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transient binding and jumping 
dynamics of p53 along DNA 
revealed by sub‑millisecond 
resolved single‑molecule 
fluorescence tracking
Dwiky Rendra Graha Subekti1,2,3, Agato Murata1,2,3, Yuji Itoh1, Satoshi Takahashi1,2 & 
Kiyoto Kamagata1,2*

Characterization of the target search dynamics of DNA‑binding proteins along DNA has been 
hampered by the time resolution of a standard single‑molecule fluorescence microscopy. Here, 
we achieved the time resolution of 0.5 ms in the fluorescence microscopy measurements by 
optimizing the fluorescence excitation based on critical angle illumination and by utilizing the time 
delay integration mode of the electron‑multiplying charge coupled device. We characterized the 
target search dynamics of the tumor suppressor p53 along nonspecific DNA at physiological salt 
concentrations. We identified a short‑lived encounter intermediate before the formation of the long‑
lived p53–DNA complex. Both the jumps and the one‑dimensional diffusion of p53 along DNA were 
accelerated at higher salt concentrations, suggesting the rotation‑uncoupled movement of p53 along 
DNA grooves and conformational changes in the p53/DNA complex. This method can be used to clarify 
the unresolved dynamics of DNA‑binding proteins previously hidden by time averaging.

Sequence-specific DNA-binding proteins bind to their respective target DNAs accurately and quickly and par-
ticipate in the control and maintenance of cellular functions. To facilitate the search for target sequences among 
enormous lengths of DNA, these proteins utilize a strategy called facilitated diffusion, which involves a combi-
nation of various dynamics, such as one-dimensional (1D) diffusion and jumping along nontarget DNA, three 
dimensional (3D) diffusion between two separated sites of DNA, and intersegmental transfer at the contact points 
of two DNA  strands1–6. Inhibiting the search for and binding to the target DNA by these proteins will lead to 
insufficient control of cell functions, which could result in  disease7,8.

The prevailing method for the characterization of the target search dynamics of sequence-specific DNA-
binding proteins is single-molecule fluorescence microscopy in combination with tethering and stretching of 
DNA on the surface of flow  cells9–15. Typically, DNA-binding proteins labeled with a fluorescent dye or a quantum 
dot are introduced into the flow cell, allowed to interact with the stretched DNA, and excited selectively by highly 
inclined and laminated optical sheet (HILO) illumination or by total internal reflection fluorescence (TIRF). 
Fluorescent spots from single proteins are sequentially tracked using imaging detectors, such as electron-mul-
tiplying charge coupled devices (EM-CCDs), enabling the characterization of their target search dynamics. The 
time resolution of the method is determined by two factors. First, detection of fluorescent molecules at a spatial 
resolution of ~ 40 nm requires the collection of at least 50 photons, which in turn requires a certain period of data 
accumulation and sets the time resolution. Second, the frame rate of the imaging detectors (typically 10–50/s) 
also sets the time resolution. The shortest reported time resolution for localization of DNA-binding proteins along 
stretched DNA is 8 ms at a spatial resolution of 22–42 nm16. Thus, the standard setup of fluorescence microscopy 
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can only provide spatial dynamics for single molecules blurred by time averaging over the period determined by 
the photon number and/or the frame rate.

The time resolution may be improved using higher excitation power to increase the rate of photon emis-
sion and limiting the area of the imaging detector to increase the frame rate. The rate of photon detection from 
single fluorophores can be easily increased by increasing the excitation laser power at the expense of the total 
observation period owing to photobleaching. The imaging area can be reduced significantly by considering 
the one dimensionality of the stretched DNA and by restricting the region of interest by a slit. In the standard 
mode of EM-CCD, fluorescence photons from single molecules are accumulated as electrons in each pixel of the 
two-dimensional detector, which are sent and read out by an A/D converter one by one. However, by limiting 
the observation area to one stretched DNA, the time delay integration (TDI) detection mode of the EM-CCD, 
provided by Hamamatsu Photonics, can enhance the frame rate up to ~ 100 fold and achieve sub-millisecond 
detection of the dynamics of DNA-binding proteins.

p53 is a transcription factor that suppresses the cancerization of cells and has been investigated as a rep-
resentative DNA-binding protein demonstrating facilitated diffusion mainly based on single-molecule fluo-
rescence  measurements8,17–24. p53 binds to DNA nonspecifically and slides along DNA to search the target 
DNA  sequence17–19. p53 possesses two sliding modes having different contacts with DNA by two DNA binding 
domains: core and C-terminal (CT)  domains20,21. The disordered linker enables switching between the two 
sliding  modes22. p53 slides along DNA rotationally following the DNA  groove15,25. Target recognition by the 
sliding p53 is quite low and can be regulated by single  mutations8. In addition to the sliding, p53 can utilize the 
ultrafast intersegmental transfer between two DNAs, which could help to skip obstacles bound to DNA during 
the target search in  cells23. These dynamics of p53 were partly supported by molecular dynamics  simulations26–29. 
Thus, single-molecule fluorescence studies have improved our understanding of the facilitated diffusion of p53.

Despite extensive studies on the facilitated diffusion of p53, the time resolution of these previous studies, 
several tens of milliseconds, hampers the detection and characterization of various events expected to occur in 
shorter time frames. First, the 1D diffusion of p53 in the presence of physiological salt concentrations could not 
be investigated at this time resolution, except in a single  study18. Because DNA-binding proteins, including p53, 
dissociate from DNA rapidly at higher salt concentrations due to weakened electrostatic interactions, lower salt 
concentrations, such as 50 mM KCl, are typically used for the observation of p53 diffusion along  DNA20,22. How-
ever, improvement of the time resolution may enable characterization of 1D diffusion under physiological salt 
conditions. Second, transient binding intermediates, which are expected to form after the collision of the DNA-
binding proteins and DNA before the formation of the tight binding conformation, could not be characterized 
using the previous time resolution. Although such transient binding intermediates have sometimes been detected 
using two-protein systems interacting with each other, the intermediate in the DNA–protein systems has been 
reported only in one example, lac  repressor30. Third, direct observation of the jumping of DNA-binding proteins 
along DNA, reported only for  EcoRV31 to date, is extremely difficult at the available time resolution. Accordingly, 
sub-millisecond detection will enable us to identify the unresolved dynamics of many DNA-binding proteins.

In this study, we optimized a single-molecule fluorescence detection method for DNA-binding proteins along 
DNA so as to achieve the sub-millisecond time resolution. Using this optimized setup, we characterized the 
dynamics of p53 at the time resolution of 500 μs. We succeeded in clarifying the salt-dependent 1D diffusion of 
p53 along DNA, the transient binding intermediate, and the jumping along DNA. The current setup will enable 
single-molecule characterization of the fast dynamics of other DNA-binding proteins.

Results
Optimization of a sub‑millisecond detection setup for molecules moving along DNA. To 
increase the time resolution of single-molecule fluorescence detection, we combined high-power excitation 
based on the HILO and/or TIRF geometry of the fluorescence microscope and high-speed line detection based 
on the TDI mode of the EM-CCD (Fig. 1A). To detect a sufficient number of fluorescence photons in a sub-
millisecond time period, we utilized an excitation laser power of 50  mW, corresponding to a power density 
of ~ 3,000 W/cm2 in the epi-geometry with an observation radius of 23 μm. The illumination intensity was 100-
fold higher than that of our previous video-rate  measurements8,20. The DNA was tethered on the optical sub-
strate at one end using the DNA garden method and was stretched by a  flow32. A rectangular slit in the detection 
pathway was used to select the fluorescence photons emitted from the labeled proteins bound to a single DNA of 
interest (Fig. 1B). The photons were detected within the rectangular area (600 × 10 ~ 19 pixels) of the EM-CCD 
operated in the TDI mode, in which the signal charges were continuously transferred and read out at sub-
millisecond intervals (Fig. 1B). The slit prevented the incidence of unexpected photons from the area outside of 
the single DNA of interest. Therefore, movement of the molecules along the DNA could be directly recorded as 
a kymograph.

To test the performance of this setup, we measured p53 tetramers labeled with on average 3.2 fluorophores, 
ATTO532, interacting with the stretched nonspecific  DNA18,20. Using HILO illumination at a laser power of 
0.5 mW and the conventional detection mode of the EM-CCD operated at an interval of 33 ms, we obtained 
a series of two-dimensional images of the surface of the flow cell, in which more than 10 DNAs were tethered 
and into which the labeled p53 in the presence of 125 mM KCl was introduced. After the measurement, we 
chose one DNA area and constructed a kymograph by stacking the one-dimensional images in the order of the 
measurements. We detected many white dots, not traces, in the kymograph, indicating that many molecules of 
p53 dissociated from DNA within one frame (33 ms) after binding (Fig. 1C, left and middle panels). In contrast, 
using the increased laser excitation at 50 mW based on the illumination configuration close to the critical angle 
(explained below) and TDI image recording, we obtained kymographs at a resolution of 500 μs for p53 under the 
same solution conditions (Fig. 1C, right panel). In the sub-millisecond resolved kymograph, white traces, not 
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dots, were observed that lasted from several milliseconds to several tens of milliseconds. Additionally, we found 
that p53 moved along DNA during the duration of its attachment. Accordingly, the optimized setup enabled us 
to detect the movement of p53 along DNA at sub-millisecond time resolution.

To determine the illumination suitable for ultrafast kymograph measurements of p53, we compared three 
illumination configurations: HILO, critical angle TIRF, and TIRF (Fig. 2). TIRF was defined as the configura-
tion in which the incident angle of the excitation light was larger than the critical angle (60.7°), the conditions 
for the total internal reflection were satisfied, and the approach could selectively illuminate molecules bound to 
the tethered DNA; however, the excitation intensity decreased dramatically as a function of the distance from 
the surface. The distance between the tethered DNA and the substrate surface was estimated to be ~ 200 nm33. 
For the TIRF condition shown in Fig. 2, we chose 63.5° as the incident angle. In contrast, HILO was the con-
figuration in which the incident angle (59.6°) was smaller than the critical angle, allowing molecules bound to 
DNA to be illuminated more effectively; however, the bulk molecules flowing in the excitation area would also 
be excited. Critical-angle TIRF was a variation of TIRF in which the incident angle (61.4°) was adjusted very 
close to the critical angle. Under these conditions, the penetration depth of the evanescent wave was 268 nm 
from the substrate surface and was significantly longer than 137 nm, i.e., that in the current TIRF condition at 
the incident angle of 63.5° (Supplementary text). The illumination intensity of molecules bound to DNA was 
2.0-fold larger than that in the TIRF (Supplementary text). We used the same excitation laser intensity of 50 mW 
for the three measurements.

In the kymograph obtained by the TIRF setup in the solution containing 150 mM KCl, several vertical 
traces of p53 were observed only in the presence of DNA, confirming the detection of molecules bound to DNA 
(Fig. 2C). However, the fluorescence intensity of p53 was low owing to the limited excitation intensity by TIRF. 
In contrast, in the HILO kymograph, several vertical traces were also observed only in the presence of DNA, 
whose fluorescence intensity was higher than that obtained by TIRF (Fig. 2A). However, many tilted traces were 
also detected both in the presence and absence of DNA, suggesting the detection of the flowing molecules. The 

Figure 1.  Sub-millisecond-resolved single-molecule fluorescence microscope setup for investigation of DNA-
binding proteins interacting with DNA. (A) Schematic diagram of the current fluorescence microscopy method. 
An excitation laser at 532 nm was introduced through an objective lens into a flow cell using HILO, critical-
angle TIRF, or TIRF geometry. The fluorescence from the molecules associated with a stretched DNA tethered 
in the flow cell was collected using the same objective, selected by a slit and optical filters, and detected using an 
EM-CCD operated at the TDI mode. (B) The TDI detection protocol for evaluation of fluorescence from DNA-
binding proteins interacting with DNA. The fluorescence photons from a molecule bound to DNA selected by 
the slit (left) were recorded as charges stored in the rectangle area of the EM-CCD, and the data were transferred 
line by line and read out (middle). A kymograph was constructed by stacking the transferred 1D images 
sequentially (right). (C) Comparison of kymographs of p53 diffusing along DNA detected by the conventional 
system operated at a time resolution of 33 ms (left and middle) and by the newly developed system at a time 
resolution of 500 μs (right). The experiments were conducted in a solution containing 125 mM KCl.
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critical-angle TIRF illumination maintained the high fluorescence intensity of molecules bound to DNA, similar 
to HILO, and significantly reduced the detection of flowing molecules compared with HILO (Fig. 2B). Accord-
ingly, we concluded that critical-angle TIRF illumination was the best approach for sub-millisecond fluorescence 
detection of molecules interacting with the tethered DNA.

Two binding components of p53 to DNA. In the sub-millisecond-resolved kymograph of p53 taken at 
the critical-angle TIRF, short-term traces were more frequently detected in the presence of DNA compared with 
that in the absence of DNA, suggesting the short-lived binding of p53 to DNA. To confirm the observation quan-
titatively, we tracked all traces in the kymograph obtained in the presence of DNA at 150 mM KCl and deter-
mined their residence times by developing an automated program. As expected, the residence time distribution 
of the tracked traces showed double exponential decay (Supplementary Fig. S1A). The same tracking performed 
for the kymograph obtained without DNA gave a distribution whose occurrence was significant (> 25% of that 
obtained in the presence of DNA) only at the initial time bin from 2 to 3 ms (Supplementary Fig. S1B). The 
time constants, obtained by fitting the residence time distribution on DNA except for the initial time bin with 
double exponentials, were 2.8 ± 0.5 ms (94% ± 1%) and 13 ± 3 ms (6% ± 1%), respectively, corresponding to the 
short-lived and long-lived binding components of p53 to DNA. The residence time distribution obtained after 
subtraction of the DNA-free data gave identical fitting parameters within the errors (Supplementary Fig. S1C). 
Furthermore, it is unlikely that the short-lived component was artificially detected due to the blinking of the dye, 
because the labeled p53 tetramer possessed 3.2 dyes on average. These results suggested that both the short- and 
long-lived components could be attributed to the binding of p53 to DNA.

To further elucidate the properties of the two binding components, we conducted sub-millisecond-resolved 
kymograph measurements of p53 at different salt concentrations. As the salt concentration decreased, traces of 
p53 having extended residence times increased (Fig. 3A), as clearly demonstrated in the residence time distri-
bution (Fig. 3B). The residence time distributions obtained at all salt concentrations could be fitted well by the 
double exponential functions, whose time constants and amplitudes are presented in Fig. 3C,D, respectively. 
The time constant of the short-lived component did not depend on the salt concentration (Fig. 3C). The fitted 
time constant for the long-lived component was constant in the KCl concentration range from 25 to 135 mM, 
but decreased significantly at KCl concentrations of more than 140 mM. In contrast, the ensemble stopped-flow 
measurements demonstrated that the residence time of p53 bound to short 30-bp DNA, likely corresponding to 
the long-lived component, gradually decreased as the KCl concentration increased from 50 to 125 mM (Supple-
mentary Fig. S2). The contradiction of the time constants for the long-lived component in 25–100 mM KCl could 
be attributed to photobleaching of the fluorescent dye. We confirmed that the photobleaching of the fluorescent 
dye at higher excitations shortened the apparent residence time of p53 (Supplementary Fig. S3). Also, shorter 
residence times for 30-bp DNA in 125–150 mM KCl might be caused by the sliding of p53 off from the DNA 
 ends34. Furthermore, the fraction of the two components was slightly dependent on the salt concentration when 
the concentration of KCl was greater than 100 mM (Fig. 3D). The presence of the short-lived component at all 
salt concentrations suggested that the short-lived component may be an indispensable intermediate to form the 

Figure 2.  Comparison of three illumination methods suitable for sub-millisecond resolved kymograph 
measurements of DNA-binding proteins. Typical kymographs of p53 in 150 mM KCl obtained at a time 
resolution of 500 μs based on the HILO (A), critical-angle TIRF (B), and TIRF (C) methods. The two 
kymographs on the left of each panel were obtained in the presence of the tethered DNA. The kymographs on 
the right were obtained without DNA. A schematic illustration of each of the illumination methods is shown in 
the top panels.
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long-lived component. Thus, p53 may first bind to DNA, forming the short-lived encounter complex, and may 
then dissociate from DNA (~ 95%) or convert into the long-lived component (~ 5%).

Jumps of p53 along DNA. In addition to the short-lived binding component, we noticed another dynamic 
feature of p53 unresolved in previous studies of video-rate imaging. Specifically, there were sudden shifts in the 
traces of p53 in the sub-millisecond-resolved kymographs (Fig. 4A). The shifts occurred in the flow direction 
and were rarely against the flow, suggesting that these shifts represented the transient dissociation of p53 from 
DNA and its jumping along DNA. The result did not agree with the similar shift frequency in the two directions 
by assuming that a different molecule binds to DNA immediately after the dissociation of the molecule. The 
shifts were observed in kymographs obtained at all of the KCl concentrations examined in this study, suggesting 
that such jump events were a general feature of p53 (Fig. 4A).

To further understand this jumping motion of p53, we selected all jump events from the observed traces 
based on the following criteria: shifts having a jump distance larger than that expected from the 1D diffusion 
and shorter than that expected from the bulk flow. The jump distance distribution of the events selected from 
the kymograph obtained in 150 mM KCl demonstrated a distance-dependent decrease in the re-association 
probability of p53 (Fig. 4B). Under these conditions, the average jump time and average jump velocity were 
2.2 ± 0.2 ms (Fig. 4C) and 0.291 ± 0.007 mm/s (Fig. 4D), respectively. Interestingly, these parameters were not 
dependent on the salt concentration (Supplementary Fig. S4). By contrast, the jump frequency was dependent on 
the salt concentration and was enhanced by 3.1-fold in 150 mM KCl compared with that in 100 mM KCl (Fig. 4E). 
These results implied that the stronger electrostatic interaction between p53 and DNA at lower salt concentra-
tions prevented the transient dissociation of p53 from DNA rather than affecting its re-association with DNA.

1D diffusion of p53 along DNA at physiological salt concentrations. The 1D diffusion of p53 along 
DNA at physiological salt concentrations has never been examined owing to the short residence time of several 
milliseconds, except in one pioneering  study18. Accordingly, we next analyzed the 1D diffusion dynamics of 
p53 detected in the sub-millisecond-resolved kymographs. For all detected traces, we tracked the center of the 

Figure 3.  Two components involved in the binding of p53 to DNA. (A) Typical kymographs of p53 obtained 
at the time resolution of 500 μs and at different salt concentrations. (B) Residence time distributions of p53 
bound to DNA in the presence of different salt concentrations. Solid curves represent the best-fitted curves 
using the sum of two exponentials. (C) Salt-concentration dependence of the time constants obtained by the 
two exponential fitting. The τ2 values obtained in the presence of 140, 145, and 150 mM KCl were statistically 
different from that in 50 mM KCl based on the two-tailed t test (p < 0.05). (D) Salt-concentration dependence 
of the amplitudes obtained by the two exponential fitting. The errors in panels (C,D) denote the standard errors 
calculated from the results of at least three measurements.
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molecule by fitting the Gaussian function to the fluorescence intensity distribution at each time and obtained the 
time series of the diffusion dynamics. If a trace contained a jump, we treated the trace as two independent traces 
separated by the jump, thus eliminating the jump events in the analysis. The average mean square displacement 
(MSD) of the traces showed a linear increase against time within 10 ms, indicating the diffusional motion of 
p53 (Fig. 5A). The linearity of MSD was confirmed at all KCl concentrations examined between 25 and 150 mM 
(Supplementary Fig.  S5). The diffusion coefficient, D, obtained from the slope of the linear region of MSD, 
increased gradually as the salt concentration increased (Fig. 5B). The salt-dependent increase in D seemed to be 
coupled with that of the jump frequency (Fig. 4E). In fact, the D value was highly correlated with the jump fre-
quency at various salt concentrations (Fig. 5C, r = 0.85). These results suggested that hops, not apparent even in 
the current sub-millisecond measurements, may occur during the 1D diffusion of p53 along DNA. We hypoth-
esized that hops in DNA-binding domains occurred more frequently than the detectable larger jumps during the 
1D diffusion, resulting in the enhancement of 1D diffusion at higher salt concentrations.

Figure 4.  p53 jumped along DNA. (A) Typical kymographs of p53 demonstrating traces showing jumps 
along DNA obtained in the presence of different salt concentrations. Arrows denote the identified jumps. (B) 
Distribution of the jump distance of p53 observed in 150 mM KCl. (C) Distribution of the jump time of p53 
observed in 150 mM KCl. (D) Distribution of the jump velocity of p53 observed in 150 mM KCl. (E) Salt-
concentration dependence of the average jump frequency of p53. Errors denote the standard errors calculated 
from at least three measurements. The jump frequencies in 130, 135, 145, and 150 mM KCl were statistically 
different from that in 50 mM KCl (p < 0.05, two-tailed t test).
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If the DNA-binding domains of p53 hopped frequently along DNA at higher salt concentrations, 1D diffu-
sion should not occur along the grooves of DNA and should not be coupled with rotation around the DNA. To 
examine whether the 1D diffusion of p53 at physiological salt concentrations occurred along the DNA groove 
or not, we plotted the relationship between D and the molecular radii of p53 and other proteins, which could 
differentiate the rotation-coupled diffusion along the DNA groove and the rotation-uncoupled  diffusion14,25,35 
(Fig. 5D). Many proteins were located within the group showing the rotation-coupled diffusion along the DNA 
groove (open circles). In contrast, the current D value for p53 (closed square) obtained in 150 mM KCl was much 
larger than those of the proteins showing the rotation-coupled diffusion and having the similar size, but was 
rather in line with those of TALE proteins, showing rotation-uncoupled diffusion (triangles). The results sug-
gested that the 1D diffusion of p53 was not coupled with the major groove in DNA, consistent with our hypothesis 
that p53 moved along DNA more efficiently at higher salt concentrations by hopping of DNA-binding domains 
without strictly following the DNA groove.

Discussion
In this study, we optimized a single-molecule tracking method for DNA-binding proteins along DNA at the 
time resolution of 500 μs. The sub-millisecond time resolution was achieved using 1D detection based on the 
TDI mode of the EM-CCD, the slit for the selection of a single DNA of interest, and high-power laser excita-
tion based on critical-angle TIRF. Using the optimized system, we clarified the presence of the short-lived 
encounter complex of p53 bound to DNA, the jumping of p53 along DNA, and the increased diffusion of p53 

Figure 5.  Diffusion of p53 along DNA without following the DNA grooves in the presence of physiological salt 
concentrations. (A) Mean squared displacement (MSD) plots of p53 diffusing along DNA in the presence of 
different concentrations of salt. Red, green, and blue traces correspond to the plots obtained in the presence of 
25, 100, and 150 mM KCl. Straight lines show the best fitted linear functions for the MSD data from 500 μs to 
10 ms. (B) Salt-concentration dependence of the 1D diffusion coefficient of p53 along DNA. The data obtained 
in the presence of 125 and 150 mM KCl were statistically different from that obtained in 50 mM KCl (p < 0.05, 
one-tailed t test). (C) Relationship between the jump frequency and the 1D diffusion coefficient of p53 along 
DNA in the presence of different concentrations of salt. The dotted line is the best-fitted linear correlation of 
the two quantities. (D) Relationship between the reciprocal of the cube of the radius, 1/R3, and the 1D diffusion 
coefficient, D, along DNA for various DNA binding proteins. Open circles are data categorized for proteins 
demonstrating rotation-coupled diffusion along the grooves. The pink closed square denotes the datum for p53 
obtained in 150 mM KCl using the current system. Triangles are the data for TALE showing rotation-uncoupled 
diffusion. The dashed line is the boundary between the rotation-coupled and uncoupled diffusions. In panels 
(A–C), the errors denote the standard error calculated from at least three measurements.
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at near physiological salt concentrations. These newly characterized dynamics of p53 provide insights into our 
understanding of the facilitated diffusion of DNA-binding proteins.

Improvement of the time resolution of the current system was achieved through consideration of the fluores-
cence photon numbers available within a short period of time and using the fast read-out mode of the imaging 
detectors. The TDI detection was originally developed to capture a moving object by transferring integrated 
signal charges with the object movement at the same speed so as to check the quality of products in factory. 
Because the movement of proteins is restricted within stretched DNA, we used the TDI mode of the EM-CCD, 
provided by Hamamatsu Photonics, and detected 1D images at a time resolution of 500 μs. The TDI mode could 
potentially reduce the time resolution further to 20 μs. Alternatively, a time resolution of up to ~ 2 ms could be 
achieved using the standard mode of an EM-CCD by setting a small region of interest.

The other optimized point for the increase in time resolution is the number of available photons in a short 
period of time. Using the current critical-angle TIRF excitation settings (intensity of 50 mW), we collected 
50–200 photons during the time resolution of 500 µs. Currently available microscopes can achieve a spatial 
resolution of 16–24 nm for a spatially fixed molecule 36. This estimate is smaller than the spatial uncertainly of the 
observed traces (27–72 nm), calculated from the intersection of the MSD plots of p53 at t = 0, but is reasonable 
considering the additional blurring of the current data caused by the fluctuations of DNA. The spatial resolution 
of the system is comparable to that of previous video rate  measurements16,20. The increased fluorescent intensity 
in a short time can also be achieved by the HILO setup but the method detects the bulk molecules flowing in 
the relatively large excitation area as well as the molecules bound to DNA (Fig. 2). The critical-angle TIRF illu-
mination can reduce the detection number of bulk molecules significantly because of the limited excitation area 
maintaining the high fluorescence intensity of the bound molecules. In contrast, the TIRF illumination decreases 
the fluorescence intensity significantly, because the penetration depth of the evanescent wave is smaller than the 
distance between the bound molecules and the surface. Thus, the critical-angle TIRF setup coupled with the high 
excitation power enables sub-millisecond fluorescence detection of molecules interacting with the tethered DNA.

In this study, we observed an encounter complex during the association process of p53 to a nonspecific 
sequence of DNA; this complex had a lifetime of several milliseconds before forming a long-lived complex. 
Our findings suggested that p53 interacted with DNA loosely in the encounter complex and that changes its 
conformation increased contacts of DNA-binding domains with the DNA and formed a more stable complex, as 
required for the target search along DNA (Fig. 6A). Because one p53 tetramer possesses four sets of two DNA-
binding domains, the encounter complex could form contacts with DNA via some of the eight DNA-binding 
domains. Considering the higher affinity of the CT-disordered domain to DNA relative to the core domain, 
the CT-disordered domain likely participated in the encounter  complex21. During the next step, the remaining 
DNA-binding domains may be recruited to form a stable long-lived complex. Interestingly, the conversion rate 
of the encounter complex to the long-lived complex was 6%, suggesting that the conformational change in p53 
occurred rather slowly during the time frame of several milliseconds. Because many DNA-binding proteins 
possess multiple DNA-binding domains and flexible disordered regions, other DNA-binding proteins may also 
form encounter complexes similar to that formed by p53.

An encounter complex is an indispensable intermediate required for the formation of a stable complex in 
the association of two molecules, including protein/ligand, protein/protein, and protein/DNA  pairs37,38. The 
encounter complexes were experimentally detected by measuring the concentration dependence of the reaction 
rate constant because the saturation of the association rate at the higher concentration represents the conver-
sion of the encounter complex to the final  product37. The R2 dispersion experiments based on nuclear magnetic 
resonance (NMR) enabled detection of the encounter complex  directly39. The observed lifetime of the encounter 
complex was less than several  milliseconds39,40. In the p53/DNA system, the encounter complex had a longer 
lifetime of several milliseconds, as determined by the slow conformational change of p53 from the encounter 
complex to the long-lived stable complex described above (Fig. 6A).

The current sub-millisecond resolved data demonstrated the significant increase in the 1D diffusion coef-
ficient of p53 along DNA at KCl concentrations higher than 100 mM; however, the data contradicted a previous 
report showing the independence of the diffusion coefficient against the concentration of monovalent  ions18. The 
previous data were obtained using a video-rate system and by analyzing p53 sliding on DNA for extremely long 
periods, corresponding to rare events with a residence time more than tenfold longer than the ensemble data. 
The 1D diffusion of such rare molecules could be slower than that of the major populations.

To explain the salt-dependent enhancement of the 1D diffusion, we propose that p53 in the long-lived com-
plex may change its conformation and move along DNA in the rotation-uncoupled manner at high salt con-
centrations (Fig. 6B). In fact, various physical parameters, including the diffusion coefficient and the jump 
frequency, changed significantly at 100 mM KCl, supporting the observed conformational changes in the p53/
DNA complex. At low salt concentrations, the DNA-binding domains interacted with DNA tightly, making 
p53 move following the phosphate backbone of DNA. In contrast, because high salt concentrations weaken the 
interaction between the domains and DNA, the domains may hop from one phosphate backbone of DNA to the 
other phosphate backbone separated by a half turn of the helix, resulting in the rotation-uncoupled movements 
of p53. Simultaneous hopping in the domains contacting the DNA may cause the dissociation of p53 from DNA 
and/or jumping of p53 along DNA.

This model is consistent with the following results by us and other researchers. Molecular dynamics simula-
tions demonstrated that p53 moved along DNA in a rotation-uncoupled manner at high salt concentrations, 
likely because of weakened interactions between p53 and  DNA27. The number of DNA-binding domains in 
contact with DNA decreased as the salt concentration  increased27. In addition, hopping of the core domain or 
CT domain on DNA, observed in two independent  simulations26,27, could enable p53 to transfer between differ-
ent DNA backbones. This is consistent with the restricted hopping of the core domain in the sliding mechanism 
proposed based on single-molecule  measurements18. The correlation between the diffusion coefficient and the 
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jump frequency of p53 implied that simultaneous hopping of domains in contact with DNA may trigger the dis-
sociation of p53 from DNA and may increase the observed jump frequency (Fig. 5C). The 1D diffusion caused 
by hopping of domains might be affected by the bulk flow (Fig. S6), and further investigation will be required 
using the stretched DNA in the absence of the flow, for instance, by tethering of two DNA ends to the surface 
or optical tweezers.

Finally, we discuss the target search mechanism of p53 in cells. The search distance at which p53 moves along 
DNA per single binding is a key factor determining the search time for the target in cells. The average search 
distance of p53 was estimated to be 700 ± 100 bp using the diffusion coefficient and residence time in 150 mM 
KCl. The short residence time (18 ms, corrected by the photobleaching effect as explained in Supplementary 
text and Supplementary Fig. S1D) was compensated for by the fast 1D diffusion (1.2 × 107  bp2/s), demonstrating 
that the rotation-uncoupled motion promotes the 1D diffusion and contributes to the increased search distance. 
Interestingly, the estimated search distance was larger than the average distance between two molecules of DNA-
binding proteins bound to DNA in cells (less than 100 bp)41,42. Furthermore, the large jumps of p53 along DNA 
may enable the skipping of the molecules bound to DNA and searching of the target located nearby, and the 
jumps may reduce the target search time to ~ 90% (Supplementary text). Accordingly, the rotation-uncoupled 
movement and jumps of p53 may contribute to the target search by extending the search distance.

Figure 6.  Proposed model of the target search dynamics of p53 based on sub-millisecond-resolved single-
molecule measurements. (A) Schematic diagram of the encounter and long-lived complexes of p53 tetramer and 
DNA. NT, Core, Tet, and CT respectively denote the N-terminal, core, tetramerization, and C-terminal domains 
of p53. At least one of the CT domains interacts with DNA in the encounter complex, and other DNA-binding 
domains are recruited to form the long-lived complex in the subsequent step. (B) Schematic diagram of the 
rotation-uncoupled motion of p53 in the presence of physiological salt concentrations. The CT and/or core 
domains hop from one phosphate backbone to the other backbone separated by a half turn of the helix, resulting 
in rotation-uncoupled diffusion (insets).
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Materials and methods
Fluorescence microscopy. A fluorescence microscope was constructed as described in our earlier 
 report20, with some modifications. The output of the 532-nm laser (CL532-050-L; CrystaLaser, Reno, NV, USA) 
was magnified tenfold and was focused on the back focal plane of an oil-immersion objective lens (N.A. = 1.40; 
Nikon, Tokyo, Japan) using a spherical lens (f = 500 mm). A dichroic mirror (Di01-R405/488/532/635–25 × 36; 
Semrock, Inc., Rochester, NY, USA), located between the two lenses, was used to introduce the light to the objec-
tive lens. The flow cell was placed above the objective lens. In the back focal plane of the objective lens, the radial 
distances between the lens center and the excitation laser focus were 2.63, 2.68, and 2.73 mm for HILO, critical 
angle TIRF, and TIRF, respectively. The corresponding incident angle for HILO was 59.6°, which was smaller 
than the critical angle of the total internal reflection (60.7°). The incident angle for critical angle TIRF was 61.4°, 
which was close to the critical angle. The incident angle for TIRF was 63.5°, which was larger than the critical 
angle. The fluorescence from the sample was collected using the same objective lens, passed through the dichroic 
mirror, and then passed through the spatial filter unit composed of two multiple lenses (f = 200 and 70 mm) 
and a slit (Optonica Co., Kyoto, Japan). The slit width was set between 0.8 and 1.5 µm, such that a single DNA 
could be selected in the observation area (600 × 10 ~ 19 pixels). The width of the point spread function of the 
fixed fluorescent spot was ~ 200 nm. In the flow channel, DNA fluctuated ~ 64 nm along the perpendicular axis 
against the flow. A 532-nm notch filter, a 532-nm long pass filter, and a 590-nm short pass filter were placed in 
the fluorescence detection path. A spherical lens (f = 70 mm) was used to focus the fluorescence on the TDI-EM 
CCD camera (Hamamatsu Photonics, KK, Hamamatsu, Japan). The final magnification of the image was 100×.

Sample preparation. We used a thermostable and cysteine-modified mutant of human p53 (C124A, 
C135V, C141V, W146Y, C182S, V203A, R209P, C229Y, H233Y, Y234F, N235K, Y236F, T253V, N268D, C275A, 
C277A, and K292C)20. The expression and purification of p53 were conducted by following our reported 
 method20. Briefly, p53 with the GST tag was expressed in Escherichia coli BL21 (DE3) pLysS cells. The cells were 
lysed by sonication, and the supernatants were loaded onto a GST column (GSTrap FF; GE Healthcare, Tokyo, 
Japan). The GST tag was cleaved using PreScission Protease (GE Healthcare), and samples were collected. The 
samples were purified further using a heparin column (HiTrap Heparin HP; GE Healthcare). DNA-binding abil-
ity of the purified sample was confirmed using a titration measurement based on fluorescence  anisotropy8. The 
purified p53 was labeled with ATTO532 using maleimide chemistry, as reported in our previous  study20. The p53 
sample labeled with ATTO532 was purified using a cation exchange column (HiTrap SP HP; GE Healthcare). 
The labeling ratio was determined to be 0.8 dyes/monomer.

Tethering of DNA to flow cell. To tether DNAs in the flow cell, we used DNA garden methods to produce 
arrays of stretchable  DNAs32. Briefly, NeutrAvidin (Thermo Fisher Scientific, Waltham, MA, USA) was micro-
contact-printed on coverslips coated using an MPC polymer (Lipidure-CM; NOF, Tokyo, Japan) with a custom-
made PDMS stamp (Fluidware Technologies, Saitama, Japan). Then, a flow cell was constructed by assembling 
double-sided tape, the coverslip, and the slide glass. The respective width and height of the flow path were ~ 3 
and 0.1 mm, respectively. One of two holes of the slide glass was connected using a syringe through a  tube20. For 
further coating of the flow cell, we used polyvinylpyrrolidone K15 (Tokyo Chemical Industry, Tokyo, Japan) and 
bovine serum albumin (BSA; Sigma-Aldrich, Tokyo, Japan). Finally, λDNA (New England Biolabs, Ipswich, MA, 
USA), annealed with 5′-GGG CGG CGA CCT -biotin-3′ (Sigma-Aldrich), was immobilized on the NeutrAvidin 
printed area of the inner surface of the flow cell.

Fast kymograph measurements of p53. We introduced the labeled p53 at 0.25–3 nM in a buffer con-
taining 20 mM HEPES, 0.5 mM ethylenediaminetetraacetic acid (EDTA), 1 mM dithiothreitol, 0.5 mg/mL BSA, 
2 mM Trolox, 2 mM  MgCl2, and 25–150 mM KCl (pH 7.9) into the flow cell tethering DNAs using a syringe 
pump (Chemyx, Stafford, TX, USA). We first observed the larger area of the DNA array using two-dimensional 
imaging at an exposure time of 33 ms and a laser excitation power of 0.5 mW. Then, the slit was closed so as 
to detect only a single DNA, and fast kymograph measurements were conducted in TDI mode at an excitation 
power of 50 mW at 22 °C. Measurements were performed immediately after the dilution of labeled p53 from the 
stock solution at several tens of µM and completed within 50 min to prevent the dissociation of the tetramer into 
the dimers or  monomers43. We obtained at least 600 kymographs consisting of 1,000 consecutive measurements 
of 0.5-ms exposures in each of the individual experimental conditions.

Tracking of p53 molecules in the kymographs. Single-molecule trajectories were obtained by tracking 
the center of the fluorescence intensity distributions at each time step for the kymographs. First, we picked peaks 
whose maximum fluorescence intensity was larger than 5 standard deviations of the background intensity at all 
time steps. Second, the selected peak detected at a time step was connected to the peak detected in the next time 
step if the two peaks were located within 2 pixels. If more than two peaks were detected at the next time step, 
the closest peak was connected. If there were no candidate peaks detected in the next time step, the procedure 
was repeated in the two subsequent time steps. Less than four missing time steps were allowed to connect traces 
considering the photoblinking of the fluorescence dye. Third, trajectories with at least five data points were 
selected. Finally, we determined the position of the molecule at every time step for each trajectory by fitting of 
the fluorescence distributions with a Gaussian function.

MSD analysis. We calculated the MSDs of trajectories whose lengths were greater than 7 ms.
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Jump analysis. We identified jump events for p53 by searching for the end point of a trajectory and the start 
point of a nearby trajectory based on the following criteria. We selected events for which the distance between 
the two points was larger than approximately the eightfold distance expected for sliding molecules having a 
diffusion coefficient of 0.13 µm2/s20 and was smaller than the distance expected for the free-flowing molecules 
by the bulk flow at 665.3 nm/ms. The flow rate was estimated assuming a laminar flow at 0.2 µm apart from the 
inner surface of the flow cell. The maximum allowed time interval between the two points was 15 ms.

Residence time analysis. Before the residence time analysis of the single molecule traces, two or more 
traces separated by the identified jumps were connected. The residence time was calculated as the time difference 
between the start and end points of the trajectories. To reduce the effects of flowing molecules on the residence 
time distribution, we used all data, except for the initial data bins from 2 to 3 ms, in the fitting of the two expo-
nentials (Supplementary Fig. S1). The histogram bin size was 1 ms in 50–150 mM KCl, whereas that in 25 mM 
KCl was 3 ms owing to the limited number of traces obtained.
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