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Yang‑Mills structure 
for electron–phonon interactions 
in vanadium dioxide
Jamie M. Booth1,2* & Salvy P. Russo1,2

This work presents a method of grouping the electron spinors and the phonon modes of metal oxide 
crystals such as vanadium dioxide into an SU(2) gauge theory. The gauge “charge” is the electron 
spin, which is assumed to couple to the transverse acoustic phonons on the basis of spin ordering 
phenomena in M

1
 - and M

2
-VO

2
 , while the longitudinal mode is neutral. A generalization of the Peierls 

Mechanism is presented based on the discrete gauge invariance of crystals and the corresponding 
Ward-Takahashi identity. The introduction of a band index results in violation of this discrete Ward-
Takahashi identity for interband transitions, resulting in scattering from the longitudinal component. 
Thus both the spinors and the bosons acquire mass and an electronic band gap and optical phonon 
modes result: a symmetry-breaking metal-insulator transition, which can manifest concurrent 
spin-ordering.

There currently exist a number of seemingly intractable problems in Condensed Matter physics (by intractable it 
is meant that some decades have passed since they were first identified without a solution being found). Mecha-
nisms of metal-insulator transitions in metal oxides1,2 and high temperature superconductivity in the cuprates 
and pnictides are two examples3,4. In addition, the cooperative interplay of magnetism and lattice distortions has 
also been emphasized in layered transition-metal dichalcogenides5–7, but a complete and convenient mathemati-
cal description is yet to be published.

The metal-insulator transitions of polymorphs of vanadium oxide are one example of an area of research 
which hs defied complete mathematical description. The most famous example of these, vanadium dioxide8, 
undergoes a structural phase transition which coincides (roughly, there is some nuance here) with a metal-
insulator transition at approximately 340 K. The high temperature structure is tetragonal ( P42/mnm, 136) which 
is metallic, while on the other side of Tc the crystal adopts a monoclinic form ( P21/c, 14)9,10. The structural 
distortions occurring are in essence a pairing of the vanadium atoms along the tetragonal c-axis, along with an 
antiferroelectric distortion orthogonal to this pairing, which has components in the tetragonal a - and b-axes.

The controversy surrounding VO2 stems from the fact that the pairing of the vanadium atoms when going 
from the tetragonal to the monoclinic structure resulting in a gap opening seems to be an archetypal “Peierls 
pairing”11, which perturbation theory suggests would open a band gap. However, there is strong experimental 
evidence for an excitation gap due to strong electron correlations: the Mott-Hubbard mechanism12. While a 
band theoretical mechanism was proposed by Goodenough some decades ago9. Mott and Zylberstein13 argued in 
favour of the excitation gap resulting from localization due to strong electron-electron interactions on the basis 
of magnetic susceptibility measurements not long afterward. The transfer of spectral weight across the transi-
tion identified by Qazilbash et al.14 is also typical of correlation driven metal-insulator transitions. The reader is 
directed to Liu et al.15 for a thorough review.

There is both experimental and theoretical support for the involvement of phonons in the transition, with 
diffuse X-ray scattering16 and more recently inelastic X-ray scattering17 suggesting softening at the tetragonal 
R-point occurring, which aligns with the symmetry-breaking of the transformation. However, the question 
of whether the lattice softening, or electron correlations drive the transition is now recognized as misleading. 
In reality both are intertwined, which has been termed “correlation assisted Peierls” process or “Peierls-Mott” 
insulating behaviour by some18,19.
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Of interest in this work is the appearance of another insulating form of VO2 , the M2 structure. The M2 form of 
vanadium dioxide is also monoclinic20, and like the M1 form it also undergoes a metal-insulator transition from 
the same rutile structure as M1 , albeit at a slightly elevated temperature21. However, this monoclinic structure 
has a particularly interesting feature, in that it is comprised of the same structural distortions as the M1 form, but 
split across different vanadium chains. That is, in the M1 form, all vanadium atoms pair up along the tetragonal 
c-axis, and at the same time undergo an antiferroelectric distortion, in which neighbouring metal ions displace 
in opposite directions along the long axis of the octahedron20. In the M2 form these distortions occur on alter-
nating chains, as Fig. 1a illustrates. The key piece of information is that the antiferroelectrically distorted chain 
also orders antiferromagnetically, while the paired chain does not22. Similar cooperation between charge and 
spin ordering resulting in Mott physics has also been recently reported in 1T-NbSe26.

This suggests that the antiferromagnetic spin ordering is somehow related to the antiferroelectric distortion, 
while the pairing distortion has no effect on the spin. In this work we are interested determining how both the 
charge and spin-ordering seen in the metal-insulator transitions of M1 and M2 VO2 can arise out of a mixture of 
electron-electron and electron-phonon interactions. Specifically, if a phonon mode is described by a space- and 
time-varying polarization vector, how can these vector bosons interact with the spinor variables in a crystal to 
generate the required charge- and spin-ordering?

The formulation described here is concerned with symmetry-breaking, and in particular the formation of 
massive excitations from massless constituents (i.e. energy gaps), and is focused on electron-lattice interactions. 
It is found that an SU(2) gauge theory in which the transverse phonons are charged under the gauge group; that is 
they couple to the both electric charges of the electrons and their spins, while the longitudinal mode is neutral and 
induces only electric charge fluctuations, can describe crystal structure transformations which are accompanied 
by spin ordering. As a Yang-Mills theory it predicts a confined phase at low energies.

Results
Bosons and gauge “charge”.  While performing GW calculations for a different study23, an anomalous 
rearrangement of charge density was observed in M2 VO2 . Figure 1b, c present GW calculations of the charge 
density of the d-band electrons in tetragonal VO2 , and M2 VO2 respectively. The tetragonal structure exhibits 
charge density which is distributed equally between the vanadium and oxygen atoms, and does not accumulate 
in the inter-vanadium regions. However, the M2 structure exhibits a very different charge ordering. From Fig. 1c 
it is apparent that as the tetragonal structure transforms to the M2 form, one of the chains dimerizes, and charge 
density accumulates between the paired vanadium atoms, indicated by the “Short” label.

Figure 1.   (a) Crystal structure of the M2 form of vanadium dioxide viewed down the monoclinic c-axis, where 
“P” denotes the paired chain, while “AF” denotes the antiferroelectrically distorted chain, (b) Isosurface of the 
charge density of the tetragonal VO2 structure, and (c) Isosurface of the charge density of the M2 VO2 structure. 
Image produced using VESTA24 3.1.5 (https​://jp-miner​als.org/vesta​/en/).

https://jp-minerals.org/vesta/en/
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However, the antiferroelectrically distorted chain exhibits the opposite behaviour. The symmetric charge 
density of the tetragonal structure deforms such that more accumulates between the vanadium atom and one 
of the oxygens, however it accumulates in the long inter-atomic spacing. This is an effect of electrostatic repul-
sion of the apical oxygen atoms, outlining the potential well that the 3 d1 electrons bound to the metal atoms 
exhibit. The repulsion from the cage of oxygen atoms creates a well centred in the tetrahedron, and therefore 
any displacement of the metal ion along the Jahn-Teller axis of the octahedron will create an instantaneous field 
which breaks the inversion symmetry of the octahedral potential. The spin ordering observed in the antiferro-
electric vanadium chain suggests this may be a significant effect, and in recent years the interplay between spin 
relaxation mechanisms and structural distortions has received attention in the context of the unusually long 
carrier lifetimes in organometal halide perovskites such as methylammonium lead iodide (MA-PbI3 ). In these 
systems this attention has focused on the role of spin state splitting due to the Rashba effect25. This effect arises 
from an inhomogeneous electric field which can alter orbital hybridization, leading to unusual spin relaxation 
mechanisms. Etienne et al.26 used a computational approach based on a combination of ab inito band structure 
and molecular dynamics calculations to show that a dynamic Rashba effect may be present in MA-PbI3 , which 
was verified experimental by Niesner et al.27. A similar effect may be at play in vanadium dioxide systems, which 
exhibit strong electron-phonon interactions16,17, possibly as a result of strong electron-electron interactions13,14,28.

In the following work we take such a mechanism as an axiom: there is some effective interaction occurring, 
possibly a mixture of the Rashba effect, spin-obit coupling and strong exchange, which couples to certain phonon 
polarization vectors and flips electron spins, and explore its theoretical consequences. Thus, from the observed 
spin and charge ordering in M2 vanadium dioxide and this axiomatic starting point, it seems that there may be 
two different effects of the metal atom motion on the localized electrons. There is a “Neutral” phonon, which 
affects the charge density, but not the spin. There are also “Charged” bosons, which can align the spin up- or 
down, which arise from polarization vectors orthogonal to the “Neutral” case. Such charged and uncharged 
bosons are functions of the coupling of the polarization vectors to the local environment of the metal atom, and 
thus would be expected to differ in materials in which this environment changes.

Spinors and the Weyl equation.  In problems such as metal-insulator transitions and superconductivity 
we are interested in the behavior of the electrons (and to some extent the lattice), and in particular the electrons 
on- or close to the Fermi surface, which act as metallic excitations before symmetry-breaking. For example in 
the cuprates these are the dx2−y2 states, and in vanadium dioxide the vanadium d1 states. It is therefore natural 
to concentrate solely on these degrees of freedom, and consider tight-binding wavefunctions for the electrons 
comprised of atomic-like orbitals:

where n is the band index, φj(r) labels the atomic-like orbitals which are summed over to give the position state 
wavefunctions in each unit cell, R labels the set of lattice vectors which describe the translational symmetry of 
the lattice, and k is the wavevector which describes the spatial variation in the wavefunction amplitude.

As we are concentrating on the metallic states close to EF , and assuming a 2-dimensional Fermi surface, 
the bands which form such a surface can be linearized at the Fermi wavevector: k = kF . Shifting k → k − kF 
then Ek = vF |k| and the states describe electrons and holes on or near the Fermi surface. However, unlike the 
Standard Model, the coordinate system of a crystal has a specific orientation, so no Poincaré group exists. Of 
course, there will be a discrete rotational and translational symmetry of the crystal given by its space group, but 
in general this will not be of much use to us, as it is not a Lie Group and therefore the considerable machinery 
of Poincaré invariance cannot be applied.

Therefore, it is important to the discussion below that momentum states in crystals are, in general, not related 
by a simple transformation. We can state that apart from rotations and translations of the space group, momenta 
are related by scattering processes, not symmetry transformations. Of course, momenta which are related by 
scale transformations: k → αk , are related. This may seem extremely restrictive, but it is actually a considerable 
simplification. We can treat each radial direction in momentum space separately, and sum over them to give the 
total result. For effects restricted to the Fermi surface this is simply equivalent summing over each point on the 
Fermi surface.

There is one symmetry operation which will be of considerable use; which is that for tetragonal (metallic) 
vanadium dioxide an inversion centre exists. Therefore there is a symmetry operation relating stationary momen-
tum states k and −k . It is straightforward to prove that these states satisfy the Weyl equation in (3+1) dimensions, 
as for each individual pair we can rotate the coordinate axes such that k = ( E

vF
, 0, 0, k) giving the Weyl equation:
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where the left-handed (L) and right-handed (R) states correspond to the two opposite helicity solutions (where 
the helicity operator is σ ipi , i.e. the Pauli matrices dotted into the momentum components) occurring for the 
up- and down spin degrees of freedom of the electrons. It must be stressed that this equation holds only for 
metallic systems, i.e. when electronic excitations can be achieved at arbitrarily small energies. Thus the dispersion 
relation E = vF |k| gives a Weyl, and not a Dirac, equation as at zero |k| , i.e. at the Fermi surface the excitation 
energy is zero. Thus as the Fermi surface there is no energy gap, or “mass”. However, while this can be done for 
each pair of 3-momenta, k and −k , the lattice structure does not have Poincaré invariance. Therefore, to be able 
to compare different momentum states, we need a way of satisfying E = vF |k| and also Eq. (2). The simplest 
method of achieving this is to allow complex momenta, and indeed this is also the manner in which the viola-
tion of Poincaré invariance is handled in modern amplitude methods such as BCFW recursion29. Of course, for 
a complete theory we need solutions for the left- and right-handed states, but first we need to determine how 
the lattice can influence how they vary from point-to-point across the lattice.

Yang‑Mills theory.  A U(1) gauge theory introduces interactions using a covariant derivative which couples 
the spinor and vector fields:

where g is the coupling strength. This generates a Lagrangian which is invariant under local U(1) transforma-
tions, and describes electromagnetism, and if Lorentz invariance is relaxed, i.e. the vector boson Âµ becomes a 
three vector: Âi where i indexes the dimensions of space, it can describe electron-phonon interactions. A Yang-
Mills theory promotes this to SU(N) transformations, which can be represented by a basis of N × N matrices, 
or generators:

where the T̂a are the basis matrices parametrizing the space of SU(N) transformations (the generators), and the 
index a runs from 1 → N . There are now N2 − 1 types of boson, not one, and as they are matrix valued they do 
not necessarily commute (in mathematical parlance the gauge group is non-Abelian). Since these generators 
are N × N  , they must act on column matrices of N 4-component spinors. In the SU(2) theory considered in 
this work N is two, and therefore the spinors the vector field acts on are double-stacked 4 component spinors, 
and there are three types of boson. A generator which is diagonal will not exchange the upper and lower spinors 
in an SU(2) interaction and thus this generator is said to generate “neutral” bosons. Generators with only off-
diagonal components will exchange the upper and lower spinors, and these are the “charged” bosons. In this 
work, when a bososn is referred to as charged, by this it is meant that it contains only off-diagonal elements in 
its generator. The reason for such nomenclature is that in Yang-Mills theory the N stacked spinors carry N dif-
ferent generalized “charges”. In this work the “charged” gauge bosons couple to the electron spin, and therefore 
the gauge “charge” is spin.

For the vector fields (phonons) we can make the assumption that the solution to the field equation will be of 
the form of a polarization vector varying in time and space30:

where ǫµ(p) is the polarization vector for each momentum state p. Each boson can be quantized as per:

where µ is a spacetime index running from 0 → 3 , a is an index running from 1 → 3 indicating the boson 
“colour”, x = (x0, xi) = (t, x) , and ǫ�µ(p) is the polarization vector as per Eq. (6) expressed with basis � , and we 
approximate the Brillouin Zone sum by an integral. The factor of 

√

2Ep
−1 ensures that the field operator equal 

time commutation relation is obeyed:

Of note: as Lorentz invariance is not present, the polarization vectors ǫµ are 3-vectors, not 4-vectors, and thus so 
are the vector bosons. However, the covariant derivative and the field strength tensors for the bosons do contain 
time-derivatives and therefore some indices run over three values, and some over four. We have decided that 
the easiest way to approach this is to keep using µ as a label running from 0 → 3 , and simply set the time com-
ponent ǫ0 of the polarization vectors to zero when necessary (such as in the discussion of the Ward-Takahashi 
identity below).

These bosons can be used to define an interaction vertex in which the charge and spin density of the electrons 
couple to the vibrational modes, however to do this it is necessary to determine how to arrange the electron states 
into spinors which interact with these bosons such that the correct behaviour emerges.

Fortunately the Nambu spinors provide one such arrangement, although this is not obvious at face value. 
This gives as possibilities:
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where a and b are, for the moment, simply labels for the spinors, and we have used the 3-vectors to label the 
momenta to express the helicities more clearly. Parametrizing the SU(2) interaction vertex using the Pauli matri-
ces as generators, and using the notation:

where a = 1, 2, 3 labels the generator, µ is a spacetime index and the σa are:

therefore we have:

From this vertex we see that the Ŵ1 and Ŵ2 bosons are off-diagonal are therefore the “charged bosons”, while the 
Ŵ3 bosons is diagonal and therefore “neutral”. We then expect electron-phonon interactions to be of the form:

where the gamma matrices are expressed (in the chiral basis) in two-component form as:

and thus

Diagonal interactions.  Setting F1µν = F2µν = 0 for the field strength tensors gives:

where i = 1, 2, 3 . These are the familiar matrix elements of a standard Abelian gauge theory, which represent the 
traditional electron-phonon interaction involved in for example the BCS theory of superconductivity, with the 
exception that the Yang-Mills field strength tensor F3µν contains a quadratic term which gives self-interactions. 
In the language of differential forms: F3µν = dF3µ + F1µ ∧ F2ν . For conventional electron-phonon interactions, for 
example in monovalent metals, the assumption that the oxygen ligands create fields which influence the spin 
dynamics is not valid and F1µν = F2µν ∼ 0 and the quadratic term vanishes, giving the standard Abelian Field 
Strength Tensor. In this respect, the Ŵ3

µ boson is like the neutral boson of the weak interaction.
However, despite this apparent simplicity there is an additional subtlety to do with the polarization vectors 

and their actions on the atoms. Remembering the ansatz:

we see that dotting this into the σ3 matrix will give:

therefore the negative sign on the lower operator reverses the polarization vector, and thus this vertex cannot 
describe interactions at the same unit in the crystal, as the atom(s) would need to move in two directions at once. 
However, they can act on neighbouring unit cells, which would give a pairing of atoms in neighbouring unit cells 
for a polarization vector with a component along the axis connecting the atoms.

Thus for two neighbouring atoms i and j in a crystal we write the interactions of the Ŵ3
µ with the spinors as:

Thus this SU(2) Yang-Mills type vertex which contains pairing motions on neighbouring sites corresponds to 
momentum states in which π2a ≤ k ≤ π

a  , and in a symmetry-broken state will describe optical phonons.
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ĉk↓

)

(10)σa · Ŵ
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Ŵ3
µ 0

0 − Ŵ3
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Off‑diagonal terms.  This formulation in which the diagonal boson sit on the links between neighbouring 
unit cells has significant consequences for the off-diagonal bosons, however we will see that this also turns out 
to be necessary; the Yang-Mills vertex as formulated here sits naturally on the boundary between two unit cells.

In order to contain gauge “charge” coupling the off-diagonal terms contain spin raising and lowering opera-
tors. To see how these arise, we set Ŵ3

µ = 0 for clarity and expand the interaction for µ = 1, 2 to get:

Setting g1Ŵ1
1 = g2Ŵ

2
2 to illustrate this most clearly we get a term:

If both ψa and ψb are in eigenstates of SZ , and remembering:

this gives the familiar spin raising and lowering operators, S+ = σ 1 + iσ 2 , and S− = σ 1 − iσ 2:

with the negative sign in the γ i accounting for the opposite helicities of the two-component spinors in each 
four-component spinor such that the Weyl equation for each is satisfied. This indicates that the use of the Pauli 
matrices as generators in the SU(2) theory endows the formalism with spin raising and lowering operators, 
allowing spin fluctuations to result from phonons acting on the electrons.

Spin ordering.  While it is straightforward to define the spin raising and lowering operators as per Eq. (23), 
as stated above there is also an additional subtlety to their implementation. If the action of the boson on the spin 
of an electron is determined by its polarization vector, and the phonons are assumed to be comprised of normal 
modes, the spin operators themselves will oscillate between raising and lowering as a function of time due to 
the oscillatory behaviour of the normal modes. For example at spacetime point x (i.e. a particular unit cell at a 
particular time) we might have as per Eq. (21):

However, the problem with this vertex is that if it is the direction of the motion of the metal atom within the cage 
of oxygen atoms in the octahedral cluster that interacts with the spin of a bound electron, then in this vertex 
the spin raising and lowering operators are acting at the same time. However, since this is at a single spacetime 
point, or single unit cell, the different spin operators are arising from the same atomic motion. This is unphysical.

However this can be resolved in the same manner as for the Ŵ3 mode, by applying the two bosons to neigh-
bouring sites on the lattice:

where now xij labels the link between atomic sites i and j.
To see how the interaction vertex can order spins antiferromagnetically along a chain of metal atoms, Fig. 2 

illustrates a zone edge mode, in which neigbouring metal atoms experience identical magnetic fields oscillating 
in opposite directions due to the out-of-phase oscillations of the polarization vectors, thus the wavelength of 
such a mode is 2 a , or twice the lattice spacing (i.e. k = π

a  ), if each octahedral cluster corresponds to one unit 
cell. This will order the spins antiferromagnetically, they will still oscillate from up-to-down, but 180 ◦ out of 
phase. This is the type of “frozen phonon” seen to correspond to antiferromagnetic ordering in compounds such 
as M1 and M2 VO2 as a result of their structural phase transitions. If such ordering were to occur from coher-
ent oscillations just above Tc , along with the symmetry-breaking described by the Ŵ3

µ mode above, at Tc in the 
tetragonal structure of VO2 , then we might expect the formation of localized singlets on the paired vanadium 
atoms, along with the transition to monoclinic symmetry from the pairing and antiferroelectric distortion 
VEVs, echoing what is seen in experiment. Thus this formalism naturally contains the required operators to both 
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(

ψa(xi)
ψb(xj)

)

= γ µ

(

0 Ŵ1
µ(xj)− iŴ2

µ(xj)

Ŵ1
µ(xi)+ iŴ2

µ(xi) 0

)

(

ψa(xi)
ψb(xj)

)
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pair neighbouring atoms on chains, and induce antiferromagnetic order, precisely the components required to 
describe the structural and electronic changes occurring in the metal-insulator transition of vanadium dioxide.

Spinor grouping.  This provides us with an easy way to determine how to group the Nambu spinors. If the 
interaction vertex is rewritten:

where a = 1, 2, 3 , and is summed over, and Ŵ±
µ = Ŵ1

µ ± iŴ2
µ then we group the spin down electrons and spin 

up holes into ψa , and the spin up electrons and spin down holes into ψb . Thus the Ŵ±
µ  describe transformations 

between spinors which contain electrons of opposite momentum and spin if Ŵ1
µ and Ŵ2

µ are in phase (this can 
easily be generalized into arbitrary charge density relationships, which will be explored in the context of vana-
dium dioxide later). However, there are four Nambu spinors, and therefore there are two each of the ψa and ψb . 
We can therefore group the spinors into flavours, and generations.

The naming convention follows the spin of the holes in each Dirac spinor, which is done to preserve the com-
mutation relations of the Pauli matrices. This is summarized in Table 1. This echoes the naming conventions 
for quarks in the Standard Model of Particle Physics, and deliberately so as it makes them somewhat easier to 
remember. Thus action of the phonons on the grouped Dirac spinors in all its gory detail becomes:

where the positions of the spinors are inferred from the spacetime coordinates of the bosons to avoid cluttering 
the notation too much. Therefore Ŵ+

µ (xi) can scatter: a bottom to a top, a down to an up, and a bottom to an up 
(with zero wavevector) etc., and so on. A schematic of the transformations the bosons perform is presented in 
Fig. 3. Thus we see that a Yang-Mills vertex is a natural candidate for the charge and spin ordering seen in phase 
transitions of vanadium dioxide. The Ŵ+

µ (xi), Ŵ
−
µ (xj) can order neighbouring spins antiferromagnetically, while 

the sign change for the lower Ŵ3
µ(x) boson reverses the direction of the polarization vector, and therefore results 

in neighbouring atoms pairing up, or “Peierls pairing.”

(26)gaψ̄γ µT̂aŴa
µψ =

(

ψ̄ ′
a(xi), ψ̄b′(xj)

)

g(+,−,3)γ
µ

(

Ŵ3
µ(xi) Ŵ−

µ (xj)

Ŵ+
µ (xi) − Ŵ3

µ(xj)

)

(

ψa(xi
ψb(xj)

)

(27)
(

ĉ†k↑
ĉ−k↓

)

= up,

(

ĉ†−k↓

ĉk↑

)

= down,

(

ĉk↓
ĉ†−k↑

)

= top,

(

ĉ−k ↑

ĉ†k↓

)

= bottom

(28)

g(+,−,3)γ
µŴµ(x)ψ =





γ µŴ3
µ(x1) γ µŴ−

µ (x2)

γ µŴ+
µ (x1) − γ µŴ3

µ(x2)













ĉ†k↑
ĉ−k ↓

ĉ†−k ↓
ĉk↑









g(+,−,3)γ
µŴµ(x)ψ =





γ µŴ3
µ(x1) γ µŴ−

µ (x2)

γ µŴ+
µ (x1) − γ µŴ3

µ(x2)













ĉk↓
ĉ†−k ↑
ĉ−k ↑

ĉ†k↓









Figure 2.   Antiferroelectric distortion of a chain of octahedrally coordinated metal atoms. Image produced 
using VESTA24 3.1.5 (https​://jp-miner​als.org/vesta​/en/).

Table 1.   Organization of the colors and generations of fermions in the SU(2) gauge theory. Up and Top 
fermions (corresponding to the spinors in Eq. (27)) are color a, while the down and bottom spinors are color b.

Colour

Generation

1 2

a Up Top

b Down Bottom

https://jp-minerals.org/vesta/en/
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Mass generation.  Spinor mass from neutral oscillations.  Defining the chirality operator in the usual way 
using the matrix: γ 5 = γ 0γ 1γ 2γ 3 , we can redefine the spinors as per:

where:

Thus:

and identifying the upper and lower components of each 4-component spinor (i.e. the ψa and ψb ) as left- and 
right-handed chiral spinors (it is straightforward to prove these satisfy the Weyl equation in metallic systems), i.e.

and

we can see how the phonon field gaining a Vacuum Expectation Value (VEV) can result in massive spinors in 
the same manner as neutrino oscillations (i.e. the Rabi cycle). While all of the Ŵa

µ contribute to lattice potential 
fluctuations, let us focus on Ŵ3

µ for clarity, and note that a longitudinal phonon with wavevector ± 2k will scat-
ter uL → tR , uR → tL , dL → bR and dR → bL and vice versa, where k is the wavevector of the electron state. So, 
giving Ŵ3

µ a VEV ( ω → 0 , i.e. its time variation goes to zero) with wavevector 2k we get:

where here the 0 subscript indicates a VEV and not a spacetime index. To maintain the spin ordering, i.e. to give 
neutral oscillations as per Fig. 3, there will be constraints on the polarization vector. Looking at the interaction 
of the boson with an incoming spinor such as tL (dropping the coupling constant and the outgoing spinor to see 
the interaction more clearly):

where σ̄ = (1,−σ i) . By giving the Ŵ3
µ(x) field a VEV, and setting ǫ0 = 0 to maintain the spin orientation we 

can have:

Choosing the easy path and defining the orientation of the polarization vector as being down the z-axis 
( ǫµ(p) = (0, 0, 0, 1) ) the full interaction vertex; −g3ψ̄γ µŴµψ gives:

(29)
1

2
(1− γ 5)ψ =

(

ψL

0

)

= ψL and
1

2
(1+ γ 5)ψ =

(

0
ψR

)

= ψR

(30)γ 5 = γ 0γ 1γ 2γ 3 =







−1 0 0 0
0 − 1 0 0
0 0 1 0
0 0 0 1







(31)ψ
1,2
a,b = ψL + ψR

(32)
(

ĉ†k↑
ĉ−k ↓

)

=

(

uL
uR

)

and

(

ĉk↓
ĉ†−k ↑

)

=

(

tL
tR

)

(33)
(

ĉ†−k ↓
ĉk↑

)

=

(

dL
dR

)

and

(

ĉ−k ↑

ĉ†k↓

)

=

(

bL
bR

)

(34)Ŵ3
µ(x) → �Ŵ3

0 � + Ŵ3
µ(x)

(35)
ig3ψ̄γ µŴ3

µψ → σ̄ µǫµ(p)e
ipx

(

0
1

)

eikx =

(

ǫ0 − ǫ3 − (ǫ1 − iǫ2)
−(ǫ1 + iǫ2) ǫ0 + ǫ3

) (

0
1

)

ei(p+k)x

=

(

−ǫ1 + iǫ2
ǫ0 + ǫ3

)

ei(p+k)x

(36)ǫ1 = iǫ2, or ǫ1 = ǫ2 = 0, with ǫ3 = 1

Figure 3.   Schematic representation of the transformations enacted by the (a) Neutral boson Ŵ3
µ and (b) the 

Charged bosons Ŵ±
µ .
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where ψ̄ = ψ†γ 0 and we have switched to the Dirac representation, i.e.

This is identical to the Peierls metal-insulator transition, where the system becomes unstable to to a potential 
with wavelength 2kF31.

Equivalently, we can take uL and tR , and grouping them together gives the Hamiltonian:

Diagonalizing gives as eigenvectors the linear combinations:

with eigenvalues E+ = ǫk + �W3
3 � and E− = ǫk − �W3

3 � assuming that ǫk = ǫ−k , i.e. both states sit on the Fermi 
surface. Time evolving, and computing the probability of transitioning from tL to uR as Rabi oscillations gives:

Thus the probability of an electron being in either a left- or right-handed state is oscillatory in time, with a fre-
quency given by the magnitude of the phonon VEV: (E+ − E−) = �W3

3 � . This is precisely the same statement 
as the “mass” terms in Eq. (37) above, generated from the phonon VEV taking left-handed particles into right-
handed and vice versa.

To give this some context, the aforementioned metal-insulator transition of M1 VO2 contains just such a 
Peierls pairing component. Figure 4 illustrates the polarization vectors of the pairing distortion, and as vanadium 
atoms from neighbouring unit cells are moving towards each other, this defines a zone edge mode, however the 
pairing displacements also have a non-zero component in the y-direction; the vanadium atoms are moving in 
opposite directions in neighbouring unit cells along the y-axis, and thus the wavevector of this phonon mode 
has two non-zero components, ky and kz . In vanadium dioxide all three phonon modes acquire VEVs at Tc , and 
the combination of spin- and charge-ordering in the metal-insulator transition of VO2 requires a more compre-
hensive treatment based on an SU(2) lattice gauge theory.

There is also the option of breaking the symmetry with the Ŵ±
µ  , however some consideration reveals that 

giving these phonons a VEV does not result in a ground state with fluctuating spins (a charge VEV will of course 
exist as the transverse phonons do move the metal atoms). From Fig. 3, and using the uR spinor as an example 
we see that the Ŵ+

µ  can scatter: uR → dR (which is not a Dirac mass), or uR → bL . However, for both processes, 
giving Ŵ+

µ  a VEV will decouple it from the electron spin. Reiterating:

this oscillating polarization vector creates a positive current density Jp,µ = (ρ, J) , however the time derivative, or 
the energy �ω goes to zero as the phonon gains a VEV. Therefore the time-dependence of the phonon vanishes, 
and therefore so does the current, and thus the associated magnetic field. Thus, spin ordering is a dynamic process 
which will occur before the phonon VEV sets in, i.e. above Tc , and below Tc oscillations of the type described by 
Eq. (37) which either flip helicity by flipping the spin, or preserve helicity by flipping the spin and the momentum, 
will not be present in the ground state. Of course spin fluctuations due to the Ŵ±

µν propagators can still manifest 
as excitations, and a charged boson VEV will still couple to the electron charge (i.e. the U(1) gauge charge), but 
not the SU(2) gauge charge. Thus the onset of a static structure transformation (the phonon VEVs) will cease to 
dynamically order spins and therefore this ordering must occur above the Tc of any structural transformation.

Lattices, gauge boson mass and the Ward‑Takahashi identity.  In high energy physics the Ward-Takahashi iden-
tity reflects the unphysical nature of the gauge redundancy, and reveals that the longitudinal components of 
massless vector bosons decouple from scattering amplitudes32. By defining a discrete version of the Ward-Taka-
hashi identity, we can see how the symmetry-breaking of Eq. (37) reflects the emergence of a massive boson.

The propagator for a massive transverse spin 1 boson in the Unitary gauge is given by:

For a massless phonon in a crystal with a specific orientation, we now want to express that the polarization vec-
tors are 3-vectors explicitly:

(37)g3�W
3
3 �ūRtL + g3�W

3
3 �ūLtR . . .

(38)γ 0 =







1 0 0 0
0 1 0 0
0 0 − 1 0
0 0 0 − 1







(39)ψ†Ĥψ =
(

u†R t†L
)

(

ǫ−k �W3
3 �

�W3
3 � ǫk

) (

uR
tL

)

(40)|ψ+� = |uR� + |tL�, and |ψ−� = |uR� − |tL�

(41)PL→R(t) = sin2
(

(E+ − E−)

2�
t

)

(42)Ŵa
µ(x) ∼

∑

p

â†pǫµ(p)e
−ipx +H .c.

(43)Wa
µν =

i

k2 −m2 + iǫ

(

gµν −
kµkν

m2

)
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where k is the 3-momentum, and k is the 4-momentum (i.e. ( ǫk , vak)), where a labels the boson, and the indices 
i, j run from 1 → 3, as the polarization vectors have no time component due to the specific orientation of the crys-
tal. We have also assumed linear dispersion for the sake of simplicity, and thus the poles are given by k2 . The term:

is the longitudinal component, and thus the longitudinal phonon propagator is

In continuous systems the scattering term containing this component is zero, which is a trivial manifestation of 
the Ward-Takahashi identity, while for discrete systems we can see that this will occur for boson momenta which 
coincide with the reciprocal lattice vectors.

Approximating the full scattering vertex −igWa
ij ψ̄γ jψ with ∼ −igkjψ̄γ jψ to see the effect most clearly gives:

where we have used γ jkj = (γ jpj + γ jkj)− γ jpj from momentum conservation at the vertex. It can be seen that 
the prefactor in parentheses will in general be non-zero, except for the case of a reciprocal lattice vector, G by 
writing this in operator form acting on the plane wave parts of the tight-binding momentum states:

where the derivative is taken with respect to the unit cell of the crystal, and we have assumed that the local basis 
functions of the tight-binding wavefunctions are identical. That is, since

for a large crystal the sum over lattice vectors will result in the R dependence of the basis functions dropping 
out, and the only contributions to derivatives taken with respect to R will come from the plane wave term. Thus 
the local basis function prefactors cancel.

However, if we consider the case of the symmetry-breaking represented by the Hamiltonian of Eq. (39), 
the diagonalization process gives two states which correspond to the same wavevector. Thus there is now a 
band index associated with the electronic states |ψ+� and |ψ−� : we have |ψnp� , where the index n denotes which 
eigenfunction we are considering. Thus after symmetry-breaking |ψnp� �= |ψn′p� , and therefore the identity of 
Eq. (48) is not satisfied for inter-band scattering (i.e. n → n′ ). While the momentum conservation part of the 
interaction (Eq. (48)), the basis functions no longer cancel. For example, take pairing of two single basis func-
tions by diagonalization:

We see that upon plugging these functions into Eq. (48), the prefactor becomes:

(44)Wa
ij =

i

k2 + iǫ

(

δij −
kikj

|k2|

)

(45)
kikj

|k2|

(46)Wa
ij =

i

k2 + iǫ

(

kikj

|k2|

)

(47)
i

(γ µpµ + γ jkj)+ iǫ
(−igγ jkj)

i

γ µpµ + iǫ
= ig(γ jpj + γ jkj − γ jpj)

(

1

(γ µpµ + γ jkj)γ µpµ + iǫ

)

(48)
γ j(pj + Gj − pj) =− iγ j(∂je

i(pj+Gj)Rj − ∂je
ipjRj ) = −iγ j(∂j(e

ipjRj eiGjRj )− ∂je
ipjRj )

=− iγ j(∂je
ipjRj − ∂je

ipjRj ) = 0

(49)ψk(r) =
∑

R

φ(r − R)eikR

(50)ψnp(r) =
∑

R

(φ1(r − R)+ φ2(r − R))eipR , ψn′p(r) =
∑

R

(φ1(r − R)− φ2(r − R))eipR

Figure 4.   (a) Tetragonal structure of VO2 with the z-axis oriented down the crystallographic c-axis showing 
the pairing distortion of the MIT, unit cell boundaries are marked in black and (b) view of the M1 VO2 structure 
showing the Peierls pairs and their relative positions on different vanadium chains. Image produced using 
VESTA24 3.1.5 (https​://jp-miner​als.org/vesta​/en/).

https://jp-minerals.org/vesta/en/


11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12547  | https://doi.org/10.1038/s41598-020-68958-4

www.nature.com/scientificreports/

assuming of course that for a large crystal the R-dependence of the basis functions disappears due to the sum 
over R , although this will not be true near the boundary of the crystal (the integration by parts to produce the 
propagator has a boundary term which will contribute in this region). Therefore the longitudinal component of 
the propagator does not vanish for scattering by reciprocal lattice vectors, there is a new pole which is not at kµkµ , 
the zero component of the 4-momentum has an extra energy term corresponding to ǫnp+G − ǫn′p : the boson has 
acquired a mass. This component does still vanish for intra-band transitions (i.e. n = n′ ), and therefore there are 
both massive and massless phonons: the optical and acoustic branches. Thus similarly to particle physics, the 
violation of the Ward-Takahashi identity signifies the presence of massive bossons, in this case: optical phonons.

Conclusion
Postulating that the observation of spin and charge ordering appearing coincident with different crystal struc-
ture distortions allows an SU(2) Yang-Mills theory of electron-phonon interactions in vanadium dioxide to be 
formulated. Due to this resolution it is possible to use the electron spin and charge/crystal momentum to group 
the spinors into forms which when acted on by the phonons produces both spin- and charge-ordering observed 
in crystal structure transformation such as those of the polymorphs of vanadium dioxide.

The interaction vertex in this case straddles neighbouring vanadium metal ions. That is, it acts simultane-
ously on pairs of cations, which breaks the symmetry and results in charge and spin-structure transformations. 
This effectively “links” neighbouring metal ions, which given the strong electron correlations is to be expected: 
it is likely that any persistent structural distortion must be lowering electron correlations. An example of this is 
the antiferroelectric distortion of M2 VO2 discussed above, this distortion lowers overlap between neighbour-
ing wavefunctions as the metal ions move further apart, reducing bandwidth and the probabilities of electron 
hopping and thus double occupancies.

While such an interaction vertex is more complicated than the usual formalism such as that of Bardeen and 
Pines33, its complexity is a strength as it explicitly contains useful interactions due to being built on effective 
interactions between phonon polarization vectors and spinor variables. It is also formalism that has a long history 
of study and simulation using Monte Carlo methods by high energy physicists, such as in the field of Quantum 
Chromodynamics34. The natural extension for this work is to adapt lattice gauge simulation methods to the study 
of electron-phonon interactions in strongly correlated systems.

Methods
The GW calculations were performed using the implementation of Shishkin and Kresse35,36 as contained in the 
Vienna Ab Initio Simulation Package (VASP)37, after first calculating input wavefunctions using DFT38 with GGA​
39 functionals, on 8× 8× 6 and 4× 6× 6 Monkhorst-Pack40 k-space grids for the Tetragonal and M2 structures 
respectively, using the Brillouin zone integration approach of Bloechl et al.41.
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