not be underestimated in the pathophysiological response to acute brain 
injury. Especially when considering the significant role that plasticity and associated adaptive mechanisms may 
play in these insults, including chronic traumatic  encephalopathy15,17,18. With p75NTR being studied in various 
different diseases and fields suggests that it may play an important central role in cellular response to injury. The 
body of evidence surrounding p75NTR is diffusely spread out over numerous fields suggesting that a review of 
these separate bodies of work in one study may identify new connections, pathways, and mechanisms that were 
previously identified as isolated characteristics.

Herein, we investigate the published literature through machine-learning approaches to study the role of 
p75NTR and its related gene networks in an attempt to elucidate new factors that may be important to future 
development of therapeutic targets. We hypothesized that by using already published results of p75NTR signal-
ing, we would be able to investigate p75NTR interaction networks and pathways to understand how these genes 
form networks, connections, and signaling pathways across the broad literature that involves p75NTR. By using 
machine learning educated linkage gene analysis, we aimed to identify new gene and protein candidates that may 
be involved in a network with p75NTR, but have not been widely identified or established as possible targets in 
the literature regarding acute and chronic response to cellular injury.

Materials and methods
Literature search and identification of target genes. In order to identify p75NTR and its related 
genes, we performed an extensive literature search using PubMed on published articles from the past 20 years 
(1998/11/13–2018/11/13) related to p75NTR. The final query term was: (p75[All Fields] AND ("neurons"[MeSH 
Terms] OR "neurons"[All Fields] OR "neuron"[All Fields])) OR (p75[All Fields] AND ("brain"[MeSH 
Terms] OR "brain"[All Fields])) OR (p75[All Fields] AND neural[All Fields]) AND ("1998/11/13"[PDAT] : 
"2018/11/13"[PDAT]). The query resulted in a total of 2041 publications. We used R statistical software with 
“PubMed.mineR” package to mine all gene names appearing in the 2041 publication  abstracts19 (Core-team R 
2015). Appropriate gene names were used in accordance with HUGO Gene Nomenclature Committee (HGNC) 
approved symbols (genenames.org). The results of data mining were adjudicated by the authors JK and AS.

Bioinformatic analyses. A flow of the study is presented in Fig. 1. We used two approaches to study the 
p75NTR gene and its role in gene networks and pathways. Network analyses were performed with Reactome-
FIViz in Cytoscape (https ://www.cytos cape.org/) based on a highly reliable Reactome functional interaction (FI) 
network. The entire FI network was constructed by merging interactions extracted from human curated path-
ways with interactions predicted using a machine learning  approach20,21. Network analyses were followed with 
Reactome pathway analyses, and false discovery rate (FDR) corrected p-value < 0.05 was considered to be sig-
nificant in order to avoid false positive  results22. Visualization of genome-wide pathway enrichment analysis and 
generation of hierarchical cluster figure was performed with Reactome analysis tool provided in reactome.org20.

Ethics approval. Institutional ethics board evaluation was not applicable due to the nature of this study. 
Good scientific practice was used throughout this study.

https://www.cytoscape.org/
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Results
Genes associated to p75NTR. With the data mining approach, we identified a total of 235 genes associ-
ated to p75NTR and its role in neuronal signaling (Tables S1 and S2). Using gene frequencies in the mined litera-
ture, the top 20 genes that emerged were NGF, BDNF, TNF, MAG, GDNF, GFAP, APP, p75NTR, TRAF6, CNTF, 
EGF, EGFR, PGP, TRPC6, PTEN, AR, CHL1, SOX10, MBP and NTRK1. A full list of the identified 235 genes is 
available in the supplemental material.

Hierarchical genome-wide gene set enrichment analysis. We used the 235 p75NTR related genes 
to investigate the hierarchical genome-wide pathways and which of these pathways were enriched in known 
pathways. The enrichment analysis initially demonstrated that p75NTR and related genes aggregate in different 
hierarchical clusters (Fig. 2). Overall, 16 out of 27 hierarchical pathway clusters were enriched with at least one 
pathway. Hierarchal pathway clusters that included 10 or more enriched pathways were programmed cell death, 
immune system, signal transduction, developmental biology, gene expression, disease, and extracellular matrix 
organization.

Enriched pathways. We further identified enriched pathways related to 235 p75NTR related genes without 
first modeling through hierarchal pathway clusters. Through this analysis, 278 enriched pathways were identified 
(p < 0.05, FDR corrected, Table S3). The five most enriched pathways (according to FDR corrected p-value) were 
pathways in cancer, signaling by interleukins, signaling by NGF, melanoma, and proteoglycans in cancer. A list of 
the top 20 pathways are presented in Table 1. A full list of enriched pathways and individual genes in the nodes 
are presented in supplemental material.

Gene network analyses. After pathway analyses, we performed gene network interaction analyses to 
understand how p75NTR and related genes connect to each other with related functions (Fig. 3). Analysis of 
235 genes identified 10 highly interconnected genes with more than 20 connections. These highly connected 
genes were STAT1, STAT3, SP1, JUN, EGFR, TRAF6, JAK2, NRAS, TP53 and MDM2. In addition, P75NTR, NGF, 
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Figure 1.  Work-flow diagram. 1 PubMed database queried with inclusive specified search terms. 2 Acquired 
data mined resulting in target genes. 3 Network analyses performed using a highly reliable algorithm extracted 
from multiple human-curated pathways. Network analyses followed with pathway enrichment analysis with 
hypergeometric testing.
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FGFR3, EGF, TNF, NTRK1, EGR1 and CBL were identified to have 15–19 connections. The rest of the mined 
genes related to p75NTR had less than 15 connections in the formed in silico network analysis.

We performed further gene analyses with the use of linkage genes to identify genes linked to 235 genes 
through educated machine learning analysis across the Reactome FIViz database. Linkage genes were those 
genes that were not identified as constituents of the 235 genes. With this approach we identified a total of 38 
linkage genes that were mechanistically connected to the mined 235 genes (Fig. 4). Seven of the genes identified 
were highly connected with 40 or more connections. These genes were GRB2, SRC, EP300, MAPK1, MAPK3, 
UBC and CTNNB1. Fifteen linkage genes were identified to have 20–39 connections. The remaining 16 linkage 
genes had less than 20 connections.

Figure 2.  Genome-wide overview of pathway enrichment analysis Enriched pathways are highlighted in 
yellow. Out of the 27 shown hierarchical clusters, 16 clusters had enriched pathways. Immune system, signal 
transduction, programmed cell death, developmental biology, gene expression, disease and extracellular matrix 
organization pathways cluster were the most enriched with numerous pathways.

Table 1.  Top 20 enriched pathways identified after analyzing 235 p75NTR and related genes. FDR false 
discovery rate.

Pathway Proportion of proteins in pathway Number of proteins in pathway Proteins from network p-value, FDR corrected

Pathways in cancer 0.0365 397 38 < 0.0001

Signaling by interleukins 0.0423 460 38 < 0.0001

Signaling by NGF 0.0387 421 36 < 0.0001

Melanoma 0.0065 71 16 < 0.0001

Proteoglycans in cancer 0.0189 205 24 < 0.0001

Signaling by SCF-KIT 0.0267 290 28 < 0.0001

MAPK signaling pathway 0.0235 255 26 < 0.0001

Direct p53 effectors 0.0121 132 19 < 0.0001

Signaling by EGFR 0.0292 317 28 < 0.0001

EGFR tyrosine kinase inhibitor resistance 0.0075 81 15 < 0.0001

Hepatitis B 0.0134 146 19 < 0.0001

p75(NTR)-mediated signaling 0.0063 69 14 < 0.0001

Signaling by PDGF 0.0302 328 27 < 0.0001

Signaling pathways regulating pluripotency of stem 
cells 0.0131 142 18 < 0.0001

Bladder cancer 0.0038 41 11 < 0.0001

Breast cancer 0.0134 146 18 < 0.0001

PIP3 activates AKT signaling 0.0102 111 16 < 0.0001

Signaling by leptin 0.0192 209 21 < 0.0001

RAF/MAP kinase cascade 0.0185 201 20 < 0.0001
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Finally, we performed focused functional interaction subnetwork analyses of identified highly connected 
(≥ 40) genes and linkage genes in relation to the p75NTR and its main ligand NGF. P75NTR and NGF were 
identified to both activate GRB2. In addition, p75NTR had direct connection to linkage gene UBC and associa-
tion to MAPK1. Furthermore, p75NTR had activation connection to its main ligand NGF and TP53. In the same 
network, we identified several additional linkage genes including SRC, EP300, MAPK3 and CTNNB1 (Fig. 5).

Discussion
The complex role of p75NTR in brain plasticity and apoptosis has proven a challenging subject of investigation 
leaving researchers without a full understanding of the role it plays in various pathophysiological aspects. Herein 
we investigated previously published literature using data mining and machine learning approaches to gain a bet-
ter understanding of p75NTR’s gene networks and pathways. We identified p75NTR related genes, gene networks, 
and pathways while identifying new associated p75NTR network genes. While a portion of these results validate 
previously published mechanistic links, the advantage of reviewing vast amounts of previously unconnected 
literature through this approach also identified new genes and proteins for future studies. The pathway analyses 
provide a general overview of the functions of p75NTR in a network with its closely related genes. The data 
presented here will also serve as a useful resource to the research community in querying potential biomarkers, 
therapeutic targets, and potential areas of future studies.

Our results obtained from genome-wide cluster and pathway analyses validated the current understand-
ing of p75NTR in that it plays a role in various pathways including programmed cell death, immune system 
modulation, signal transduction, developmental biology, gene expression regulation, and extracellular matrix 
 organization2,9,23–27. The most enriched pathways identified validated the roles of previous studies, such as the 
finding that p75NTR has been shown to be highly expressed in human cancers including  melanoma26,28,29. The 
link of p75NTR to cancer pathology is particularly interesting, given its role in immune modulation, matrix 
remodeling, and cellular adaptation. However, there are currently no studies demonstrating p75NTR’s effects 
on modulating the immune response in cancer, nor in acute or chronic brain disease suggesting this area may 
warrant further investigation, noting also the fact that p75NTR belongs to tumor necrosis factor receptor super-
family. The pathway analyses that resulted provide a general overview of the functions of p75NTR in a network 
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with its closely related genes. Overall, 278 enriched pathways and 16 hierarchical pathway clusters were identi-
fied generating vast amounts of data that may be useful for validation and future research by other investigators.

The gene network analyses in combination with the focused subnetwork analysis using linkage genes identi-
fied functionally related genes that were not part of our original datamined p75NTR identified genes. GRB2 has 
been shown to be directly downstream of TrkA acting as a signaling adaptor  protein30. Associations or links of 
p75NTR and GRB2 are not well established. Interestingly, in the brain tissue of scrapie infected rodents, BDNF, 
TrkB, phospho-TrkB, GRB2 and p75NTR were all significantly down-regulated supporting the direct association 
identified in our results between GRB2 and p75NTR31,32. Viral infection etiology of AD has been a widely known 
controversial topic. This makes the finding about scrapie viral infection particularly interesting. Results of three 
independent AD cohorts showed disruption of molecular, genetic, and clinical networks by human  herpesvirus33. 
However, the role of p75NTR in possible viral pathophysiology of AD remain unknown, but these results in 
conjunction with previous works may shed some light generating new hypotheses and studies.

Another linkage gene identified was UBC, the gene for polyubiquitin precursor protein, which is known to 
have a role in proteasome  degradation34. Conjugation of ubiquitins has been well established as highly important 
for protein degradation and the associated role that plays in larger cellular process such as DNA repair, cell cycle 
regulation, kinase modification and endocytosis  system34,35. Loss of UBC is associated with the pathophysiologi-
cal molecular factors of AD via decreased proteasome degradation system, which may be thought of as cells 
inefficiently removing malfunctioning, damaged, or old  proteins36. These connections with p75NTR underline 
the important role in AD’s  pathophysiology17. However, it is important to understand that the role of p75NTR 
in AD pathophysiology is only a model for which p75NTR likely acts as a central protein signaler in response to 
various elements of cellular damage.

MAPK1/ERK2 and MAPK3/ERK1 pathways were also identified and their roles have been reported in apop-
tosis, neuronal repair, and axonal  growth37,38. As shown in several studies, MAPKs are downstream targets of Trks 
and  p75NTR38,39. Our results suggested that NGF and p75NTR link with MAPK1, and NGF activates MAPK3, 
which are in line with previously published  studies39,40. An interpretation for these interactions in the broader 
context of a disease can be seen with inhibition of ERK1/2 following the acute phase of stroke promoting long-
term functional outcome and enhanced later-stage recovery processes in  rats41. Other experiments using pre-
clinical rat models have shown how MAPK activity also plays a fundamental role during postnatal neurogenesis 
when hippocampal apoptosis and synaptogenesis are  occurring42. The significant connections between MAPK 
and p75NTR highlight that p75NTR should also be further investigated in relation to these disease processes, 
as well as finding possible targets for future medical therapy.

In addition, SRC, CTNNB1, and EP300 were identified in the same linkage gene network with p75NTR. Inter-
estingly, inhibition of SRC family kinases improved cognitive function in rats after intraventricular  hemorrhage43. 
Indeed, these observations further increase the interest of p75NTR and its role following hemorrhagic insult as 
another form of pathological damage cells suffer acutely. Similarly, CTNNB1 encodes a β-catenin protein that 
increases proNGF leading to p75NTR activation ultimately promoting neuronal  growth44. Further investigation 
showed that modulation of β-catenin pathway was neuroprotective after intracerebral hemorrhage in  rats45. The 
role of p75NTR, however, was not previously studied in these aspects. Our results suggest an association between 
CTNNB1 and p75NTR possibly demonstrating a substantial role for p75NTR in the stroke response.

Previously, sortilin (SORT1), lingo (LINGO1) and NRAGE (MAGED1) have been linked to p75NTR func-
tions regulating apoptosis, axonal outgrowth and transporting pro-neurotrophins1,27,39. The genes did not result 
in the analyses directly. Interestingly however, MAGEL2 was identified in our analysis that belong to the same 
melanoma-associated antigen (MAGE) family than NRAGE, and shares strong homology to NRAGE and other 
proteins in MAGE-family. As NRAGE is involved in the p75NTR mediated programmed cell death, MAGEL2 is 
linked to neurodevelopmental disorders such as Prader-Willi syndrome and Schaaf-Yang syndrome. This suggest 
significant importance of MAGEL2 in neuronal development in  humans46. Previous animal studies have shown 
that mTOR and autophagy pathways are dysregulated in Magel2 null mice  models47. In our analysis, MAGEL2 
was directly linked to transcription factor E2F1 that was directly linked to p75NTR. This suggests a role of 
necdin-related MAGE proteins in p75NTR functions, supported by preclinical  observations48.

Two of seven subnetwork linkage genes identified here, namely UBC, and EP300 have not been extensively 
studied in the context of brain plasticity. These two linkage genes and their encoded proteins could be interest-
ing targets for future studies to explore in patients with acute brain injury or neurodegenerative diseases. This 
also highlights the benefit of taking large scale approaches through data mining, which allows for an overview 
of the interactions that may exist between different studies, but have not previously been discovered to exist.

Our study was limited to in silico analyses, and confirmatory in vitro or in vivo analyses were not performed. 
However, the research approach used herein has the advantage of interrogating a large dataset through a system-
atical approach which incorporates all currently available knowledge. Analyzing such a search with powerful 
bioinformatic tools educated with machine learning algorithm from human curated pathways allows for broad 
investigation of connections that may have previously been missed, or not looked for in the first place. Confir-
mation of discussed associations are warranted.

Conclusion
We provide the single largest comprehensive gene and functional network library of p75NTR. This study incor-
porates current knowledge using a large dataset approach that increases the overall understanding of complex 
p75NTR networks. These results suggest both new possible target genes for further investigation in p75NTR 
research, while also validating previously conducted research in identifying pathways, genes, and clusters that 
highlight p75NTR’s biological function. These results can be used to generate novel hypotheses to gain a greater 
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understanding of p75NTR in acute or chronic brain injuries, other neurodegenerative diseases, and the general 
response to cellular injury.

Data availability
All data generated or analyzed during this study are included in this manuscript and its supplementary informa-
tion files. Source data is included as supplementary file and also can be retrieved from PubMed.gov with term: 
(p75[All Fields] AND ("neurons"[MeSH Terms] OR "neurons"[All Fields] OR "neuron"[All Fields])) OR (p75[All 
Fields] AND ("brain"[MeSH Terms] OR "brain"[All Fields])) OR (p75[All Fields] AND neural[All Fields]) AND 
("1998/11/13"[PDAT]: "2018/11/13"[PDAT]).

Code availability
Open source R statistical software were used with “PubMed.mineR”  package19. Figure 1 was generated by 
using biorender tool (biorender.com). Network and pathway analyses were performed with ReactomeFIViz in 
Cytoscape software platform (https ://www.cytos cape.org/), and respective network figures were generated by 
the same program  tool20,21.
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