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Evaluating the integrity of forested 
riparian buffers over a large area 
using LiDAR data and Google Earth 
Engine
Hamdi A. Zurqani1,2,3*, Christopher J. Post1, Elena A. Mikhailova1, Michael P. Cope1,4, 
Jeffery S. Allen3 & Blake A. Lytle5

Spatial and temporal changes in land cover have direct impacts on the hydrological cycle and stream 
quality. Techniques for accurately and efficiently mapping these changes are evolving quickly, and 
it is important to evaluate how useful these techniques are to address the environmental impact of 
land cover on riparian buffer areas. The objectives of this study were to: (1) determine the classes and 
distribution of land cover in the riparian areas of streams; (2) examine the discrepancies within the 
existing land cover data from National Land Cover Database (NLCD) using high-resolution imagery of 
the National Agriculture Imagery Program (NAIP) and a LiDAR canopy height model; and (3) develop 
a technique using LiDAR data to help characterize riparian buffers over large spatial extents. One-
meter canopy height models were constructed in a high-throughput computing environment. The 
machine learning algorithm Support Vector Machine (SVM) was trained to perform supervised land 
cover classification at a 1-m resolution on the Google Earth Engine (GEE) platform using NAIP imagery 
and LiDAR-derived canopy height models. This integrated approach to land cover classification 
provided a substantial improvement in the resolution and accuracy of classifications with F1 Score 
of each land cover classification ranging from 64.88 to 95.32%. The resulting 1-m land cover map is a 
highly detailed representation of land cover in the study area. Forests (evergreen and deciduous) and 
wetlands are by far the dominant land cover classes in riparian zones of the Lower Savannah River 
Basin, followed by cultivated crops and pasture/hay. Stress from urbanization in the riparian zones 
appears to be localized. This study demonstrates a method to create accurate high-resolution riparian 
buffer maps which can be used to improve water management and provide future prospects for 
improving buffer zones monitoring to assess stream health.

Despite the relatively low spatial extent of riparian buffer areas, they are a major concern for land and water 
resource managers. Evaluation of the land cover within the riparian buffer areas is critical to protecting water 
quality1. The effects of different land cover at the watershed scale can influence the flow of water and nutrients 
to water bodies, resulting in impacts to stream water quality2 from increased sedimentation, higher nutrient and 
contaminant concentrations, and changes to hydrological patterns3. Land cover mapping is essential to obtain 
a better understanding of interactions and relationships between human activities and the environment over 
time. The effect of change in land cover varies by region, geographical location, and spatial scale. Quantifying 
and assessing land cover is essential to formulating integrated land and water resources management strategies4,5. 
Land cover classification can be used as a proxy to the human footprint, which can result in land degradation 
and a loss of biodiversity6.

Rapid population growth in the Savannah River basin region has had dramatic impacts on the natural land 
cover7. This change is most evident in increasing urbanization and conversion of farmland and forests to urban 
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areas, which may decrease the water supply for human use and increase possible human health threats7. Past 
research indicates that 30% or more impervious area in a watershed degrades stream ecosystems8. As urban areas 
grow and envelop forests and agricultural areas, the impacts on lakes, streams, and rivers can be considerable 
and permanent if there is no control of stormwater9. The presence of forests in riparian buffer areas can preserve 
stream water quality, protect wetlands and floodplains, limit erosion, and offer recreational opportunities10. For-
ests have the potential to improve watershed health and stream water quality through the reduction in stormwater 
quantity and pollutant runoff that reaches water bodies11.

Over the past decades, human activity has been the primary source of land cover/land use changes in the 
Savannah River basin7,12,13. A management plan for the Georgia portion of the Savannah River basin was devel-
oped using remotely sensed data and indicated that the use of high-resolution imagery (e.g., aerial photography, 
etc.) provided more accurate results to detect land cover changes in the region14. Environmental disturbances in 
the Savannah River Basin has led to a decrease in water bodies, vegetation, loss of harvested agricultural land, 
and farms7. Merem et al.13 evaluated the environmental conditions in the Lower Savannah watershed in Georgia 
and South Carolina using spatial–temporal environmental analysis and reported that the region has experienced 
widespread pollution as shown with the common presence of toxins in the watershed along with high pumpage 
of water and environmental declines triggered by many stressors including socio-economic factors. At a smaller 
spatial scale, it has been observed that the conversion of land from forest and agricultural use to urban and sub-
urban use can lead to the degradation of aquatic ecosystems in small streams in the South Carolina region, with 
the effects being particularly destructive during the actual land conversion process15–17.

The amounts and temporal variations in the delivery of water, sediments, and nutrients from land surfaces 
to stream channels can be influenced by the land cover type18. Human-induced land use changes substantially 
modify land cover, which alters fluxes of water and sediment through stream channel networks19. It is challeng-
ing to delineate these channels accurately using satellite image classification because it is difficult to distinguish 
between the channel and floodplains. These analyses are strongly influenced by the Digital Elevation Model 
(DEM) resolution and quality20. Evaluating the condition of the riparian buffer areas along the stream chan-
nels can provide information on water quality21. Riparian buffers are typically characterized using the Multi-
Resolution Land Cover (MRLC) dataset available in the National Land Cover Database (NLCD), which has full 
national coverage in 30 m resolution but is only available in specific years7.

In recent years, Light Detection and Ranging (LiDAR) data have been used successfully to characterize ripar-
ian buffers22–24. LiDAR data are used to produce Digital Surface Models (DSM), which represents the topography 
of objects on the earth. LiDAR technology provides an ideal data source to acquire accurate land cover metrics. 
In the forested landscape, LiDAR can be used to estimate tree canopy height. High-resolution aerial photos can 
provide detailed spatial information including texture, color, and shape, as well as certain spectral information25, 
but do not provide topography information about trees and other objects on the ground surface. This lack of 
height information can be compensated for by using LiDAR data, which contains detailed three-dimensional 
data, but has limited spectral information. The integration of high-resolution images and LiDAR data provides 
the data necessary for extracting building and forest metrics.

Remotely sensed techniques for land cover/land use analysis have been examined in many studies7,26–28. These 
studies indicate that using remotely sensed data such as Landsat, SPOT, and the National Agriculture Imagery 
Program (NAIP) imagery can help characterize land cover over large areas. Jacobsen29 states that high spatial 
resolution maps of land cover are often prohibitively expensive, which limits the research and management of 
moderate to large spatial areas. The National Agricultural Imagery Program (NAIP) provides high-resolution 
aerial imagery of the continental United States starting in the year 2000. Their data collection was expanded in 
2009 to include capturing 4-band imagery in three-year cycles. Nevertheless, some of the states fund a more 
frequent acquisition. Hayes et al.30 were able to create a high-resolution land cover classification map at one-
meter resolution using NAIP imagery with an overall accuracy of 81%. Nagel and Yuan31 extracted land cover/
land use and impervious surface information over large areas from high-resolution remote sensing data with an 
overall accuracy of 74% and 95% for the general land cover/land use classification and the impervious surface 
map, respectively. Zurqani et al.28 classified NAIP imagery and achieved an overall accuracy of approximately 
90% for mapping urbanization trends in a forested landscape in Upstate South Carolina.

Recent research shows that the rapid improvements in the availability of high-resolution geospatial data will 
facilitate the mapping of geomorphic drivers and contexts across large regions7,17,28,32. Conventional geospatial 
techniques for mapping and monitoring land cover changes such as deforestation, urban growth, agriculture 
expansion, and wetland loss necessitate downloading remote sensing data and having an appropriate computing 
power to classify imagery7. This is often costly both in terms of computing infrastructure and time, particularly 
when analyzing large areas and/or extended time periods. A solution to many of these challenges is Google Earth 
Engine (GEE), a remote sensing platform, which combines an extensive geospatial data catalog with distributed 
computing resources in a cloud framework and can analyze big data rapidly, which is critical for studying envi-
ronmental changes over large areas7,32. Google Earth Engine enables users to run algorithms on an extensive 
archive of georeferenced images and other data within Google’s infrastructure. With distributed computing (e.g., 
GEE, etc.) and more LiDAR data available at no-cost, it is now possible to characterize large spatial extents and 
resolutions that were not possible using conventional methods33–35. This study employs a new approach that 
improves the characterization of land cover in riparian zones over relatively large spatial extents. The present 
study uses GEE along with high-resolution NAIP images and publically available LiDAR data sets to investigate 
the land cover within riparian buffer zones over a large area of the southeastern of the United States.

The objectives of the study were to: (1) determine the classes and the distribution of land cover within the 
stream riparian areas, (2) examine the discrepancies in the existing National Land Cover Database (NLCD) using 
high-resolution NAIP imagery and LiDAR data, (3) develop a technique using LiDAR data to help characterize 
riparian buffers over large spatial extents.
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Materials and methods
Study area.  The study area is the lower part of the Savannah River Basin (Fig. 1a,b). It covers approximately 
9,880 km2 and spans portions of the states of South Carolina and Georgia. The average annual temperature is 
18 °C, and the average annual precipitation ranges between 1 and 2 m for the entire basin14.

The lower basin of the Savannah watershed (Fig. 1a,b) furnishes water for large urban areas in Georgia and 
South Carolina. It is an area of high biodiversity and provides habitats for at least nine threatened and endangered 
species13. A variety of different land covers exists in the Savannah River Basin, with much of the riparian area 
being covered by deciduous forests and wetlands7. Most of the overall study area consists of evergreen forests 
and agriculture areas7. Some of the common threats to water quality include the presence of leaky septic tanks 
and chemical runoffs from farm operations which may cause a serious threat to biodiversity in the region11,36. 
The contamination of water supplies constitutes a growing risk to public health, communities, wildlife, and the 
ecotourism economy. Approximately 60% of Georgia’s waterways are so highly contaminated that they do not 
meet the minimum federal criteria for fishing or swimming13.

Data and methods.  The land cover classification technique used in this study requires image preprocessing 
and normalization, as well as a reference dataset to train and evaluate the classification approach. The land cover 
classification technique was applied and evaluated by developing code in the GEE platform using the supervised 
classifier algorithm and NAIP imagery for each chosen year. High-resolution aerial imagery was used as a refer-
ence dataset for training and validating the classifications. The resulting land cover classification was compared 
to the NLCD data and the integrity of forested riparian buffers areas was evaluated using NLCD and LiDAR data. 
The general procedures are summarized in the flowchart illustrated in (Fig. 2).

Image preprocessing.  Google Earth Engine greatly reduces the analysis time by utilizing Google’s distrib-
uted computing infrastructure platform (https​://earth​engin​e.googl​e.org/). It provides excellent performance in 
terms of enabling access to remote sensing products through the cloud platform and providing pre-processing 
to archived data from the US Geological Survey (USGS) collection7,37.

The National Agriculture Imagery Program (NAIP) imagery was loaded as an ImageCollection and mosai-
cked as one single image for the selected date range (Jan 01, 2010, to Dec 01, 2011) (Table 1, Fig. 2). The single 

Figure 1.   Location of the Savannah River Basin: (a) the Digital Elevation Model (DEM), and (b) stream 
channels.

https://earthengine.google.org/
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composite of the NAIP imagery included the red, green, blue (RGB, ‘visible spectrum’), the near-infrared (NIR) 
band, and the statistics image neighborhoods of these bands including the minimum (min), maximum (max), 
and standard deviation (sd) values where the window size and shape specified by “ee.kernel” of the 1 × 1 m 
neighborhood around the corresponding input pixel. The composite then serves to generate several indices that 
were derived from spectral band combinations to distinguish features that are more representative of vegeta-
tion greenness, such as, the Normalized Difference Vegetation Index (NDVI)27, the Enhanced Vegetation Index 
(EVI)38, the Green Ratio Vegetation Index (GRVI)36, and the Modified Soil Adjusted Vegetation Index (MSAVI)39 
to enhance the classification accuracy. The Normalized Difference Water Index (NDWI)40 was used to better 
distinguish between water and vegetated areas27. All of these indices were calculated for each image and stacked 
for later classification (Fig. 2). These indices are expressed in the following Eqs. (1–5):

(1)NDVI =
(NIR − Red)

(NIR + Red)

(2)EVI = G
(NIR − R)

(NIR + C1 ∗ Red − C2 ∗ Blue + L)
∗ 100

(3)GRVI =
NIR

Green
∗ 100

(4)MSAVI =
(2 ∗ NIR + 1−

√

(2 ∗ NIR + 1)2 − 8 ∗ (NIR − Red)

2
∗ 100

Figure 2.   A flow diagram for data processing and the analysis steps.

Table 1.   Data sources and description.

Data layer Source Resolution Date

Watershed Boundary Dataset (WBD), Streams US Department of the Interior, US Geological Survey Scale 1:24,000 2016

National Hydrography Dataset Plus (NHDPlus) US Department of the Interior, US Geological Survey Scale 1:24,000 2012

The National Agriculture Imagery Program (NAIP) Google earth engine (GEE) data provided by US Department of Agriculture (USDA) Farm 
Service Agency 0.6 m 2010–2011

LiDAR data County offices, Clemson University, National Oceanic and Atmospheric Administration 
(NOAA) 1 m 2010–2011

NLCD: USGS National Land Cover Database Google earth engine (GEE) data provided by U.S. Geological Survey (USGS) 30 m 2011
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where Red, Green, Blue and NIR are the NAIP imagery bands. The coefficients adopted in the MODIS-EVI 
algorithm are; L = 1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5.

LiDAR data processing methods and canopy height calculation.  One-meter resolution Digital Ter-
rain Model (DTM), and Digital Surface Model (DSM) raster data were produced for each county using LiDAR 
point clouds in a High Throughput Computing (HTC) environment consisting of 20–30 desktop computers in 
the Clemson University Center for Geospatial Technologies. LiDAR data were compiled in coordination with 
numerous county representatives or downloaded from the NOAA Coastal Topographic LiDAR repository (https​
://coast​.noaa.gov/) and stored on 4-terabyte hard drives.

Custom Python scripts were used to automate LiDAR processing, which included sub-processing LASTools, 
based on triangular irregular network (TIN) interpolation41 and ArcGIS 10.6 software42 in order to construct 
DTM and DSM products in a piece-wise fashion. For each tile (approximately 1 km2), the Python scripts col-
lect available LAS point clouds from neighboring tiles, execute the blast2dem script in LASTools using a 200-m 
buffer radius, and then execute ArcGIS scripts in order to mosaic and clip the DSM and DTM of the center or 
target tile. HTCondor software43, the specific HTC software, was used to distribute jobs across many computers. 
HTCondor returned the finished DSM and DTM tiles and individual tiles from each job were mosaicked into a 
final DSM and DTM at the county level.

Finally, the DTM and DSM layers were uploaded to the GEE platform and used to generate the canopy height. 
The canopy height represents the height or distance between the ground and the top of the objects above the 
ground and it was calculated by subtracting the DTM from the DSM.

Land cover categories and reference data.  The Savannah River basin is a heterogeneous landscape 
comprised of a diverse mix of aquatic and terrestrial habitats12 that are challenging to classify from satellite 
imagery. It is possible to reliably define eleven land cover classes by utilizing the 0.6-m resolution NAIP aerial 
imagery7 and the NLCD land cover description44 (Fig. 4a). The following land cover classes were identified: 
(1) open water with lakes, rivers and water bodies, (2) low-medium intensity urban with paved roads/concrete 
structures and limited buildings, (3) high intensity urban with infrastructure indicating areas with dense human 
population, (4) barren land, (5) deciduous forest, (6) coniferous forest, (7) shrub/scrub, (8) grassland/herba-
ceous, (9) pasture/hay, (10) cultivated crops, and (11) wetlands with woody and emergent herbaceous wetlands.

Ground reference data (ground truth) plays a key role in supervised image classification. The number of 
reference data sets used is also a critical factor in this step28. Visual interpretations were used to produce a total 
of 4,390 reference points for the year 2011 using NAIP imagery with a no less than 250 reference points per land 
cover category. Each point was buffered by one meter to enhance the classification results and ensure an objective 
identification of the reference data and the NAIP imagery data. The reference dataset was split randomly into 
a training dataset set consisting of 70% of the observations and a testing dataset with the remaining 30% of the 
observations7. The training dataset was used to train the supervised classifier algorithm, while the testing data 
set was used to assess the accuracy of the resulting land cover classification map.

Support vector machine classifier.  A wide variety of classification algorithms have been used to classify 
and map land cover from remotely sensed data45,46. Supervised machine learning classifiers, such as Support 
Vector Machine (SVM), Regression Trees (CART), and Random Forest (RF), are increasingly used to classify 
remotely sensed data47.

The SVM classifier has been effective in producing high classification accuracy using high-resolution imagery. 
The SVM classifier relies exclusively on the training samples that are closest in feature space to the optimal 
boundary between the classes48–50. Support Vector Machine’s are essentially binary classifiers; however, they can 
be adapted to handle the multiple classification tasks common in remote sensing studies49–54. The performance 
of SVM’s has been shown to be superior to the traditional pattern classifiers (Linear, Quadratic, Fisher Linear 
Discriminant, Nearest-Neighbor) as well as more modern techniques such as Radial Basis Function (RBF) clas-
sifiers and large ensemble-RBF network55. Adam et al.52 found that SVM and RF classifiers performed equally 
well in terms of accuracy. In this study, a comparison was implemented between commonly used classifies in the 
GEE platform including; Decision Tree (DT), Random Forest (RF), and Support Vector Machin (SVM). In this 
comparison, the SVM classifier achieves the best visual accuracy in the vegetation class than other classifiers, and 
also performs satisfactorily to the building and road classes. The SVM classifier algorithm was applied to obtain 
the land cover classification map for each chosen year of the NAIP imagery. The SVM functions by nonlinearly 
projecting the training data in the input space to a feature space of higher (infinite) dimension using a kernel 
function51. This results in a linearly separable dataset that can be separated by a linear classifier. This process 
enables the classification of remote sensing datasets which are usually nonlinearly separable in the input space51. 
Finally, following Yang et al.56 a procedure to correct mapping errors by a hand-editing process was applied. In 
some areas, hand-editing was used to correct misclassified pixels (e.g., impervious, surface reflection in some 
water areas, etc.).

Accuracy assessment.  Many factors affect the accuracy of image classification. Accuracy assessments 
are useful and effective techniques to determine how well the classification process accomplished the study 
objectives57–59. The accuracy assessment process allows a comparison between certain pixel values in a raster 
layer and the reference pixels for which the class is known. The produced land cover classification map was 

(5)NDWI =
(Green− NIR)

(Green+ NIR)

https://coast.noaa.gov/
https://coast.noaa.gov/
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validated using high-resolution imagery (NAIP) (0.6-m resolution). Approximately 1,320 of the reference data 
points were used in this validation process with no less than 50 reference points per land cover category. The 
confusion matrix of land cover maps was calculated to evaluate the accuracy of the results using the producer’s 
accuracy, user’s accuracy, the overall accuracy, Kappa statistics which reflect the difference between actual agree-
ment and the agreement expected by chance as shown in Eq. (6), and F1 score which shows how good the classi-
fier is in the context of both producer’s and user’s by weighting the average of producer’s and user’s 7,28 as shown 
in Eq. (7):

The DTM was used to distinguish between the wetlands and another type of land cover classes in a forested 
watershed7,58,60. The accuracy assessment of the forested cover (tree vs. non-tree) based on the LiDAR canopy 
height, NAIP classified imagery, and NLCD data was evaluated using 500 points of field observation data that 
were randomly selected within the stream riparian areas. The results were evaluated using three indicators, i.e., 
the producer’s accuracy, user’s accuracy, and the F-score.

Quantifying land cover classes in riparian zones.  Buffers were constructed around the stream net-
work in the NHDPlus database (Table 1) at distances of 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, and 550 m. 
These buffer levels were further categorized using the Strahloer Stream Order level feature in the NHDPlus data. 
The area of each land cover classification within each buffer distance and stream order level was quantified.

Results
Spectral behavior of land cover classes.  Spectral resolution refers to the number of bands of data a 
sensor provides and which part of the electromagnetic spectrum they capture. The spectral signature values of 
the twelve land cover classes are presented in Fig. 3a,b. The spectral signature values of the actual NAIP imagery 
bands reflectance (R: Red, G: Green, B: Blue, and NIR: Near Infrared) are shown in Fig. 3a. Generally, the red 
and NIR parts of the spectrum are most important for vegetation classification. The red band was most useful 
for distinguishing between the vegetation classes except for the evergreen forest where it was confused with the 
water spectra. However, the water presented a typical behavior with low reflectance in NIR values. The reflec-
tance of bare land was visible in both the green and the red bands. The urban areas were well separated in the 
blue spectra.

The results of the spectral indices, which include NDVI: Normalized Difference Vegetation Index, EVI: 
Enhanced Vegetation Index, GRVI: Green–Red Vegetation Index, MSAVI: Modified Soil-Adjusted Vegetation 
Index, and NDWI: Normalized Difference Water Index are shown in Fig. 3b. The vegetation classes were easy to 
distinguish in the EVI, while water was much easier to identify in the MSAVI.

Accuracy of support vector machine classifier.  The final land cover map used for land cover assess-
ment is shown in Fig. 4b, and producer’s and user’s accuracy of the classification using the SVM algorithm are 
listed in Table 2. The overall accuracy was 77.65%, while user’s accuracies of each land cover classification range 
between 55.61% (evergreen forest) and 96.72% (high intensity urban).

This result confirms the finding of Nagel and Yuan31 who created a high-resolution land cover and imper-
vious surface map in the Twin Cities Metropolitan area using NAIP imagery where they achieved an overall 
accuracy of 74% and 95% for the general land cover/land use classification and the impervious surface map, 
respectively. The results of this study show that most of the land cover classes were adequately mapped, except 
some areas of the shrub/scrub and grassland/herbaceous. Zurqani et al.7 explained this classification errors due 
to the pixel’s similarities between shrub/scrub and grassland/herbaceous and regrowth forests. The Digital Ter-
rain Model (DTM) layer was useful to distinguish between the wetlands and the other land cover classes, such 
as the deciduous forest areas.

Distribution of land cover classes.  The land cover classification map for the entire study area was created 
using supervised classification Support Vector Machine (SVM) algorithm with NAIP imagery via GEE for the 
year 2010/2011 in a total of eleven common land cover categories (Table 2, Fig. 4b).

The distribution of individual class areas is summarized in Table 3. The high-resolution one-meter land cover 
map derived from NAIP imagery is shown in Fig. 4b. At a larger scale region, the detailed land cover features 
such as residential areas, local roads and streets, and small water bodies can clearly be identified in this high-
resolution classification map. This was followed by low-medium intensity urban 185.30 km2, high intensity urban 
38.85 km2, barren land 122.37 km2, and an open water area of approximately 168.85 km2. The vegetation classes 
were classified as the largest land cover classes in the area followed by the deciduous forest 1910.04 km2, ever-
green forest 3,101.39 km2, shrub/scrub 527.60 km2, grassland/herbaceous 724.55 km2, pasture/hay 468.57 km2, 
cultivated crops 823.38 km2, and wetlands 1809.08 km2 (Table 3).

Classes and distribution of land cover within riparian areas.  The one-meter land cover map derived 
from NAIP was compared to the 30 m resolution 2011 NLCD. Data were extracted within the stream riparian 

(6)Kappa statistics =
observed accuracy − agreement chance

1− agreement chance

(7)F1 score =
2

1
producer′s

+
1

user′s

= 2 ∗
user′s ∗ producer′s

user′s+ producer′s



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14096  | https://doi.org/10.1038/s41598-020-69743-z

www.nature.com/scientificreports/

areas for different buffer zones (50, 100, 150, 200, 250, 300, 350, 400, 450, 500, and 550 m (Fig. 5a,b). In Fig. 5a, a 
key difference between NLCD classes and the NAIP classifications can be clearly observed. Most notably, NLCD 
appears to underestimate forest cover within stream buffer 50, 100, 150, 200, and 250 m compared to the NAIP 
classifications at all buffer distances and stream order levels. A comparison of the total impervious surface areas 
within the buffers between the classified NAIP and NLCD data is shown in Fig. 6a–f. The results showed that the 
total impervious surface areas that were extracted from the NLCD data exceeded the results from the classified 
NAIP classification at all of the streams levels. In particular, this variation is most evident at the buffer zones of 
stream levels 2, 3, 4, 5, and 6 (Fig. 6a–f).

Evaluating the integrity of forested riparian buffer areas.  In order to evaluate the discrepancies 
between the forested cover classifications within the riparian buffer areas at different stream levels in both NLCD 
and classified NAIP imagery, the results were compared to the canopy height (1-m resolution) that derived from 
LiDAR data. Results of the accuracy assessment (Table 4) show that forest canopy classification using the NAIP 

Figure 3.   The spectral values of each land cover type in the study area: (a) spectral bands reflectance (R Red, 
G Green, B Blue, NIR Near Infrared), and (b) indices spectral (NDVI Normalized Difference Vegetation Index, 
EVI Enhanced Vegetation Index, GRVI Green–Red Vegetation Index, MSAVI Modified Soil-Adjusted Vegetation 
Index, NDWI Normalized Difference Water Index).
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classified aerial imagery and the canopy height derived from LiDAR data had the highest accuracies with F-score 
of 98.85% and 98.53% respectively. In comparison, the NLCD land cover product had less accuracy with an 
F-score of 86.28%. This difference in accuracy assessment can be explained by the large difference in the forest 
cover visible in the riparian buffer areas (Fig. 7a–i). Additionally, the difference in spatial resolution between the 
three types of spatial data can also contribute to this variation in error.

Figure 4.   Land cover map: (a) the National Land Cover Database (NLCD), and (b) high resolution land cover 
map derived from the NAIP imagery.

Table 2.   The percentage of producer and user accuracy, F1 score, overall accuracy, and kappa statistic for land 
cover classification.

No Types User’s Accuracy Producer’s accuracy F1 Score

1 Open water 91.80 99.11 95.32

2 Low-medium intensity urban 92.45 87.50 89.91

3 High intensity urban 96.72 76.62 85.50

4 Barren land 89.47 81.92 85.53

5 Deciduous forest 69.18 75.86 72.36

6 Evergreen forest 55.61 77.85 64.88

7 Shrub/scrub 80.20 58.77 67.84

8 Grassland/herbaceous 75.96 59.39 66.67

9 Pasture/hay 84.33 74.46 79.09

10 Cultivated crops 74.62 87.71 80.64

11 Wetlands 78.40 81.66 79.99

Overall accuracy 77.65

Kappa coefficient 75.30



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14096  | https://doi.org/10.1038/s41598-020-69743-z

www.nature.com/scientificreports/

The land cover classification using NAIP imagery and LiDAR provide a more detailed and accurate accounting 
of land cover area as shown in (Fig. 7a–i). For example, the SVM using high-resolution NAIP imagery is able 
to detect pockets of forest within developed areas while the NLCD provides a more generalized classification. 
Though both the classified NAIP and NLCD classifications show that forest and wetlands are the dominant land 
cover classes in the riparian areas of the Lower Savannah River Basin, the higher resolution of NAIP and the 
accuracy of the SVM resulted both in different proportions of land cover classes and a higher resolution clas-
sification (Figs. 7, 8).

The variations of land cover types within canopy height areas.  The land cover types within stream 
riparian areas from NLCD data and classified NAIP imagery were masked using the canopy height derived from 
the LiDAR data to estimate the land cover areas corresponding to canopy heights above ground elevation. A 
large difference in the total land cover in this area can be seen in Table 5 and Fig. 8. These results in Table 5 and 
Fig. 8 show that the total impervious surface was much higher in NLCD data (101.91 km2, 3.90%) compared 
to NAIP classified imagery (11.57 km2, 0.44%). While the total forested areas from NAIP classified imagery 
(1,295.48  km2, 49.55%) were smaller than NLCD data (1,335.24  km2, 51.07%). Apart from these variations, 
differences were also observed in the other land cover types where the total areas of shrubland, herbaceous and 
planted from the NAIP classified imagery were higher than the NLCD data with about (302.21 km2, 11.56%), 
(162.53  km2, 6.22%), and (264.53  km2, 10.12%) respectively. While the total wetlands from NAIP classified 
imagery (552.55 km2, 21.13%) were smaller than NLCD data (930.69 km2, 35.60%).

Discussion
Advantages and limitations of the approach that this land cover classification approach for riparian areas uses 
the Support Vector Machine (SVM) supervised classification algorithm with NAIP imagery data and includes a 
number of indices within the GEE platform (Fig. 2). The (SVM) algorithm adequately classifies the heterogene-
ous land cover in the lower part of the Savannah River basin and produces reliable land cover results with the 
ability to differentiate disparate types of land cover53. Rudrapal and Subhedar54 employed the SVM algorithm 
for automated classification of various land cover types using hyperspectral imagery and successfully achieved 
an overall accuracy of more than 90% almost in all cases of land cover. This approach also utilized LiDAR data 
to produce a canopy height, which helped to identify forest cover in the study area and evaluate the integrity of 
forested landscape within the riparian buffer areas.

The GEE platform supports high-speed data analysis using processing functions for large spatial extents while 
also supporting the use of algorithms that pool data from multiple years, sensors, and models7. The approach 
presented here results in accurate land cover classifications and easily be repeated as new remote sensing layers are 
ingested into the GEE platform, which will help highlight the wide variety of earth surface disturbances over time.

A limitation of utilizing this approach is that NAIP imagery and LiDAR data are not available for all years at 
all locations. The availability of the NAIP imagery is based upon available funding and the Farm Service Agency 
(FSA) imagery acquisition cycle, where it began a three-year cycle in 2009. LiDAR data availability can be also 
vary depending on the location within the United States. For instance, the National Oceanic and Atmospheric 
Administration (NOAA) provides LiDAR data for only a few states in the USA. LiDAR data products produced 
and used in this study also require substantial computational infrastructure and storage capacity. Infrastructure 
similar to GEE is needed for storage and derivation of LiDAR data products in order to make the approach used 
here more widely applicable.

The lower Savannah Sub-basin is a large area of 2.5 million acres. Mapping this large spatial extent of high-
level vegetation and urban details using high-resolution imagery provides a valuable addition to land cover 
mapping. The results of the land cover classification approach conducted in this study concur with the large-scale 
impact of expanding forest coverage in the region. A key advantage to the NAIP-derived land cover map was the 
fine spatial resolution that allowed the very-local-scale analysis of riparian buffer areas. The results confirmed 
that the rapid improvements in the availability of high-resolution geospatial data with distributed computing 

Table 3.   The distribution of land cover classes based on NAIP classification imagery.

No Types Area (km2) (%)

1 Open water 168.85 1.71

2 Low-medium intensity urban 185.30 1.88

3 High intensity urban 38.85 0.39

4 Barren land 122.37 1.24

5 Deciduous forest 1910.04 19.33

6 Evergreen forest 3,101.39 31.39

7 Shrub/scrub 527.60 5.34

8 Grassland/herbaceous 724.55 7.33

9 Pasture/hay 468.57 4.74

10 Cultivated crops 823.38 8.33

11 Wetlands 1809.08 18.31

Overall total 9,880.00 100.00
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such as GEE can facilitate the mapping of geomorphic drivers and contexts across large regions. These findings 
provide evidence that may help facilitate future land cover and land use planning, management, and decision-
making in the watershed area. In addition, this assessment of land cover within the riparian areas may also help 
to explain and respond effectively to emerging environmental risks in the region.

The canopy height derived from the LiDAR data illustrates that there is a need for using high-resolution 
data to evaluate land cover within the riparian buffer areas. In this study, both results from the NAIP classified 
imagery and LiDAR data provided reliable accuracies to assess the integrity of forested riparian buffers over the 
study area. LiDAR canopy height adds useful information for land cover classification, especially at high spatial 
resolution. For example, canopy height can help the classifier algorithm distinguish between different levels of 

Figure 5.   The classes and the distribution of land cover in the stream’s riparian areas from: (a) NLCD data, and 
(b) NAIP classified imagery.
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vegetation height, which would help differentiate between wetlands and forests. Similarly, it could help the clas-
sifier distinguish between forests of different ages. Land cover classification can and should be included in these 
efforts, along with LiDAR data products.

Access to computational infrastructure and LiDAR data is a barrier to the wider adoption of this type of 
classification approach. High-resolution LiDAR data require substantial storage capacity and computing power 
to process into data products for large spatial extents. Using high-resolution LiDAR data products such as DSM 

Figure 6.   Impervious surfaces within buffers areas using classified NAIP, and NLCD data: (a) within level 1 
(main branch), (b) level 2 (tributary), (c) level 3 (tributary), (d) level 4 (tributary), (e) level 5 (tributary), and (f) 
level 6 (tributary).

Table 4.   Accuracy assessments of the forest canopy classification results from the NLCD data, NAIP classified 
imagery, and the canopy height derived from LiDAR data within stream riparian areas. a NAIP classified 
imagery (included deciduous and evergreen forests, and wetlands). b NLCD data (included deciduous, 
evergreen, and mixed forests, and woody wetlands).

Accuracy indicators NAIP classified imagerya NLCD datab LiDAR data

Producer’s accuracy 97.73 75.87 97.11

User’s accuracy 100.00 100.00 100.00

F-score 98.85 86.28 98.53
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and DTM requires significant storage and processing infrastructure. The custom Python scripts and workflow 
used in this study can be used to streamline the process. These scripts build a spatially indexed cursor table 
that is used to select and “package” LiDAR data files for processing into data products. This increases the speed 

Figure 7.   Selected examples of land cover types within the stream’s riparian areas: (a) NAIP imagery of site A, 
(b) classified NAIP imagery of site A, (c) NLCD data of site A, (d) LiDAR (Canopy Height) of site A, (e) NAIP 
imagery of site B, (f) classified NAIP imagery of site B, (g) NLCD data of site B, (h) LiDAR (Canopy Height) of 
site B, and (i) the location of the sites A and B.



13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14096  | https://doi.org/10.1038/s41598-020-69743-z

www.nature.com/scientificreports/

of selecting data and allows jobs to be distributed out across many computers using the HTCondor software. 
The workflow is, therefore, more efficient and reliable than trying to perform these tasks for a large area from a 
single work station computer. Moving forward with tools like Python, LAStools, ArcGIS, and HTCondor, there 
is still considerable need for centralized repositories where LiDAR point cloud data and data products can be 
archived for wider access.

Figure 8.   The percentage of the masked areas of both land cover layers NLCD data and NAIP classified imagery 
with the Canopy Height derived from LiDAR data within stream riparian areas.

Table 5.   The masked areas of both land cover layers NLCD data and NAIP classified imagery with the canopy 
height derived from LiDAR data within stream riparian areas. a Distribution of percentage imperviousness 
among developed land-cover types (Open space—<20%; low intensity—20−49%; medium density—50–79%; 
and high density—80–100%) in NLCD data.

Land cover NLCD data Area (km2) NAIP classified imagery Area (km2)

Water Open water 32.47 Open water 16.85

Developed

Developed, open spacea 70.65 Low-medium intensity urban 5.64

Developed, low intensitya 24.88

Developed, medium intensitya 4.45

Developed, high intensitya 1.94 High intensity urban 5.93

Total 101.91 11.57

Barren Barren land 1.33 Barren land 8.84

Forest

Deciduous forest 344.15 Deciduous forest 303.27

Evergreen forest 875.80 Evergreen forest 992.21

Mixed forest 115.29 – –

Total 1,335.24 1,295.48

Shrubland Shrub/scrub 94.50 Shrub/scrub 302.21

Herbaceous Grassland/herbaceous 72.19 Grassland/herbaceous 162.53

Planted

Pasture/hay 22.22 Pasture/hay 116.82

Cultivated crops 24.00 Cultivated crops 147.70

Total 46.23 264.53

Wetlands

Woody wetlands 922.46 Wetlands 552.55

Emergent herbaceous wetlands 8.22 – –

Total 930.69 552.55
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Conclusions
Characterizing riparian buffer conditions is a critical first step in environmentally sound resource management 
and planning for maintaining water quality. This study demonstrates that the availability of historical remotely 
sensed data as well as the new geospatial technology of GEE represents a significant improvement for monitor-
ing and evaluating land cover over large areas. In this study, a regional scale analysis was successfully developed 
using high-resolution imagery and determines the classes and distribution of land cover in the lower part of 
the Savannah River Basin and evaluated the integrity of forested landscape within the riparian buffer areas. 
Multiple-layers were used, including the original four bands RGB and NIR, NDVI, EVI, GRVI, MSAVI, and 
NDWI, which provided reliable results in classifying six general land cover types. These vegetation indices were 
very useful to enhance the classification result, and MSAVI was the optimal index to separate water bodies from 
other types of land cover.

The results showed that the NAIP classified imagery provides more accurate results to identify and quantify 
the land cover classes than the NLCD data, especially near urban areas. Both results from the NAIP classified 
imagery and LiDAR data provided reliable estimates of the integrity of forested riparian buffers over the study 
area. It is also shown that NAIP imagery and LiDAR data can be used to accurately map the vegetation width, 
height, and canopy cover within the riparian buffer over wide areas to support ecological-based management.

The proposed methodology can be used to accurately quantify the land cover and canopy height within the 
riparian buffer width at the spatial extent and resolutions that were not possible using conventional methods. It 
is also highlighted that the open-access imagery and efficient geospatial analysis GEE provides a powerful and 
reliable methodology to remotely monitor riparian area integrity. The availability of this geospatial platform 
at no cost to non-commercial users and the advantage of this proposed approach can be useful for developing 
detailed land cover maps. This type of information facilitates research and management in maintaining riparian 
areas with the highest ecological integrity. Furthermore, it provides useful knowledge in understanding pollution 
sources of the river water quality, which provides information to policymakers to help sustainably manage land 
cover. The limitation of this approach is that NAIP imagery, and other sources of high-resolution aerial imagery 
are not typically available on a yearly basis. In future research, continuous monitoring of land use change is 
needed to better understand its impact in the region and which returns more effective management strategies.
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