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A mask R‑CNN model 
for reidentifying extratropical 
cyclones based on quasi‑supervised 
thought
Chuhan Lu*, Yang Kong & Zhaoyong Guan

The applications of machine learning/deep learning (ML/DL) methods in meteorology have developed 
considerably in recent years. Massive amounts of meteorological data are conducive to improving the 
training effect and model performance of ML/DL, but the establishment of training datasets is often 
time consuming, especially in the context of supervised learning. In this paper, to identify the two-
dimensional (2D) structures of extratropical cyclones in the Northern Hemisphere, a quasi-supervised 
reidentification method for extratropical cyclones is proposed. This method first uses a traditional 
automatic cyclone identification method to construct a trainable labeled dataset and then reidentifies 
extratropical cyclones in a quasi-supervised fashion by using a (pre-trained) Mask region-based 
convolutional neural network (Mask R-CNN) model. In comparison, the new method increases the 
number of identified cyclones by 8.29%, effectively supplementing the traditional method. The newly 
recognized cyclones are mainly shallow or moderately deep subsynoptic-scale cyclones. However, 
a considerable portion of the new cyclones along the coastlines of the oceans are accompanied by 
strong winds. In addition, the Mask R-CNN model also shows good performance in identifying the 
horizontal structures of tropical cyclones. The quasi-supervised concept proposed in this paper may 
shed some light on accurate target identification in other research fields.

Extratropical cyclone activity has always been a hot issue because the systems of extratropical cyclones are typi-
cally associated with severe storms and intense precipitation; cyclone systems are also closely related to the social 
economy, especially under the influence of global climate change in recent years. To automatically and reasonably 
quantify cyclone activity, many researchers have proposed a variety of cyclone identification and tracking algo-
rithms, including the neighbor cyclone center point (NCP) method1–4 and the cyclone area algorithm (CAA)5–9, 
based on different perceptions of what best characterizes a cyclone. The CAA can straightforwardly depict the 
horizontal structure of a cyclone as well as its scale characteristics8,10. However, because of the complex structure 
of an extratropical cyclone, various algorithms still suffer from great uncertainties for moderate and shallow 
cyclones and for cyclones over mountainous areas11.

The concept of deep learning (DL)12 was first proposed by Hinton et al.13. Since the early twenty-first century, 
convolutional neural networks (CNNs)14,15, one of the classic algorithms for DL models, have achieved remark-
able results in the fields of computer vision and image recognition16. These successes have provided new ideas for 
the fields of meteorology and remote sensing17. Some experts and scholars have introduced the concept of DL (or 
CNN models) into their different meteorological research directions18–25. For example, Shi et al.18 proposed the 
convolutional LSTM (ConvLSTM) model for precipitation nowcasting based on DL, Hong et al.19 used CNNs 
for typhoon tracking, and Zhang et al.20 constructed a CNN model for cloud classification tasks. The automatic 
identification of the two-dimensional (2D) structure of an extratropical cyclone essentially constitutes the accu-
rate identification of the shape of an object. In recent years, many studies on target recognition have adopted 
a combination of the region proposal network (RPN) and CNN; as a result, some new models and improved 
products have been proposed, such as the R-CNN26, SPP-Net27, Fast R-CNN28 and Faster R-CNN29. In particular, 
the Mask R-CNN model, proposed by He et al.30, adds a parallel branch to predict the object mask (the object’s 
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spatial profile) based on the Faster R-CNN model (usually used to classify and locate objects) and outperforms 
existing object pixel-level detection models. Zhang et al.31 applied the Mask R-CNN model to the classification 
and identification of Arctic ice-wedge polygons because of its simple concept and superior capability. The Mask 
R-CNN model has been shown a good performance in identifying the object-shape in the field of computer vision 
as well as the geophysics research. This inspires us to apply the model to the identification of the extratropical 
cyclone, considering the variety and complexity of the structure of extratropical cyclone.

Although DL algorithms have achieved outstanding results (some of which even surpass the human level) 
on many supervised learning and object identification problems, constructing a large-scale labeled database to 
train a DL model (such as the Mask R-CNN model) is still a challenging task32. Therefore, this paper proposes a 
method to construct a more reliable labeled dataset for the training of DL models (i.e., the Mask R-CNN model) 
by using the traditional automatic cyclone identification method instead of a manual labeling scheme. On the 
other hand, the identification of cyclone extent can effectively reduce the complexity of tracking cyclone-merging 
or splitting events (e.g., Hewson33; Hanley and Caballero34). In this paper, first, the CAA proposed by Lu9 is used 
to identify the 2D structure of an extratropical cyclone (north of 20° N), and a 2D extratropical cyclone dataset 
(quasi-ground-truth) is constructed for training. The Mask R-CNN model is then applied to further identify 2D 
extratropical cyclones; we refer to this algorithm as an extratropical cyclone quasi-supervised reidentification 
method. Several previous studies have shown that DL models can provide reliable results when processing com-
plex multi-dimensional meteorological data18–20. Our method solves the problem of constructing a large-scale 
labeled database for DL models by using traditional identifying algorithms, that may efficiently improve the 
practical efficiency of DL models. Therefore, the performance of the proposed method on extratropical cyclones 
and its applications in the identification of tropical cyclones are discussed.

Data and methods
Data.  The data used in this study consist of the ERA-Interim dataset35 from 1979 to 2013 (6-h time resolution) 
with a horizontal resolution of approximately 0.7° × 0.7° (T255 Gaussian grid). Data of the 850 hPa geopotential 
height field are used to identify extratropical cyclones to the north of 20° N in the Northern Hemisphere.

Identification process.  The general workflow of the extratropical cyclone quasi-supervised reidentifica-
tion method based on the Mask R-CNN model includes two main steps (Fig. 1). (1) The CAA is used to ini-
tially generate the cyclone’s regime (mask); this algorithm simultaneously outputs the boundary of each cyclone, 
detected by the outermost enclosed contour of the cyclone, while searching for the cyclone center by expanding 
outward from the center until the outermost enclosed contour is found9. (2) Both the cyclone masks output by 
the CAA and the 850 hPa geopotential height field data are processed as grayscale images to construct a training 

Figure 1.   The general workflow of the extratropical cyclone quasi-supervised reidentification method based on 
the Mask R-CNN model. (The upper black dashed box in the figure shows the simplified basic structure of the 
Mask R-CNN model, while the red dashed box indicates the input and output).
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dataset for the input of the Mask R-CNN model for transfer training. Subsequently, the image of the 850 hPa 
geopotential height field at each time step is input into the trained Mask R-CNN model, following which the 
individual mask (consisting of the cyclone’s regime and its peripheral boundary) of each extratropical cyclone at 
that time can be obtained. Finally, the results of the Mask R-CNN model are supplemented with the CAA results 
to obtain a combined cyclone identification set. For example, the red dashed box farthest to the right in Fig. 1 
shows the contribution of the Mask R-CNN model to the CAA results. The source code of our model is free avail-
able on https​://githu​b.com/young​er-KongY​/A-Mask-R-CNN-model​-for-ident​ifyin​g-cyclo​nes.

Results
Extratropical cyclone identification.  Through the method described in identification process, we obtain 
the identification results of the quasi-supervised reidentifying extratropical cyclone based on the Mask R-CNN 
model. Over 79% of cyclones in the CAA can be reidentified (with overlapping areas) in the Mask R-CNN 
model, showing good agreement between the two methods. More importantly, compared with the CAA results, 
58,260 individual cyclones are added after being reidentified by the Mask R-CNN model, accounting for 8.29% 
of the CAA results.

To further show the robustness of the Mask R-CNN model, we compared the seasonal mean cyclone 2D-fre-
quency (%) with the result in Wernli and Schwierz (cf. their Fig. 4)7. The 2D-frequency at every location cor-
responds to the percentage of time instants that the point is located within a cyclone. As shown in Fig. 2, the 
seasonal march and spatial distribution of cyclone frequencies derived by Mask R-CNN are identical to Wernli 
and Schwierz7. In particular, high values present over the storm track region in both the North Pacific and the 

Figure 2.   Seasonal mean cyclone 2D-frequencies (%) in the Northern Hemisphere during 1979–2013 for (a) 
DJF, (b) MAM, (c) JJA, and (d) SON.

https://github.com/younger-KongY/A-Mask-R-CNN-model-for-identifying-cyclones
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North Atlantic, the Mediterranean as well as Northeast China. The high consistency of results from our model 
with the ones from Wernli and Schwierz7 indicates the robustness of our methodology in this paper. However, 
our values are comparatively higher than the ones from Wernli and Schwierz7. This is because we regard the 
multi-center cyclone system as one individual cyclone, while a multi-center cyclone system is separated into 
several cyclones with only one local minimum center in each cyclone in Wernli and Schwierz7. Therefore, the 
values are generally higher in our model.

To illustrate the overall motion characteristics of a newly added cyclone, the ratio of the number of grid points 
with a positive relative vorticity in the cyclone’s regime to the number of grid points in the entire cyclone mask 
is defined as the positive vorticity ratio (PVR). Here, the PVR can be expressed as

Although high-resolution data of a relative vorticity field can be very noisy36, a higher PVR value of a single 
cyclone generally denotes a stronger counterclockwise rotation of air flow within the cyclone’s area. Therefore, 
a high PVR represents strong cyclonic motion.

Table 1 shows the distribution of newly added cyclones in different PVR ranges. Most of the cyclones reidenti-
fied by the Mask R-CNN model are characterized mainly by counterclockwise rotational motion; among them, 
50,416 cyclones (~ 86.54%) are in the range of PVR ≥ 70%. This means that the Mask R-CNN model is good at 
learning/describing the horizontal structure of an extratropical cyclone and can be used as an effective comple-
ment to the CAA. It should be noted that both the CAA and the Mask R-CNN model have a certain proportion 
of cyclone results with PVR < 50% (0.64% and 1.79%, respectively). As mentioned above, the high resolution of 
the relative vorticity field could introduce chaotic signals into the cyclone’s regime. Additionally, local terrain or 
uneven heating could also result in small-scale negative vorticity inside a low pressure system.

The newly added cyclones are located mainly in the western and central regions of Eurasia (WCE, 20° W–80° 
E, 20°–60° N), accounting for 35.6% of all newly identified extratropical cyclones. As shown in Fig. 3a, areas with 
large proportions of newly added cyclones are found in the mountains of WCE (the Armenian Plateau, Zagros 
Mountains, and Hindu Kush Mountains) and the Atlas Mountains in northwestern Africa, while the areas with 
the second-highest proportions are distributed mainly along the oceanic coastlines (for example, along the coast-
lines of Western Europe and the Mediterranean Sea). On the other hand, the supplements along the two major 
storm tracks in the North Pacific and the North Atlantic are inconspicuous (figure not shown). This is probably 
because these storm track regions are located mainly on the ocean surface, resulting in a relatively symmetrical 
cyclone shape. Both the Mask R-CNN model and CAA can identify these cyclones well, and the supplementary 
effect of reidentification is not notable. We also applied the Mask R-CNN to the cyclone identification with NCEP 
I and JRA55. Consistently, the cyclone frequency in NCEP I and JRA 55 agree well with ERA-interim. WCE is 
still the most newly cyclone-added regions (43.7%, 39.2% for NCEP I and JRA55 respectively). Furthermore, 
the spatial distributions of newly added cyclones with PVR ≥ 70% in NCEP I and JRA 55 are also identical to 
ERA-interim (Fig. 3b,c). Hence, the following analysis of these newly identified cyclones will focus on WCE 
based on ERA-interim reanalysis dataset.

Compared to the identified cyclones in the CAA results, the newly added cyclones in WCE are relatively weak. 
As shown in Fig. 4a, a large proportion (84.60%) of the minimum geopotential heights of cyclones (denoting 

PVR =

Nwhere(ξ>0)

N cyclonesize
.

Table 1.   The numbers and ratios of extratropical cyclones identified by the CAA and Mask R-CNN model in 
different positive vorticity ratio (PVR) ranges.

PVR (%) 0–10% 10–20% 20–30% 30–40% 40–50% 50–60% 60–70% 70–80% 80–90% 90–100% Total

CAA​
842 467 720 930 1,530 6,727 39,791 130,454 197,284 324,056 702,801

0.12% 0.07% 0.10% 0.13% 0.22% 0.96% 5.66% 18.56% 28.07% 46.11% 100.00%

Mask R-CNN
2 8 40 275 722 1,769 5,028 10,224 13,664 26,528 58,260

0.00% 0.01% 0.07% 0.47% 1.24% 3.04% 8.63% 17.55% 23.45% 45.53% 100.00%

Figure 3.   The spatial distribution of newly added cyclones with PVR ≥ 70% in the western and central regions 
of Eurasia (WCE). The red box marks the coastal region of Western Europe (20°–8° W, 32°–42° N). (a) ERA-
Interim; (b) NCEP; (c) JRA-55.
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their intensity) in the Mask R-CNN model results are in the range of 1,360–1,520 gpm. Comparatively, a greater 
number of intense cyclones detected by the CAA are in the range of 1,160–1,480 gpm. The diameter of a regular 
circle is treated as the equivalent horizontal extent of the cyclone. As shown in Fig. 4b, both the Mask R-CNN 
model and the CAA focus mainly on the detection of cyclones with a subsynoptic scale (300–1,000 km) and 
a synoptic scale (1,000–2,000 km). However, the proportion of newly added cyclones at the subsynoptic scale 
identified by the Mask R-CNN model is notably higher than that identified by the CAA. Therefore, the new 
cyclones identified by the Mask R-CNN model are mostly located at the shallow or moderate subsynoptic scale. 
Note that, most of the newly added cyclones occurred in the Iranian Plateau and west of Tibet Plateau, and the 
cyclones identified over high terrain are generally shallow, which satisfies common sense.

Figure 3 shows that most newly added cyclones occur predominantly over mountainous areas, which may 
be due to the filtering out of terrain at high elevations (> 1,500 m) and the Tibetan Plateau region (20°–45° N, 
65°–110° E) in the CAA​9. In fact, different traditional automatic cyclone identification algorithms suffer from 
great uncertainties in identifying cyclones over mountainous areas because they deal with mountains using differ-
ent strategies11. To alleviate the influences of local artificial lows and reduce the complexity of the algorithm, some 
algorithms directly filter out mountainous terrain with different thresholds. However, we found that 14.28% of 
newly identified cyclones with PVR ≥ 70% in WCE are located in high-elevation mountainous areas (> 1,500 m). 
It is worth noting that simply filtering out high-elevation terrain may ignore some high-impact extratropical 
cyclones over such mountainous areas. For example, Fig. 5a,b show two of the strongest newly added cyclones 
identified over high terrain (> 1,500 m). These cyclones are accompanied by clearly cyclonic winds and distinct 
local precipitation. Therefore, the Mask R-CNN model could be an effective way to objectively detect extratropi-
cal cyclones over mountains.

In addition to mountainous cyclones, many new cyclones are identified near the coastlines of the oceans. 
These coastal cyclones could cause severe winds and other disasters (e.g., Pinto and Silva37). For example, the new 
cyclones in the coastal region of Western Europe (20°–8° W, 32°–42° N, red box in Fig. 3) are accompanied by 
relatively high wind speeds (Fig. 6). In particular, although these cyclones are mostly subsynoptic-scale cyclones 
(approximately 89.02%), the maximum 6-h-mean 1,000 hPa wind speeds of 44.9% of all coastal cyclones are 
over 10.8 m/s (above the level of a strong breeze). Since the meso- or subsynoptic-scale cyclones are usually 
with short-lived life cycles, they are generally filtered to omit some of the local heat lows. However, because of 
relatively high wind speeds related to the coastal cyclones, the spatiotemporal variation of newly added cyclones 
in the coastal region of Western Europe deserved further investigation.

The nearest-neighbor method is widely applied to track cyclones. However, it is difficult for the nearest-
neighbor method to detect cyclones when more than two points in a particular time frame become merged 
into a single point in the following time frame (or vice versa). Therefore, some methods for the identification of 
multicenter cyclones (MCCs) have been proposed to detect the merging and splitting of cyclones (e.g., Inastu8; 
Hanley and Caballero34; Lu9). Among the newly detected cyclones with PVR ≥ 70% in WCE, 42.21% of them are 
MCCs. Figure 7a,b display the two strongest new cyclones with the largest horizontal scale; both cyclones clearly 
show multicenter structures. Furthermore, both MCCs have a uniform overall cyclonic circulation accompanied 
by obvious local precipitation.

Tropical cyclone (TC) identification.  Since the Mask R-CNN model also has great portability, we further 
apply this model to identify the 2D structures of tropical cyclones (TCs); the model is extended in comparison 
with Hong et al.19, who employed CNNs to track the eyes of typhoons. According to the typhoon track dataset 

Figure 4.   The characteristics of cyclones (PVR ≥ 70%) identified by the Mask R-CNN model over the western 
and central regions of Eurasia (WCE) and the CAA: (a) cyclonic center intensity and (b) cyclone scale (the 
equivalent circle diameter of cyclone).
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from the China Meteorological Administration (CMA) in the western Pacific (20° S–65° N, 100°–180° E), we 
manually locate the center of each typhoon and its corresponding regime (the area inside its outermost enclosed 
contour) in the 6-hourly sea level pressure (SLP) field. Accordingly, a trainable 2D TC mask (labeled) dataset 
is constructed from 2011 to 2018. The Mask R-CNN model is trained by using the dataset from 2011 to 2015 
to equip itself with the ability to identify the 2D structures of TCs. Finally, the SLP dataset from 2016 to 2018 is 
utilized to validate the ability of the Mask R-CNN model to identify TCs.

To evaluate the performance of the Mask R-CNN model in identifying TCs from 2016 to 2018, the matching 
rate is defined as the ratio of the number of TCs identified by the Mask R-CNN model to the total number of 
TCs within the SLP field. As documented in Table 2, the matching rate of tropical depressions (TDs) is 78.79%. 
As the intensity of the TC becomes stronger, the matching rate exceeds 90%. Taking the lowest pressure in the 
identified TC area as the center of the TC, Fig. 8 shows the tracks and intensities of typhoon events No. 24 and 
No. 25 in 2017 based on the Mask R-CNN model. In these two cases, the tracks of these two TCs and their 2D 
structures are highly consistent with the manually identified typhoon tracks based on the SLP dataset and are 
also in good consistency with the CMA typhoon track records. Based on the above results, the transfer learning 
capability of the Mask R-CNN model could be effectively applied to objectively identifying the 2D structures 
of TCs. Note that the TC extend is an arguably realistic and reliable quantification of the system strength. This 
characteristic can be used to study the local physical relationship between cyclones and extreme precipitation38,39.

Figure 5.   The strongest newly added cyclones identified over high terrain (> 1,500 m). The thick blue lines 
indicate the cyclone’s boundaries, the gray arrows indicate wind vectors (units: m/s), and the shading indicates 
the 24-h total precipitation (units: mm/day).

Figure 6.   The maximum 6-h-mean 1,000 hPa wind speeds (units: m/s) of newly identified cyclones in the 
coastal region of Western Europe (20°–8° W, 32°–42° N) and all new cyclones with PVR ≥ 70%.
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Conclusions
Massive amounts of meteorological data are conducive to improving the training effect and model performance 
of ML/DL, but constructing a large-scale labeled database to train a ML/DL model is still a challenging task, 
especially in the context of supervised learning. The construction of training datasets is usually approached in a 
manual way, which is time consuming for a large number of samples. In this paper, a quasi-supervised reidenti-
fication method for extratropical cyclones is proposed. This method first uses the CAA to construct a trainable 

Figure 7.   The strongest newly added multicenter cyclones (MCCs) with the largest horizontal scale. The thick 
blue lines indicate the cyclone’s boundaries, the gray arrows indicate wind vectors (units: m/s), and the shading 
indicates the 24-h total precipitation (units: mm/day).

Table 2.   The matching rate for identifying TCs from the SLP field in the western Pacific during 2016 to 2018.

Intensity category
Tropical 
depression Tropical storm

Severe tropical 
storm Typhoon Severe typhoon Super typhoon Total

SLP 495 567 247 235 185 144 1,873

Mask R-CNN 390 514 236 235 184 143 1,702

Matching rate 78.79% 90.65% 95.55% 100.00% 99.46% 99.31% 90.87%

Figure 8.   Two examples of typhoon events identified by the Mask R-CNN model. (a) Typhoon No. 24 in 2017; 
(b) typhoon No. 25 in 2017. The blue shading indicates the identified 2D structure of the TC at its strongest time 
frame.
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labeled dataset and then reidentifies the 2D structures of extratropical cyclones in a quasi-supervised fashion by 
using a (pre-trained) Mask R-CNN model.

We found that our quasi-supervised reidentification method for extratropical cyclones based on the Mask 
R-CNN model adds 58,260 new cyclones from 1979 to 2013. As measured by their PVR values, most of these 
new cyclones display obvious counterclockwise rotational motion characteristics, with 86.54% of these cyclones 
having PVR ≥ 70%. These new cyclones are located mainly (~ 35.6%) in the mountainous areas of WCE, including 
the Atlas Mountains in northwestern Africa and along the coastlines of Western Europe and the Mediterranean 
Sea. Approximately 81.8% of all newly added cyclones are subsynoptic-scale cyclones, most of which are shallow 
or moderately deep, and 14.28% of the new cyclones are situated above high-elevation (> 1,500 m) mountainous 
areas. In addition, we found that the new cyclones affecting the coastal areas of Western Europe mostly occur at 
the subsynoptic scale but with relatively strong wind speeds and potentially high impacts for these areas.

The quasi-supervised method based on the Mask R-CNN model also has a good transfer learning ability for 
identifying TCs. In particular, the Mask R-CNN model can effectively capture the track and 2D structure of a TC 
(in comparison with manual identification approaches) with a matching rate above 90%. Therefore, the quasi-
supervised concept proposed in this paper may shed light on target recognition tasks in other research fields by 
using classic automatic algorithms for the construction of training datasets to improve the practical efficiency 
of ML/DL and the reliability of object recognition.
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