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floquet engineering of topological 
metal states and hybridization 
of edge states with bulk states 
in dimerized two‑leg ladders
Milad Jangjan & Mir Vahid Hosseini*

We consider asymmetric and symmetric dimerized two-leg ladders, comprising of four different lattice 
points per unit cell, illuminated by circularly polarized light. in the asymmetric dimerized ladder case, 
rungs are not perpendicular to the ladder’s legs whereas the rungs are perpendicular to the legs for 
the symmetric one. Using the Floquet theory, we obtain an effective Hamiltonian to study topological 
properties of the systems. Depending on the dimerization strength and driving amplitude, it is shown 
that topologically protected edge states manifest themselves not only as a zero-energy band within 
the gap between conduction and valence band but also as finite-energy curved bands inside the gap 
of subbands. The latter one can penetrate into bulk states and hybridize with the bulk states revealing 
hybridized floquet topological metal phase with delocalized edge states in the asymmetric ladder 
case. However, in the symmetric ladder, the finite-energy edge states while remaining localized can 
coexist with the extended bulk states manifesting floquet topological metal phase.

Topological states of matter with intriguing properties have attracted a lot of attention in various fields of physics, 
particularly, solid-state  physics1. Because of robustness of such states against ubiquitous  perturbations2, materials 
hosting topological states will be excellent candidates for sensitive electronic applications. Topological  insulators3 
along with topological  superconductors4 exhibiting topologically nontrivial phases have been interesting topics 
from theoretical and experimental view points. However, the known topological systems in the equilibrium situ-
ation which can indeed be used to realistic applications are limited to a few cases leading to exploring topological 
quantum states out-of-equilibrium5.

Beside materials including static topological phases, engineering of exotic nontrivial phases of quantum 
 materials6 has been developed by means of externally applied dynamical fields. Such approach provides a flexible 
and practical way to produce desired phases which are absent in the static counterparts. For instance, periodic 
driving establishes dynamical topological states, known as topological Floquet  states7–9. An interesting charac-
teristic of the Floquet  theory10,11 is to add extra dimension in a quantum system through continuous evolution 
over all times within the driving  period9,12,13 providing higher-dimensional systems effectively. In the opposite 
limit, i.e., stroboscopic  picture6,8, periodic driving manipulates the system parameters expanding phase diagram 
to values that are not easily accessible in undriven systems. Both of these two features pave the way to turn 
trivial phases of the system into exotic ones, such as Floquet topological  semimetals14,15, Floquet topological 
 superconductors16,17, and Floquet topological  insulators7,18.

There are a variety of techniques for exerting time periodicity and establishing topologically protected edge 
states such as shining a matter with  light7,19–21, shaking optical  lattices22,23 as well as photonic set-ups24,25. Notice, 
however, that since periodic driving influences on the band structure of system, real space dimensions of the 
undriven system play significant roles as a basic  platform26,27. Among the studies of Floquet topological states, 
one-dimensional (1D) systems have been the center of attention due to the existence of simple models, for exam-
ple, Su–Schrieffer–Heeger (SSH)  model28,29 and its generalized  versions30–33. These models may be served as a 
building-block for topological quantum information  technology34,35 owing to supporting non-Abelian statistics. 
It has been shown that periodically driven 1D  systems36,37 reveal rich Floquet topological features in both the 
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high-frequency38,39 and low-frequency40 regimes. Moreover, several schemes exploring topologically nontrivial 
phases with ladder geometry have been proposed in quasi-1D  static41–44 and  Floquet45–47 systems. Most of studied 
Floquet topological systems are devoted to cases hosting Floquet topological insulators and superconductors 
with two-band model. So, in low dimensional quantum systems, it is interesting to extend Floquet topological 
states, being neither Floquet topological insulators nor Floquet topological superconductors, containing more 
than two  bands48,49 with new exotic topological phases.

In this paper, within the tight-binding approach, we investigate Floquet engineering of topological features 
of a two-leg SSH chain irradiated by circularly polarized electromagnetic field. We focus on the role of ladder 
dimerization and geometrical structure as well as driving amplitude to manipulate topological phases of the 
system using the Floquet formalism. Specifically, we explore topological features for two different situations. 
Firstly, when the pattern of dimerizations and lattice spacings of the two legs are opposite resulting in asym-
metric ladder. Secondly, when the pattern of dimerizations and the lattice spacings of the two legs are identical 
presenting symmetric ladder. We find that zero-energy flat band and finite-energy  band48,50 can be emerged in 
the asymmetric ladder case. Through such a simple class of model, we further, interestingly, find that these finite-
energy edge states can reside within bulk states and would hybridize with them resulting in hybridized Floquet 
topological metal phase. However, for symmetric ladder model, the zero-energy edge states disappear and also 
the hybridization of finite-energy edge states with the bulk ones suppresses while the edge states are within the 
bulk states giving rise Floquet topological metal phase. Unlike the previous finite-energy flat band  cases48,50, 
whose quasi-energies are fixed at the edge of Floquet zone, here, such midgap states which are not necessarily flat 
occur in subband gaps and their energy values can be adjusted by dimerization strength and driving amplitude.

This paper is organized as follows. In “Model and theory” section, we introduce our model and its Hamil-
tonian. The conditions of band touching points are derived. The relevant topological invariants associated with 
the existing symmetries of the system are discussed in “Relevant topological invariants” section. The analysis of 
topological features of asymmetric and symmetric ladder, respectively, is given in “Asymmetric ladder case” and 
“Symmetric ladder case” sections. Also, the stability of topological phases against symmetry breaking perturba-
tions is investigated in “Stability of edge states” section. Finally, we conclude with a summary and discussion in 
“Summary” section.

Model and theory
We consider a system consisting of a two-leg ladder that each leg describes SSH chain in the presence of light 
illumination, as represented in Fig. 1. We will examine topological properties for two different cases; (i) asym-
metric ladder case where the dimerization and the corresponding lattice spacings of legs ( b0  = b1 ) are asymmetric 
(see Fig. 1a), and (ii) symmetric ladder case where the dimerization of both SSH chains is identical and the cor-
responding lattice spacing of legs is equal ( b0 = b1 ) (see Fig. 1b). In the absence of irradiation, the tight-binding 
Hamiltonian of this model containing four sublattices per unit cell can be written as

where X(†)
u/lj is the electron annihilation (creation) operator of sublattice X (which can be either A or B type) on 

the upper/lower chain at the jth unit cell. t(′)1  and t(′)2  are intra (inter) unit cell hoppings along the upper and lower 
legs, respectively. The hopping energies along the rungs of the ladder are t3 and t4 . We choose t1 = t ′2 = t − δt 
and t2 = t ′1 = t + δt for asymmetric ladder whereas t1 = t2 = t + δt and t ′1 = t ′2 = t − δt for symmetric ladder 
where δt = δ0 cos θ is the dimerization strength with θ and δ0 being a cyclical parameter varying from 0 to 2π 
continuously and dimerization amplitude, respectively. For both asymmetric and symmetric cases, we choose 
t3 = t4 = t + δt . Notably, the symmetric ladder relies on poly acetylene including identical dimerization of 
chains. We also set t as a unit of energy, the lattice constant a0 as a length unit. Throughout the paper δ0 = 0.8 
without loss of generality.

(1)H =
N
∑

j

[

t1A
†
ujBuj + t2A

†
ljBlj + t3A

†
ujAlj + t4B

†
ujBlj

]

+
N−1
∑

j

[

t′1B
†
ujAuj+1 + t ′2B

†
ljAlj+1

]

+ h.c,

Figure 1.  (Color online) Two-leg ladder that each leg describes SSH chain under the light irradiation. (a) 
Asymmetric ladder geometry with opposite dimerization of the legs and different inter unit cell spacings b0 and 
b1 of the upper and lower leg, respectively. (b) Symmetric ladder geometry with identical dimerization and inter 
unit cell spacing b0 of the legs. a0 is the length of unit cell and c0 is the inter chain distance.
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In the presence of externally applied electromagnetic field comprising of the periodic time-dependent electric 
field E(t) = −∂tA(t) with vector potential

Hamiltonian (1) can be periodic in time H(t) = H(t + T) through Peierls substitution

Here, Ax(y) =
Ex(y)
ω

 is the driving amplitude along the x (y)-direction which can be related to the amplitude of 
electric field Ex(y) . The period T = 2π

ω
 is determined by the driving frequency ω , φ is a phase shift, c is light speed, 

and e is electron charge. We take ℏ = 1 and ec = 1 hereafter.
Floquet  theorem10,11 can be used to find a solution to the time-dependent Schrodinger equation with time-

periodic potentials. This theorem guarantees the existence of a set of solutions

where ǫn is the Floquet quasi-energy and Floquet state ϕn(t) has the same time periodicity as Hamiltonian, 
ϕn(t + T) = ϕn(t) , in analogy with Bloch theorem in which the so-called Bloch states are periodic in real space. 
For every solution ϕn(t) with quasi-energy ǫn one can construct another solution ϕαn(t) = exp(−iαωt)ϕn(t) 
with quasi-energy ǫnα = ǫn + αω , that corresponds to the same physical state ϕn(t) . In fact, the Floquet states 
are the solutions of the eigenvalue equation

where HF = H − i ∂
∂t is Floquet Hamiltonian. Eventually, matrix elements of the Floquet Hamiltonian can be 

written as,

where α and β are Floquet index. Hence, by involving Peierls substitution (3) in the static Hamiltonian (1) and 
using Eq. (6), the Floquet Hamiltonian can be obtained as

Here, we have defined

where b2 = (b0 − b1)/2 and Jm[x] is the first kind Bessel function of order m. Considering the high-frequency 
regime (off-resonant regime) where the Floquet bands are decoupled from each other, the system can be well 
described by zeroth order static Floquet Hamiltonian

In the following, we omit the super index “00” from the parameters of Eq. (9) for the sake of brevity.
To study the bulk properties of system, we impose the periodic boundary conditions and take Fourier trans-

formation Xu/lj = 1√
N
�ke

−ikjXu/lk , where N is the number of the unit cells. Then the Hamiltonian can be written 
in the form of

where ψ†
k = (Auk ,Alk ,Blk ,Buk)

† and

(2)A(t) =
(

Ax sinωt,Ay sin(ωt + φ)
)

,

(3)tij −→ tije
− e

ℏc

∫ Rj
Ri

A(t)·dr
.

(4)ψn(t) = e−iǫntϕn(t),

(5)HF |ϕn(t)� = ǫn|ϕn(t)�,

(6)H
αβ
F =

1

T

∫ T

0

H(t)ei(α−β)ωtdt − αωδαβ ,

(7)

H
αβ
F =

N
∑

j

[

t̃
αβ
1 A†

ujBuj + t̃
αβ
2 A†

ljBlj + t̃
αβ
3 A†

ujAlj + t̃
αβ
4 B†ujBlj

]

+
N−1
∑

j

[

t̃′
αβ

1 B†ujAuj+1 + t̃ ′
αβ

2 B†ljAlj+1

]

+ h.c − αωδαβ .

(8)

t̃
αβ
1 = t1Jα−β [Ax(a0 − b0)],

t̃
αβ
2 = t2Jα−β [Ax(a0 − b1)],

t̃
αβ
3 = t3Jα−β

[

√

(Axb2)2 + (Ayc0)2 + 2Axb2Ayc0 cosφ

]

,

t̃
αβ
4 = t4Jα−β

[

√

(Axb2)2 + (Ayc0)2 − 2Axb2Ayc0 cosφ

]

,

t̃′
αβ

1 = t ′1Jα−β [Axb0],

t̃ ′
αβ

2 = t ′2Jα−β [Axb1],

(9)H00
F =

N
∑

j

[

t̃001 A†
ujBuj + t̃002 A†

ljBlj + t̃003 A†
ujAlj + t̃004 B†ujBlj

]

+
N−1
∑

j

[

t̃′
00

1 B†ujAuj+1 + t̃ ′
00

2 B†ljAlj+1

]

+ h.c.

(10)HF =
∑

k

ψ†
k hF(k)ψk ,
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After diagonalizing the Hamiltonian (11), the eigenvalues can be obtained in the momentum space as

with

where the band index l = −(+) stands for valence (conduction) band and p = +(−) indicates upper (lower) sub-
band. The topological phase transition is accompanied by closing and reopening the gap at the super-symmetry 
points of k-space, i.e., k = 0 and k = π . It is straightforward to see that the conditions of gap closing between 
the two valence bands can be obtained by solving El=−,p=−(k) = El=−,p=+ , yielding

at the momentum k = 0 and k = π . Here, we have defined ta = t̃1 + t̃2 , t ′a = t̃ ′1 + t̃ ′2 , tb = t̃1 − t̃2 , and t ′b = t̃ ′1 − t̃ ′2 . 
As can be seen from above equations, the square root expression must be zero to occur topological phase transi-
tion. Also, the gap closure conditions between the upper valence band ( l = −, p = + ) and lower conduction 
band ( l = +, p = − ) are

at the momentum k = 0 and k = π . Equations (14) and (15) represent boundaries between topologically distinct 
phases where the value of topological invariant will be changed at these points.

We define exchange operator ϒ that exchanges the two legs of ladder and their corresponding sublattices as

In the basis of exchange operator, obviously, ϒ must be diagonalized,

through the unitary matrix

Transforming Hamiltonian (11), with the unitary matrix U1 , yields

where

From Hamiltonian (19), one finds that the diagonal blocks ( h1 , −h1 ) are the well-studied Hamiltonian of general-
ized SSH  model30 which are coupled by the off-diagonal block hcou . Note, the structure of matrix (19) implies that 

(11)hF(k) =









0 t̃3 0 t̃1 + t̃ ′1e
ik

t̃3 0 t̃2 + t̃ ′2e
ik 0

0 t̃2 + t̃ ′2e
−ik 0 t̃4

t̃1 + t̃ ′1e
−ik 0 t̃4 0









.

(12)El,p(k) =
l
√

ζ + p
√
η

√
2

,

(13)

ζ = t̃23 + t̃24 + t̃21 + t̃22 + t̃ ′1 + t̃ ′2 + 2
(

t̃1 t̃
′
1 + t̃2 t̃

′
2

)

cos (k),

η = ζ 2 − 4

(

t̃22 t̃
′2
1 +

(

t̃3 t̃4 − t̃ ′1 t̃
′
2

)2 + 2t̃1 t̃2
(

−t̃3 t̃4 + t̃ ′1 t̃
′
2

)

+ t̃21
(

t̃22 + t̃ ′22
)

+ 2
(

t̃1 t̃
′
2 + t̃2 t̃

′
1

)(

t̃1 t̃2 − t̃3 t̃4 + t̃ ′1 t̃
′
2

)

cos (k)

+ 2t̃1 t̃2 t̃
′
1 t̃

′
2 cos (2k)

)

,

(14)
ta + eikt ′a = ±

√

−
(

t̃3 − t̃4
)2
, if t̃3 = t̃4,

tb + eikt ′b = ±
√

−
(

t̃3 + t̃4
)2
, if t̃3 = −t̃4,

(15)
(

ta + eikt ′a

)2

−
(

tb + eikt ′b

)2

= 4t̃3 t̃4,

(16)ϒψ → ψ ′ =







Al

Au

Bu
Bl






.

(17)U1ϒU−1
1 =







− 1 0 0 0

0 − 1 0 0

0 0 1 0

0 0 0 1






,

(18)U1 =
1√
2







0 0 − 1 1

− 1 1 0 0

0 0 1 1

1 1 0 0






.

(19)h̃F = U1hF(k)U
−1
1 =

(

h1 hcou
−h⋆cou − h1

)

,

(20)
h1 =

1

2

(

t̃4 ta + t ′ae
ik

ta + t ′ae
−ik t̃3

)

,

hcou =
1

2

(

0 tb + t ′be
ik

−tb − t ′be
−ik 0

)

.
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the energy spectra of the individual diagonal block will be shifted from zero energy and the off-diagonal block 
hcou is responsible for opening a gap around zero energy. Therefore, one may expect that Hamiltonian (19) has 
two kinds of edge states, one of them is zero-energy edge states which may be protected by symmetries of the 
whole Hamiltonian and another is finite-energy edge states due to SSH-like analogue of the block h1 which may 
be protected by symmetries of the diagonal block.

It is easy to check that Hamiltonian (19) has time-reversal and particle-hole symmetry defined, respectively, 
as T h̃F(k)T = h̃⋆F(−k) and P h̃F(k)P = −h̃⋆F(−k) with the corresponding operators T = σ0 ⊗ σ0K and 
P = σx ⊗ σ0K where σ0 and σx being the identity matrix and x component of Pauli matrix. K is complex 
conjugate operator. In fact, since T ·P = C , the unitary chiral operator can be determined as C = σx ⊗ σ0 . 
Also, in addition to the mentioned symmetries, under the condition t̃3 = t̃4 the Hamiltonian (19) has inversion 
symmetry with operator � = σz ⊗ σx as a result of the inversion symmetry of the diagonal blocks.

Before proceeding, to distinguish localized and extend states, we use the logarithm of inverse participation 
ratio (IPR) which is given  by51

Here ψ(j) is the eigenvector at site j with energy E. When the IPR is close to zero, the wave function is more 
localized (energy levels shown in red in the figures). But for extended wave function IPR tends to − 1 (energy 
levels shown in blue in the figures).

Relevant topological invariants
The bulk-edge correspondence is a hallmark to confirm the topological feature of system relating topological edge 
states under open boundary conditions to the bulk topological  invariants3 calculated under periodic boundary 
conditions. Therefore, topological invariants of Hamiltonian (19) should predict nontrivial values in the space 
of parameters where edge states are emerged under open boundary conditions. In the following, we introduce 
three relevant topological invariants to characterize properly the topology of edge states due to the existence of 
certain symmetries in the whole and/or diagonal block of Hamiltonian.

First, one of the relevant topological invariants is Z52 that originates from the inversion symmetry of the 
diagonal blocks, i.e., ( h1,−h1 ). Each of the diagonal blocks can commute with the inversion operator at the super 
symmetry points k = 0 and π . Hence, the eigenstates of h1 have a well-defined parity at supersymmetry points. 
Subsequently, one can define an integer invariant for each band gap of the system as

where E1,i,j and E2,i,j are the number of negative parities of band structure, respectively, at the k = 0 and k = π 
in the ith bandgap of jth subspace. Eventually, by using the  relation53

we can expose the topology of finite-energy edge states, originating from the diagonal blocks, under open 
boundary condition.

Second, it is well-known that a relevant topological invariant for quantum system with chiral symmetry which 
determines topologically distinct phase is winding number. The winding number enumerates the number of 
pairs of zero-energy edge states. The chiral symmetric Hamiltonian (19) can be brought into a block off-diagonal 
form in the basis of chiral operator. This can be done by the unitary operator

Transforming Hamiltonian (19) by U2 leads to

where

Now, we can use the following relation to obtain the winding  number54,55

where

(21)I(E) =
Ln

∑j=4N
j=1 |ψ(j)|4

Ln4N
.

(22)Ni,j = |E1,i,j − E2,i,j|,

(23)Z :=
∑

j

∑

i

Ni,j ,

(24)U2 =
1√
2







0 − 1 0 1

− 1 0 1 0

0 1 0 1

1 0 1 0






.

(25)U2h̃F(k)U
−1
2 =

(

0 G
G† 0

)

,

(26)G =
(

t̃4 t̃2 + t̃2e
ik

t̃1 + t̃1e
−ik t̃3

)

.

(27)W =
1

2π i

∫ π

−π

dk∂kLn(Z(k)),

(28)Z(k) = Det(G) = t̃3 t̃4 − t̃1 t̃2 − t̃ ′1 t̃
′
2 −

(

t̃1 t̃
′
2 + t̃ ′1 t̃2

)

cos (k)− i
(

t̃1 t̃
′
2 − t̃ ′1 t̃2

)

sin (k).
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The integral of Eq. (27) can be evaluated analytically via Cauchy’s residue theorem. We find a simple formula 
characterizing the topology of the system associated with zero-energy edge states as

where

and �(ξ) is the Heaviside function. W = 1 means the system hosts one pairs of topological edge states at zero 
energy and W = 0 shows trivial topological phase where the system is an ordinary insulator.

Third, when the chiral symmetry is broken by symmetry breaking perturbations, the inversion symmetry of 
the whole Hamiltonian allows us to use the multi-band Zak  phase56

to calculate topological invariant of zero-energy edge states. Here, |u(k)� is occupied Bloch states with the cor-
responding eigenvalue E.

Asymmetric ladder case
Now, we study band structures and topological properties of asymmetric ladder irradiated by circularly polar-
ized light (see Fig. 1a). We apply the light beam with the vector potential (2) involving circular polarization, i.e., 
Ax = Ay = A . Then the hoppings of Eq. (8) reduce as

Note that if φ = nπ/2 with n an odd number, then the two hoppings of rungs are equal, t̃3 = t̃4 . We set φ = π/2 
in the current section. The case φ  = nπ/2 where t̃3 �= t̃4 owing to 2b2 = b0 − b1 �= 0 will be discussed in “Stabil-
ity of edge states” section. Remarkably, in the asymmetric ladder case, the symmetry operators are the same as 
those for “Model and theory” section with features T 2 = 1 , P 2 = 1 , and C 2 = 1 , so the symmetry class belongs 
to  BDI55,57–59. It is worthwhile noting that if we regard the leg degrees of freedom as spin degrees of freedom, then, 
in the asymmetric ladder, the unequal hopping of upper and lower legs resembles spin-dependent hopping, i.e., 
spin–orbit interaction. As such, the exchange operator plays the role of spin rotation operator.

Using Eq. (32), the energy spectra of Hamiltonian (9) can be obtained numerically under open boundary 
conditions. The dependence of quasi-energy spectra and the appropriate bulk topological invariants on θ/π 
and on A, respectively, is shown in Fig. 2a,b. As already predicted above, there exist two kinds of edge states: 
zero-energy edge states with flat band and finite-energy edge states. As will be shown in “Stability of edge states” 
section, the former can be protected by the chiral or inversion symmetry of the whole Hamiltonian with the 
corresponding W or γ invariant, respectively. While the latter is protected by the inversion symmetry of block 
h1 with the corresponding Z invariant.

From Fig. 2a one can see that, interestingly, without occurring topological phase transition, the finite-energy 
edge states can leave from an energy gap and enter to a new one by passing through bulk states. In such process, 
the Z invariant exhibits a nontrivial value resulting in the existence of symmetry protected edge states inside 
the topological bulk states. Furthermore, the finite-energy edge states hybridize with the extended bulk ones 
establishing hybridized Floquet topological metal phase with less localized topological edge states. As a result, 
by varying θ , the values of IPR of edge states change significantly in transition from topological insulator phase, 
where the edge states are within gapped states, to the hybridized Floquet topological metal phase originating 
from breaking of the exchange symmetry ϒ in the asymmetric ladder case.

Also, as shown in Fig. 2b with the increase of driving amplitude A the energies of finite-energy edge states 
decrease non-monotonically manifesting, alternatively, topological insulator and hybridized Floquet topological 
metal phases. Furthermore, the zero-energy edge states characterized by the topological invariant W as functions 
of θ/π and A reveal either topologically nontrivial stable or trivial phases which are separated by topological 
phase transition.

To gain insight into the nature of states, in Fig. 2c, we have plotted the probability distribution of hybridized 
and localized finite-energy edge states and of the bulk states as a function of unit cell index along the ladder. As 
usual the localized edge states [see the inset] and the extended bulk states [see the red curve indicated by “aster” 
symbols in the main panel] have highest probability, respectively, at the ends and in the middle of the system. 

(29)W = �(x − y)�(x + y)+�(−x + y)�(−x − y),

(30)
x = −

(

t̃1 t̃
′
2 + t̃ ′1 t̃2

)

,

y = t̃3 t̃4 − t̃1 t̃2 − t̃ ′1 t̃
′
2,

(31)γ =
∑

E<0

∫

�u(k)|i∇k|u(k)�dk,

(32)

t̃1 = t1J0[A(a0 − b0)],

t̃2 = t2J0[A(a0 − b1)],

t̃3 = t3J0

[

A

√

b22 + c20 + 2b2c0 cosφ

]

,

t̃4 = t4J0

[

A

√

b22 + c20 − 2b2c0 cosφ

]

,

t̃ ′1 = t ′1J0[Ab0],

t̃ ′2 = t ′2J0[Ab1].
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Moreover, one finds that the hybridized edges states can have finite probability both at the ends and on the bulk 
of system [see the blue curve marked by “circle” symbols in the main panel].

The phase diagrams in the plane ( θ/π , A) including topologically distinct phases with finite- and zero-
energy edge states, respectively, are shown in Fig. 3a,b. We represent the topological phases in which the edge 
states reside in the gap between the subbands and in the main gap by red and yellow colors, respectively. Also, 
the hybridized Floquet topological metal phase and normal insulator are indicated by green and gray area, 
respectively.

From Fig. 3a, one can see that around θ/π ≃ 0 and 2, topological insulator phase with edge states within sub-
band gap dominates for most of the A values. Moreover, around θ/π ≃ 1 the finite-energy edges states associated 
with topologically nontrivial phases penetrate into the subband bulk states except for particular values A ≃ 3 and 
7. In these values of A, the finite-energy edge states completely reside within the main gap and, subsequently, 
the hybridized Floquet topological metal phase vanishes. Furthermore, for θ/π ≃ 0.5 and 1.5 with A ≃ 4 and 9 
the finite-energy edge states lie in the main gap emerging topological insulator phase.

As shown in Fig. 3b, the nontrivial topological phase associated with zero-energy edge states can be found 
for weak A independent of θ values. But for intermediate and strong A with θ/π ≃ 0.5 and 1.5 trivial insulator 
is dominated. Whereas for θ/π ≃ 0, 1, and 2 the phase changes from topological insulator to trivial one succes-
sively as a function of A.

Symmetric ladder case
We consider symmetric ladder case where the dimerization pattern and lattice spacings of upper leg are the 
same as those for the lower leg as shown in Fig. 1b. So, using Eq. (8), the hoppings of this case can be rewritten as

Figure 2.  (Color online) Quasi-energy spectrum along with zero- and finite-energy edge states and their 
relevant topological invariants Z and W (a) as a function of θ/π with A = 3.2 and (b) as a function of A 
with θ/π = 0.45 . The colors in the energy spectrum represent IPR of the wave function localization. (c) The 
probability distribution of energy states; Main panel: bulk states (the red curve with aster symbol) and the 
hybridized edge states with bulk states (the blue curve with circle symbol). Inset: the localized edge states within 
band gap. Here, b0 = 0.2, b1 = 0.1 and c0 = 0.6.

Figure 3.  (Color online) Topological phase diagram in ( θ/π , A)-plane associated with (a) finite-energy edge 
states which the red, green, and yellow regions indicate nontrivial topological regions with related topological 
invariant Z = 2 where the corresponding edge states lie, respectively, within subband gap, within bulk states, 
and in the main gap and (b) zero-energy edge states which the yellow and the gray regions are related to the 
topologically non-trivial ( W = 1 ) and trivial phase ( W = 0 ), respectively. Here, b0 = 0.2, b1 = 0.1 , and 
c0 = 0.6.
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From the above equations, one finds that the horizontal (vertical) hoppings are affected only by x (y)-component 
of vector potential independent of φ due to rectangular symmetry of the lattice. This means that the circularly 
polarized light ( Ax = Ay = A ) can act as two independent linearly polarized fields in both directions. For this 
case, the Hamiltonian (11) commutes with exchange operator, [ϒ , hF(k)] = 0 , and can be brought into a block 
diagonal form by the unitary matrix (18) as

where

This indicates that the existence of exchange symmetry will prevent the hybridization of edge states with the bulk 
states because the coupling block, hcou , is zero. Likewise, the zero-energy edge states will be suppressed. Therefore, 
one may anticipate that the spectra of each block overlap with those of the other block so that the finite-energy 
edge states of a subsystem cross through bulk states of the other one without hybridization.

In the symmetric ladder model, there is time-reversal symmetry defined by Ti h̃F(k)Ti = h̃⋆F(−k) (with 
i = 1, 2 ) where T1 = σ0 ⊗ σ0K and T2 = σz ⊗ σ0K . Since the system has two particle-hole operators 
P1 = σx ⊗ σ0K and P2 = σy ⊗ σ0K satisfying Pi h̃F(k)Pi = −h̃⋆F(−k) , the corresponding chiral operators 
fulfilling the sublattice symmetry @Ci h̃F(k)Ci = −h̃F(k) can be determined as

Also, the Hamiltonian (34) has two inversion symmetry operators as

According to the above-mentioned symmetry statements, the symmetry operators exhibit the features that 
T

2 = 1 , P 2 = 1 , and C 2 = 1 . Therefore, the symmetry class is still  BDI55,57–59. However, the diagonal blocks 
do not fall in BDI class.

We can obtain the eigenvalues of the model by diagonalizing Hamiltonian (34) yielding

Note, this energy spectrum is reminiscent of the spectrum of SSH model with the additional term t̃3 which can 
be tuned by externally applied light. Such additional term acts like Zeeman field splitting the energy levels of 
SSH  chain32. When the vertical hopping t̃3 = 0 , the model reduces to two decoupled SSH chains with two-fold 
degenerate bulk states and the two dispersive finite-energy edge states convert to flat zero-energy edge states 
with four-fold degeneracy.

As already mentioned above, for the present model, applying the circularly polarized light modifies the hop-
pings in the x-direction and y-direction independently. However, the topological phase transition again occurs 
at k = 0 and k = π . So, by plugging Eq. (33) into Eq. (14), the gap closure/reopening conditions reduce as

Note that this relation which depends only on the horizontal hoppings is similar to the topological phase transi-
tion condition of original SSH model. So, the vertical hoppings have no effect on the topological phase transition 
points taking place at θ/π = 0.5 and θ/π = 1.5 in the static  limit28,29. However, the energy levels at which gap 
closes are not zero and will be shifted by t̃3 [see also Eq. (38)] which is in contrast to the original SSH model 
(see Fig. 4a).

In Fig. 4a,b, we have plotted the quasi-energy spectra along with bulk topological invariants versus θ/π and A, 
respectively. As already discussed, there are no zero-energy edge states and also the energy levels of finite-energy 
edge states change as functions of θ/π and A. From both figures, one can see that the finite-energy edge states 
penetrate into the bulk states and leave their band gap without occurring topological phase transition. Unlike 
the asymmetric ladder case, interestingly, due to the presence of the exchange symmetry, the finite-energy edge 
states appear in the bulk states without  hybridization53,60 resulting in Floquet topological metal phase.

Also, the probability distribution in terms of unit cell index along the ladder is shown in Fig. 4c for bulk 
states and finite-energy edge states in the bulk and in the gap. The finite-energy edge states remain localized 
within bulk and gapped states as indicated by the curves with blue “circle” symbols in the main panel and black 
“circle” symbols in the inset, respectively. Whereas the bulk states themselves exhibit extended feature [see the 
red curves with “star” symbols in the main panel].

(33)

t̃1 = t̃2 = t1J0[Ax(a0 − b0)],
t̃3 = t̃4 = t3J0[Ayc0],

t̃ ′1 = t̃ ′2 = t ′1J0[Axb0].

(34)h̃F = U1hF(k)U
−1
1 =

(

h2 0

0 − h2

)

,

(35)h2 =
(

t̃3 t̃1 + t̃ ′1e
ik

t̃1 + t̃ ′1e
−ik t̃3

)

.

(36)
C1 = σx ⊗ σ0,

C2 = σy ⊗ σ0.

(37)
�1 = σ0 ⊗ σx ,

�2 = σz ⊗ σx .

(38)E = ±t̃3 ±
√

t̃1 + t̃ ′1 + 2t̃1 t̃
′
1 cos(k).

(39)t̃1 = −eikt̃ ′1.
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In Fig. 5, the topological phase diagram is depicted in the ( A, θ/π)-plane. Also, we have distinguished the 
topological phases with edge states in the gap of subbands and in the main gap by red and yellow colors, respec-
tively. The Floquet topological metal phase and trivial insulator are indicated by green and gray colors. Except for 
certain values of A, for θ/π around 1 the topological insulator with edge states in the main gap is dominated. By 
going away from θ/π ≃ 1 and approaching θ/π ≃ 0, 2 the Floquet topological metal, the topological insulator 
with edge states in the subband gap, and trivial insulator take place for weak and intermediate A. If A is strong 
enough, the region corresponding to topological insulator containing edge states in the subband gap vanishes. 
This trend is due to the decrease in energy of the finite-energy edge states as A increases (see Fig. 4b).

Stability of edge states
Now, we examine the stability of topological phases and demonstrate that which symmetry is responsible for the 
appearance of edge states. To do so, we consider the asymmetric ladder case subjected to a circularly polarized 
field in order to have maximum number of symmetry protected edge states, including zero- and finite-energy 
edge states.

Before illustrating the stability of topological edge states against perturbations like on-site potentials, we 
discuss about the effect of circular polarization of light with φ  = nπ/2 on the topological characteristics of 
asymmetric ladder. According to Eq. (32), for φ  = nπ/2 , the two hoppings along the rungs are not equal, 
t̃3 �= t̃4 , resulting in the breaking of the inversion symmetry of the diagonal blocks ( h1,−h1 ). This subsequently 
breaks the inversion symmetry of whole Hamiltonian as well. Consequently, the lack of inversion symmetry in 
the block h1 gaps out the gapless finite-energy edge states lifting their degeneracy so that their relevant invari-
ant Z takes continuous values as shown in Fig. 6a. But despite the absence of inversion symmetry in the whole 
Hamiltonian, one can see that the zero-energy edge states and their relevant invariant W remain topologically 
nontrivial because of preserving the chiral symmetry.

Figure 4.  (Color online) Dependence of quasi-energy spectrum and its relevant topological invariant Z on 
(a) θ with A = 5 and on (b) A with θ/π = 0.8 . The colors in the energy spectrum represent IPR of the wave 
function localization. (c) The probability distribution of energy states; Main panel: bulk states (the red curve 
with aster symbol) and the edge states within bulk states (the blue curve with circle symbol). Inset: the localized 
edge states within band gap. Here, b0 = 0.6 and c0 = 0.3.
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Figure 5.  (Color online) Topological phase diagram in the plane ( A, θ/π ) for symmetric ladder case. Yellow 
and red regions show topological insulator phase having Z = 2 with edge states within the main gap and 
subband gap, respectively. Green and gray regions indicate the Floquet topological metal state ( Z = 2 ) and 
normal insulator ( Z = 0 ). The parameters are b0 = 0.6 and c0 = 0.3.
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In what follows, we assume φ = π/2 , otherwise specified. We add the on-site potential

to the Hamiltonian (9) with V being the amplitude of on-site potential. Moreover, the existence of H ′ breaks the 
chiral symmetry of whole Hamiltonian and shifts the energy levels as depicted in Fig. 6b. But because of pre-
serving the inversion symmetry of whole Hamiltonian, the multi-band Zak phase (31) can be employed as the 
topological invariant to characterize the topology of midgap edge states near the zero energy taking quantized 
values (see Fig. 6b). Also, the inversion symmetry of diagonal block is preserved and the finite-energy edge states 
remain intact. On the other hand, we add the on-site potential of the form

to Hamiltonian (9). This perturbation breaks both the chiral symmetry and the inversion symmetry of whole 
Hamiltonian while it preserves the inversion symmetry of blocks ( h1,−h1 ). This means that the topological prop-
erties cannot transferred from the diagonal blocks to the full Hamiltonian. As shown in Fig. 6c, the topology of 
zero-energy edge states is destroyed, however, the finite-energy edge states remain degenerate and nontrivial. As a 
result, the zero-energy edge states are protected by either the chiral symmetry or inversion of whole Hamiltonian.

(40)H ′ = V
∑

n

A†
ujAuj + B†ujBuj + A†

ljAlj + B†ljBlj ,

(41)H
′′ = V

∑

n

A†
ujAuj + B†ljBlj ,

Figure 6.  (Color online) Quasi-energy spectrum and the related topological invariants of the asymmetric 
ladder case exposed to the circularly polarized laser field as function of θ/π for (a) φ = π/4 with the broken 
inversion symmetries of both diagonal blocks and whole Hamiltonian, (b) φ = π/2 in the presence of H ′ 
with the broken chiral symmetry and preserved inversion symmetries of whole Hamiltonian and block h1 , 
(c) φ = π/2 in the presence of H ′′ with the broken inversion symmetry of whole Hamiltonian and preserved 
inversion symmetry of block h1 , and (d) φ = π/4 in the presence of H ′′ with the broken inversion symmetries 
of whole Hamiltonian and block h1 as well as chiral symmetry. Here, the parameters are the same as Fig. 2 and 
V = t/2.



11

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14256  | https://doi.org/10.1038/s41598-020-71196-3

www.nature.com/scientificreports/

Finally, We add the on-site potential H ′′ to the system that is exposed to the circularly polarized field with 
φ = π/4 . In such situation, the chiral symmetry and inversion symmetry of whole Hamiltonian as well as the 
inversion symmetry of blocks ( h1,−h1 ) will be broken. In Fig. 6d, we have plotted the band structure illustrating 
that the finite- and zero-energy edge states are gapped with trivial values of their topological numbers. Conse-
quently, the inversion symmetry of block h1 is the fundamental symmetry protecting finite-energy edge states.

Summary
We studied topological features of the two-leg SSH ladder periodically driven by circularly polarized light uncov-
ering the role of lattice geometry. We considered asymmetric and symmetric ladders whose legs, respectively, 
have different and identical patterns of dimerization as well as lattice spacings. We found that there exist zero- and 
finite-energy edge states in the asymmetric ladder case, whereas the symmetric ladder hosts only the finite-energy 
ones. In both ladder models, the finite-energy edge states can leave from the gap of subbands and enter into the 
gap between the upper valence and lower conduction bands by crossing through the bulk states of subbands 
depending on the dimerization strength and driving amplitude. For asymmetric ladder, when the finite-energy 
edge states are within the bulk ones, due to the absence of exchange symmetry, these two types of states having 
the same energy and quantum number would hybridize together providing the hybridized Floquet topological 
metal states. Such new topological states are no longer localized. In contrast, for symmetric ladder case, the pres-
ence of exchange symmetry prevents hybridization between the finite-energy edge and bulk states establishing 
the Floquet topological metal phase with localized edge states. We also obtained the topological phase diagram 
that in addition of the two above-mentioned topological phases it contains a usual topological insulator and 
ordinary insulator. Furthermore, based on the underlying symmetries of the system, we introduced relevant 
topological invariants to show the topology of the edge states. By involving symmetry breaking perturbations, 
we demonstrated that the finite-energy edge states are protected by the inversion symmetry of the diagonal 
blocks of Hamiltonian. But, the zero-energy edge states are protected by either the inversion or chiral symmetry 
of whole Hamiltonian. Moreover, we obtained an analytical formula for winding number to show the topology 
of zero-energy edge states when the chiral symmetry exists.

Finally, we note interestingly that interleg and intraleg hopping, respectively, can play the same roles as 
realistic Zeeman field and spin–orbit coupling effectively in our spinless model. So, such ingredients may not 
be necessary for quasi-1D  systems61, unlike the topological 1D systems, to establish topological phases. This 
provides an alternative route to simulate Zeeman field and spin–orbit interaction in the absence of spin degree 
of freedom by engineering the existing degrees of freedom, for example, sublattice space. Furthermore, current 
experimental status can provide a possibility to realize two-leg ladder composed of coupled SSH  chains41 and 
can manifest the topological signatures employing density and momentum-distribution  measurements62. Also, 
the possible topological states can be recognized by using spatially resolved radio-frequency spectroscopy from 
the local density of  states63.

Note added. After completing the present study, we became aware that the Floquet topological metal phase 
has been investigated in Ref.64,65. In these works although the edge states can have the same energy as bulk states 
but, unlike our case, they are left isolated inside the band gap.
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