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A method to analyze the sensitivity 
ranking of various abiotic factors 
to acoustic densities of fishery 
resources in the surface mixed 
layer and bottom cold water layer 
of the coastal area of low latitude: 
a case study in the northern South 
china Sea
Mingshuai Sun1,2,4, Yancong Cai1,2, Kui Zhang1,2, Xianyong Zhao5 & Zuozhi Chen1,2,3*

This is an exploratory analysis combining artificial intelligence algorithms, fishery acoustics 
technology, and a variety of abiotic factors in low-latitude coastal waters. This approach can be used 
to analyze the sensitivity level between the acoustic density of fishery resources and various abiotic 
factors in the surface mixed layer (the water layer above the constant thermocline) and the bottom 
cold water layer (the water layer below the constant thermocline). The fishery acoustic technology 
is used to obtain the acoustic density of fishery resources in each water layer, which is characterized 
by Nautical Area Scattering Coefficient values (NASC), and the artificial intelligence algorithm is 
used to rank the sensitivity of various abiotic factors and NASC values of two water layers, and the 
grades are classified according to the cumulative contribution percentage. We found that stratified 
or multidimensional analysis of the sensitivity of abiotic factors is necessary. One factor could have 
different levels of sensitivity in different water layers, such as temperature, nitrite, water depth, and 
salinity. Besides, eXtreme Gradient Boosting and random forests models performed better than the 
linear regression model, with 0.2 to 0.4 greater  R2 value. The performance of the models had smaller 
fluctuations with a larger sample size.

The thermocline in the low latitude sea area is permanent, the upper layer of the thermocline is a surface mixed 
layer, and the lower layer of the thermocline is the bottom cold water layer. The distribution of fishery organ-
isms and their driving factors in the perfusing water layers (especially the surface mixed layer and the bottom 
cold water layer) deserves further investigation. The offshore of the northern South China Sea is a typical rep-
resentative of low-latitude coastal waters, and it is also an important traditional fishery production operation in 
China, owing to its good climate that offers a conducive habitat for the marine life, a spawning site, and a place 
for fattening and farming of fish. However, fishery resources have increasingly become small and of reduced 
 quality1,2. Resource density, the single yield of fishing vessels, and catch quality are declining. The catch rates 

open

1South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, 
China. 2Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, 
Guangzhou 510300, China. 3Southern Marine Science and Engineering Guangdong Laboratory, 
Guangzhou 511458, China. 4Shanghai Ocean University, Shanghai 200120, China. 5Yellow Sea Fisheries Research 
Institute, Chinese Academy of Fishery Sciences, Qingdao 266237, China. *email: zzchen_s@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-67387-7&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11128  | https://doi.org/10.1038/s41598-020-67387-7

www.nature.com/scientificreports/

of most economical fish have fallen to very low levels. High-quality commercial fish are facing depletion. The 
decline of fishery resources is more serious in coastal  waters3. These phenomena could be related to probability 
distribution characteristics, abiotic factors, and  overfishing1,4.

Fishery acoustics has emerged as an important modality for investigating and evaluating marine life. It is 
superior to traditional bottom trawling, as these techniques are more direct and effective and generate abundant 
data, especially in the case of large distances among sites and a small number of samples. Nautical area scattering 
coefficient (NASC) refers to the sum of coefficients from all species in the profile  data5. It indicates the prob-
ability distribution characteristics of fishery  resources5–9. Previous studies have analyzed only the overall water 
layer, and none of them carried out a detailed analysis of the water layers. The fishery acoustic technology, like 
a scalpel, cuts the entire body of water into multiple layers for further research. We compared the data obtained 
for the same duration among different water layers.

In addition, it is always challenging in marine surveys to decide over the number and density of survey sites 
and the number of samples to be collected. It is difficult to conduct investigations in the northern coastal waters 
of the South China Sea due to its large extent. Usually, the distance between the sites is extremely large, which 
hinders the analysis of the sensitivity of abiotic factors in a multitude of water conditions.

Another problem that has to be faced is the analysis method of multi-feature datasets, such as the 41 abiotic 
factors used in this study. The models available today are linear models (including generalized linear models), 
additive models (including generalized additive models), and complex models (including ensemble learning, deep 
learning, and others). In general, models vary greatly in their expressiveness (formulaic or graphical expression) 
and accuracy. For example, the linear model has the best expressiveness, but its accuracy is the worst. The addi-
tive model is less expressive than the linear model, but it is more accurate. The accuracy of the complex model 
is the highest, but the expression ability is poor. In addition, the generalized additive model assumes that the 
independent variables are not related to each other in order to improve accuracy. Complex models can achieve 
high accuracy without considering the correlation between independent variables. Deep learning often requires 
a large amount of data. In integrated learning, two algorithms stand out, XGBoost and random forests, which 
can not only achieve high accuracy but also do not need a large number of samples. XGBoost (eXtreme Gradient 
Boosting)10 is also known as a gradient boosting algorithm. It is a machine learning technique for regression 
and classification problems, and it is faster than other algorithms. Random forests algorithm is an extension of 
 bagging11. XGBoost and random forests are widely used in several areas, such as image  classification12,13, data 
 analysis14–16, and information  classification17,18. They are also used to evaluate the sensitivity of features and 
calculate the sensitivity scores of all abiotic  factors19,20.

In order to address these problems and meet the aforementioned requirements, we considered the short-term 
data of a voyage as the research object and conducted this exploratory study. At the same time, we also hope that 
this idea of combining the artificial intelligence algorithm with professional fields and conducting multidimen-
sional data analysis can inspire researchers in other fields.

Materials and methods
Site description and sampling.  Acoustic data were collected using single boat bottom otter trawl (engine: 
441 kW, gross tonnage: 242 t, length of boat: 36.8 m, width: 6.8 m) in the offshore of the Northern South China 
Sea, named as north fishing 60011, with a scientific fisheries portable echo sounder (70 kHz and 120 kHz; Fig. 1).

Fishery samples were collected from 99 sites by single boat bottom otter trawls, with 404 type otter trawl, 
80.80 m circumference, and 20 cm mesh size around the leading edge of the net. The total length of the net was 
60.54 m and the mesh size of the codend was 39 mm. It took 60 min per site. Then, the sum mass and the number 
of samples were measured.

Water temperature, salinity, and depth of water were obtained by AML Plus X, and other indexes were also 
collected, such as nutrients and transparency. The sampling depths for nutrients were 0 m, 10 m, and 20 m.

Data preprocessing.  Echoview software (Version 6.1, https ://www.echov iew.com/) was used for the analy-
sis of acoustic data. All data were checked carefully, and data not from the routes were excluded. Data from 
two water layers were analyzed in the surface mixed layer (20 m below effective acoustic data line, except for 
blind zone) and the bottom cold water layer (20 m above effective acoustic data line, except for blind zone). The 
basic integral voyage unit selected was 5 nmi. The integral threshold was set as − 80 dB. Background noise was 
removed, and surface and bottom NASC  (m2/nmi2) integral values were collected, which were also fishery den-
sity for the same volume, as the sampling range for surface and bottom cold water layers was the same.

The samples collected were divided into two categories based on their living area: surface mixed layer (the 
sediment surface and some subsurface layers) and bottom cold water layers. Cephalopods live in the bottom 
cold water layer during the day and leave the bottom during the night. Therefore, the number of Cephalopods 
was counted in the two layers with a ratio of 0.5:0.5.

Abiotic factors contain both primary and derived factors. Primary features include surface salinity (SS, ppt) 
and surface temperature (ST, °C) at 2 m in the surface mixed layer, bottom salinity (BS, ppt) and bottom tem-
perature (BT, °C) at 2 m in the bottom cold water layer, water depth (WD, m), longitude (X, °), latitude (Y, °), 
transparency (TRA, m), and chlorophyll concentration (CHL, mg/m3). The derived factors calculated on the 
basis of primary factors included salinity difference (DS, ppt) and temperature difference (DT, °C) between the 
surface and bottom cold water layers, concentration difference between  NO2

− at 0 m and 10 m (N2-d010, mg/L), 
and few others as shown in Table 1.

The present study classified all factors into three groups: (1) geographic factors, containing water depth (WD, 
m), longitude (X, °) and latitude (Y, °); (2) dynamic factors, with all derived factor (total 17), and (3) other 21 
miscellaneous factors such as surface and bottom factors, belonging to static factors. Transparency (TRA, m) 

https://www.echoview.com/
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and chlorophyll concentration (CHL, mg/m3) were defined as surface static characteristics, and abiotic factors at 
20 m were defined as bottom static characteristics. Therefore, in the present study, surface factors reflected surface 
static characteristics and bottom factors represented bottom static characteristics. See Table 1 below for details.

Data expansion and random sampling.  The sample size, as an important part of the analysis on abiotic 
factors, was less than 100 in the offshore of the northern South China Sea in this study, which was limited by the 
number of survey sites. Therefore, it was not enough to comprehensively analyze the data. However, we collected 
coordinate information for every sample so that surface data could be obtained based on interpolation methods, 
and subsequently, random sampling from surface data was performed, and the effect of analytical models with 
different sample sizes was evaluated. Interpolation methods included Kriging interpolation and inverse distance 
weighting (IDW). The methods were selected on the basis of the highest goodness of fit (R2) and minimum mean 
square error (MSE). The size of random sampling was set as 100, 200, 300, 400, 500, and 600. In order to avoid 
over-concentration in sampling, we set the minimum sampling interval. The spacing of sampling points affects 
the number of sampling points and the degree of sampling dispersion. The randomness of sampling is also con-
sidered. So, after many attempts, we set the minimum interval between the sites to 5 nautical miles. However, 
2,100 samples, the sum of all sites, were not restricted to the distance.

Data modeling.  The relationships between the NASC and 41 abiotic factors were determined with XGBoost, 
random forests, and linear regression models. Furthermore, all the 41 abiotic factors sampled were dimension-
less through standardization or Z-score normalization. The model effect was estimated on the basis of the high-
est goodness of fit (R2) and MSE from cross-validation methods. The proportion between the training dataset 
and the testing dataset was 7:3. According to  Zhou21, when the amount of data is small, about 2/3 to 4/5 of the 
sample data will be used for training, and the rest will be used for testing. Besides, 7:3 of the training data and 
test data are also a kind of allocation ratio usually employed for small data, which can effectively improve the 
generalization ability of the model.

Both XGBoost and random forests models are based on multiple decision trees on the same dataset. Random 
forests model generates several trees, and each is  independent11 with leaves of equal weight within the model for 

Figure 1.  Acoustic navigation route (red lines) and sampling sites (green points ) employed during the fishery. 
Map created in ArcGIS Desktop 9.3. https ://www.esric hina.com.cn/.

https://www.esrichina.com.cn/
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obtaining higher accuracy. XGBoost introduces leaf weighting to penalize those that do not improve the model 
 predictability10. In order to improve the efficiency of model optimization, some important parameters can be 
selected to adjust. If satisfactory results have been achieved, model optimization can be ended. If the researchers 
are not satisfied with the results of model optimization, they can choose more complex parameters for deeper 
adjustment. Here, we only made adjustments to certain parameters, such as the learning_rate, n_estimators, 
and the  subsample22. With the optimized model, feature weighting of the 41 factors on surface and bottom fish-
ery resources density was calculated by XGBoost and random forests models, and their sensitivity scores were 
obtained. Thus, the descending analysis was performed.

The analysis was performed in Python 3.7 using the Scikit-Learn  package23 and the XGBoost  library10,22.

Sensitivity of factors.  Generally, the analysis of the sensitivity of factors provides a score that indicates the 
value of each feature in the construction of decision trees within the model. To avoid the occurrence of errors, 
the average scores from XGBoost and random forests models were calculated for major factors affecting the 

Table 1.  List and grouping of abiotic factors.

Group Factor (abbreviation) Factor (note) Unit Remark

Geographic factors

WD Water depth m

X Longitude °

Y Latitude °

Static factors

SS Surface salinity ppt Surface

BS Bottom salinity ppt Bottom

ST Surface temperature °C Surface

BT Bottom temperature °C Bottom

TRA Transparency m Surface

CHL Chlorophyll concentration mg/m3 Surface

N2-0 m NO2
− 0 m concentration mg/L Surface

N2-10 m NO2
− 10 m concentration mg/L Surface

N2-20 m NO2
− 20 m concentration mg/L Bottom

N3-0 m NO3
− 0 m concentration mg/L Surface

N3-10 m NO3
− 10 m concentration mg/L Surface

N3-20 m NO3
− 20 m concentration mg/L Bottom

N4-0 m NH4
+ 0 m concentration mg/L Surface

N4-10 m NH4
+ 10 m concentration mg/L Surface

N4-20 m NH4
+ 20 m concentration mg/L Bottom

P-0 m PO4
3− 0 m concentration mg/L Surface

P-10 m PO4
3− 10 m concentration mg/L Surface

P-20 m PO4
3− 20 m concentration mg/L Bottom

Si-0 m SiO3
2− 0 m concentration mg/L Surface

Si-10 m SiO3
2− 10 m concentration mg/L Surface

Si-20 m SiO3
2− 20 m concentration mg/L Bottom

Dynamic factors

DS Salinity difference between surface and bottom layers ppt

DT Temperature difference between surface and bottom layers °C

N2-d010 Concentration difference between  NO2
− 0 m and 10 m mg/L

N2-d020 Concentration difference between  NO2
− 0 m and 20 m mg/L

N2-d1020 Concentration difference between  NO2
− 10 m and 20 m mg/L

N3-d010 concentration difference between  NO3
− 0 m and 10 m mg/L

N3-d020 Concentration difference between  NO3
− 0 m and 20 m mg/L

N3-d1020 Concentration difference between  NO3
− 10 m and 20 m mg/L

N4-d010 Concentration difference between  NH4
+ 0 m and 10 m mg/L

N4-d020 Concentration difference between  NH4
+ 0 m and 20 m mg/L

N4-d1020 Concentration difference between  NH4
+ 10 m and 20 m mg/L

P-d010 Concentration difference between  PO4
3− 0 m and 10 m mg/L

P-d020 Concentration difference between  PO4
3− 0 m and 20 m mg/L

P-d1020 Concentration difference between  PO4
3− 10 m and 20 m mg/L

Si-d010 Concentration difference between  SiO3
2− 0 m and 10 m mg/L

Si-d020 Concentration difference between  SiO3
2− 0 m and 20 m mg/L

Si-d1020 Concentration difference between  SiO3
2− 10 m and 20 m mg/L
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water quality. The sum contribution was set as 50%, 80%, and 95%, ranked from level one to level four, meaning 
the first level was the highest, and the fourth was the lowest.

Comparison of factors between the surface and bottom cold water layers.  The difference and 
sum of each factor between the surface and bottom cold water layers were obtained and ranked. Moreover, 
comparisons of the factors between these two water layers were made. The rank of difference represents the sen-
sitivity value of each factor in different water layers, and the sum indicates the overall role of factors. All factors 
were divided into three categories: Group A, factors are important for surface and not for the bottom cold water 
layer, and the difference value is greater than 0.05. Group B factors are important for the bottom and not for the 
surface mixed layer, and the difference value is smaller than 0.05. Group C factors are important for both surface 
and bottom cold water layers, and the difference value is around 0. It is defined as C + with the sum value greater 
than 0.05, meaning that these factors are important for two water layers. On the contrary, it will be treated as C − , 
with less sensitivity for two water layers.

The difference in the importance of each factor between the surface layer and the bottom layer was calculated 
and sorted according to the difference value. Similarly, the sum of the importance of each factor between the 
surface layer and the bottom layer was calculated and sorted according to the sum value. Factors can be divided 
into three categories: Class A, which is of high importance for the surface layer, but very low for the bottom layer, 
difference value >  + 0.05; Class B, which is more important for the bottom, but less important for the surface 
layer, difference value < – 0.05; Class C, the difference value is approximately the same for the bottom layer as 
for the surface layer, difference value ≈ 0. In addition, in Class C, when the sum value is greater than 0.05, it is 
defined as C + , which means that such factors are more important for both the surface layer and the bottom 
layer. When the sum value is less than 0.05, it is defined as C–, which means that such factors are of only slight 
importance to the surface and bottom layers.

Results
Probability distribution characteristics of surface and bottom fishery resources and composi-
tions of catches.  Surface NASC mainly concentrated around the Hainan island, and the bottom NASC was 
concentrated north of Hainan Island and in the southwestern waters of Guangdong Province (above 100 m). The 
bottom NASC was twice greater than the surface NASC (Fig. 2). Fish species were rich (Table 2), and the weight 
ratio and the density ratio in terms of the number of species captured in bottom and surface mixed layers were 
2.13 and 1.94 (Table 3), respectively, close to the ratio of the bottom NASC to the surface NASC.

Other cephalopoda species mainly include: Loligo beka, Loligo duvaucelii, Loligo tagoi, Sepioteuthis lesso-
niana, Sepia esculenta, Sepia latimanus, Sepia lycidas, Sepia pharaonis, Sepiella maindroni, Metasepia tullbergi 
and Euprymna berryi. Other species evaluated are: Raja hollandi, Dasyatis zugei, Trachinocephalus myops, Rhyn-
chocymba nystromi, Muraenesox cinereus, Fistularia petimba, Sphyraena pinguis, Epinephelus sexfasciatus, Apo-
gonichthys ellioti, Branchiostegus argentatus, Leiognathus ruconius, Therapon theraps, Pampus chinensis, Pterois 
lunulata, Lepidotrigla japonica, Solenocera crassicornis, Metapenaeopsis palmensis, Parapenaeus fissuroides and 
Calappa philargius.

Sample size and XGBoost.  The goodness of fit  (R2) for XGBoost (default parameters) was the lowest 
(sample size = 100) before making adjustments. It increased with the increase in the sample size. It showed two 
peaks for surface and bottom NASCs when sample sizes were 300 and 600, and decreased until 400 for surface 
NASC and 500 for bottom NASC. At 2,100, the goodness of fit reached the highest value. The variation of MSE of 

Figure 2.  The distribution characteristics of nautical area scattering coefficients (NASC) in the surface mixed 
layer (A) and the bottom cold water layer (B) at a depth of 20 m based on geometrical interval classification. The 
average value is 43.39, and the standard deviation is 54.73 for panel (A), and the average value is 106.00, and the 
standard deviation is 91.02 for panel (B). Map created in ArcGIS Desktop 9.3. https ://www.esric hina.com.cn/.

https://www.esrichina.com.cn/
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the relationships was similar to  R2, but some fluctuation was observed. Initially, MSE decreased rapidly, followed 
by a slight increase, and then reached the minimum (Fig. 3).

Comparison of algorithms with the optimized sample size.  XGBoost and random forests models 
showed similar performance, which was better than that of the linear regression model (Fig. 4). Both XGBoost 
and random forests models had good fitness for surface and bottom NASCs, whereas the linear regression model 
did not work very well. The fitness of the model for the surface mixed layer was higher than that for the bottom 

Table 2.  Class statistics of catches, biomass, and individual number.

Fish species Habitat layer Weight(kg) Number

Pneumatophorus japonicus, Rastrelliger kanagurta Surface layer 17.166 165

Ariomma indica, Psenopsis anomala Surface layer 603.075 8,292

Decapterus maruadsi Surface layer 774.339 23,597

Trachurus japonicas Surface layer 937.429 25,117

Sardinella aurita, Sardinella jussieu Surface layer 290.454 23,600

Tentoriceps cristatus, Trichiurus haumela, Trichiurus nanhaiensis, Trichiurus brevis Near-bottom layer 237.824 3,399

Navodon xanthopterus Near-bottom layer 276.389 13,139

Argyrosomus aneus, Argyrosomus macrocephalus, Argyrosomus pawak, Argyrosomus argentatus Near-bottom layer 151.949 9,170

Saurida undosquamis, Saurida tumbil, Saurida elongata Near-bottom layer 206.032 2,786

Evynnis cardinalis Near-bottom layer 784.218 26,980

Priacanthus macracanthus, Priacanthus tayenus Near-bottom layer 269.555 8,107

Nemipterus virgatus, Nemipterus bathybius, Nemipterus oveni, Nemipterus japonicus, Nemipterus 
nemurus Near-bottom layer 412.087 9,362

Upeneus bensasi, Upeneus sulfureus, Upeneus moluccensis, Parupeneus chrysopleuron Near-bottom layer 116.327 4,250

Siganus oramin, Siganus fuscescens Near-bottom layer 66.004 7,241

Acropoma japonicum, Acropoma hanedai Near-bottom layer 414.008 8,343

Loligo edulis Near-bottom layer during the day, Surface layer at night 233.187 6,234

Loligo chinensis Near-bottom layer during the day, Surface layer at night 43.991 1,339

Other cephalopods Near-bottom layer during the day, Surface layer at night 1,280.103 269,370

Other species Substratum species are the majority 3,524.761 195,051

Table 3.  Statistics of catches in the different water layers.

Habitat layer Catch weight (kg) Catch number Weight % Number %

Surface 3,401.10 219,243 0.32 0.34

Near-bottom 7,237.79 426,299 0.68 0.66

Figure 3.  Relationships between goodness of fit  (R2, A), mean square error (MSE, B) and the number of 
sampling points for 41 factors in the surface and bottom cold water layers using XGBoost.
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cold water layer. The difference of MSE and  R2 from various models (XGBoost and random forests) was similar, 
and both models had low MSE.

Factor sensitivity order.  The order of sensitivity of the factors considered in XGBoost and random forests 
models was similar, especially for the main relative and non-relative factors (Fig. 5). In XGBoost, some factors 
had significant sensitivity scores. In surface NASC, surface temperature (ST, °C) and  NO2

− concentration at 
10 m (N2-10 m, mg/L) had the highest sensitivity scores, which had a single contribution higher than 0.15, and 
the sum was 45%. Besides, WD, DT, Si-d010, DS, and CHL had some relatively minor importance, whereas BS 
and TRA contributed the least. In the random forests model, important factors were highly significant, with 
sensitivity scores higher than 0.45. ST was the most important factor for surface NASC, and BS and TRA had 
the smallest sensitivity scores.

We observed differences in the sensitivity of factors in bottom obtained from XGBoost and random forests 
models. In XGBoost, the average contribution of each factor was lower than 0.15. For bottom NASC, N2-10 m 
and ST of the first featured factors had sensitivity scores higher than 0.1 and the sum contribution was 25%. 
Other factors made small sensitivity scores. In the random forests method, each factor had a contribution less 
than 0.12, and for bottom NASC, only ST of the first featured factors had a contribution higher than 0.1. DT and 
N2-0 m were also relatively important contributors (> 0.08). Other features had lower scores (< 0.08), such as 
WD, BT, N4-10 m, P-d1020, N3-d1020, N2-0 m, DS, etc., but most of them had non-zero contributions (Fig. 6).

Surface and bottom factor sensitivity rank.  The sum contribution of ST and N2-10 m, defined as first 
level-related factors for surface NASC within 20 m depth, was 50%, same as that of the left 39 factors (Fig. 7). 
ST had a great contribution of 36%, higher than 20%; this made it the most important factor influencing fishery 
resource distributions. Moreover,  NO2

− at 10 m had a contribution of 12%, i.e., between 10 and 15%, making 
 NO2

− at 10 m an important factor. The sum contribution of the second-level factors, mainly including WD, DT, 
Si-d010, N3-20 m, CHL, Si-0 m, LON, P-20 m, and N2-20 m, was about 30%. The sum contribution of the third-
level factors was 15% that included 15 factors, namely, P-d1020, BT, N2-0 m, Si-d020, N3-d010, N3-d020, LAT, 
N4-0 m, N3-10 m, P-10 m, N4-d1020, SS, P-d010, N3-d1020, and P-d020. The sum contribution of the fourth-
level factors was 5%, with 24 factors: N4-d010, Si-10 m, Si-20 m, N3-0 m, N2-d1020, P-0 m, N4-20 m, N2-d010, 
N4-10 m, Si-d1020, BS, N2-d020, TRA, and N4-d020 (Fig. 7).

The sum contribution of the first-level related factors for bottom NASC within 20 m depth was 50%, which 
including N2-20 m, DT, ST (at surface mixed layer 2 m), N3-d1020, N4-10 m, WD, and P-d1020, same as the 
sum contribution of other 34 factors. The sum contribution of the second-level factors was 30%. There were 

Figure 4.  Comparison of goodness of fit  (R2, A) and mean square error (MSE, B) of three models in different 
water layers (surface and bottom), the optimized sample size is 2,100.

Figure 5.  Sensitivity pre-sorting of 41 abiotic factors to surface fishery acoustic resource density using XGBoost 
(A) and Random forests (B).
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13 factors: BT (at bottom cold water layer 2 m), DS, Si-20 m, N2-0 m, P-d020, TRA, N4-d020, CHL, P-20 m, 
N4-0 m, N4-d1020, N3-10 m, and N3-20 m. The sum contribution of the third-level factors was 15%; it included 
14 factors: LON, N3-d020, Si-10 m, LAT, N2-d1020, Si-d1020, N2-d010, N2-10 m, Si-d020, N3-0 m, Si-0 m, 
P-d010, P-10 m, and N3-d010. The sum contribution of the fourth-level factors was smallest with 5% only and 
included the following seven factors: N4-d010, BS, N4-20 m, N2-d020, P-0 m, Si-d010, and SS (at surface mixed 
layer 2 m; Fig. 8).

Difference  among  the  sensitivity  of  factors  between  surface  and  bottom  cold  water  lay-
ers.  We classified some factors as group A. They had considerably higher sensitivity scores to the surface 
mixed layer than to the bottom cold water layer, such as ST (2 m in the surface mixed layer) and N2-10 m, with 
a large positive difference. Some factors were defined as group B, which were contrary to group A with a large 
negative difference in the feature importance. These had higher sensitivity scores to the bottom cold water layer 

Figure 6.  Sensitivity pre-sorting of 41 abiotic factors to bottom fishery acoustic resource density using XGBoost 
(A) and Random forests (B).

Figure 7.  Sensitivity ranking of 41 abiotic factors to surface fisheries acoustic resource density using the 
integrated approach. Different colors denote the difference in sensitivity scores of factors. Green to red means 
level one to level four, set by the sum sensitivity scores (50%, 80%, and 95%, respectively).

Figure 8.  Sensitivity ranking of 41 abiotic factors to bottom fisheries acoustic resource density using the 
integrated approach. Different colors denote the difference in the sensitivity scores of factors. Green to red 
means the first level to the fourth level.
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with a large negative difference, e.g., N2-20 m, DT, N4-10 m, and N3-d1020. The others were group C, which 
had low sensitivity for two water layers with a low difference (0 or smaller than 0.03), such as Si-d010, Si-20 m, 
P-d1020, BT, N4-d020, TRA, P-d020, Si-0 m, N2-0 m, and N4-0 m (Fig. 9).

Factors belonging to group C, with a contribution higher than 0.05, were classified as group C + . They were 
important for both water layers and mainly included P-d1020, BT (2 m in the bottom cold water layer), WD, 
and DS. Other factors, with contribution smaller than 0.05, belonged to group C–, which were unimportant, 
such as Si-d010 and Si-20 m (Fig. 10).

Discussion
Algorithm and model performance.  Both XGBoost and random forests models are machine learning 
algorithms with better performance (higher R2 and smaller MSE value) than the linear regression model under 
the condition that data quality and sample size are the same. However, the models did not yield good results 
when the data size was small. The model performance improved with an increase in the data size. Based on the 
interpolation methods, data size could be extended using  coordinates24–30 so that the performance of XGBoost 
can be improved. Besides data size, the model performance could be improved by adjusting important param-
eters, such as time series periodic analysis with multiple data samples. The optimal model is able to make density 
predictions for both surface and bottom fishery densities under certain abiotic factors.

There are differences between XGBoost and random forests  models10,23; thus, the sensitivity scores calculated 
by them are also different, especially for surface NASC, which had different contributions of different factors. The 
importance of features is different between the algorithms. Different algorithms resulted in different importance 
scores. The quantitative comparison in the form of scores can only be made while using the same algorithm. 
Nevertheless, the contribution of each factor was calculated in a similar way by all algorithms, especially for the 
factors with high sensitivity scores. Besides XGBoost and random forests models, support vector machine (SVM) 
31 and logistic  regression32–34 are available for feature selection.

Contribution of the factors to surface and bottom NASC.  It is supposed that NASC of different 
water layers is directly related to the factors of their own layer. For example, in the present study, surface NASC 
was related to ST and N2-10 m, which were first featured. Similarly, the bottom NASC was related to N2-20 m, 
which was the first level-related factor. However, special cases also existed. In the rank of the sensitivity of factors 
for surface NASC, certain surface factors, such as N2-0 m, N4-0 m, N3-10 m, SS (2 m above surface mixed layer), 
Si-10 m, N3-0 m, P-0 m, and N4-10 m, were less important than some bottom factors; all had smaller sensitivity 

Figure 9.  Difference in the sensitivity scores of the factors to the surface and bottom Nautical Area Scattering 
Coefficient (NASC). Dark blue: group A. Orange: group B. Red: group C.

Figure 10.  The sum sensitivity scores of factors to the surface and bottom Nautical Area Scattering Coefficient 
(NASC). Dark blue: group A. Orange: group B. Red: group C.
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scores than BT (2 m in the bottom cold water layer). In the rank of the sensitivity of factors for bottom NASC, 
BT and BS at 2 m of the surface mixed layer were less important than ST (2 m above the surface mixed layer). 
The possible reasons may be that the sensitivity of direct factors for water layers was smaller than that of other 
factors, such as food influenced by surface factors, or there may be no significant direct effects.

Sensitivity  scores  of  geographical,  static,  and  dynamic  factors  to  the  surface  and  bottom 
NASC.  The sum sensitivity scores of geographical, static, and dynamic factors to surface NASC were 0.087, 
0.691, and 0.221, respectively, and average values were 0.029, 0.033, and 0.013, respectively. The results indicated 
that there were significant differences among the abiotic factors of surface NASC, and the sensitivity scores of 
static factors were higher than that of the dynamic and geographical factors, while dynamic factors were the 
weakest. Moreover, it showed that surface fishery resource density was more directly and highly affected by static 
factors than by other factors.

For bottom NASC, the sum sensitivity scores of geographical, static, and dynamic factors were 0.078, 0.530, 
and 0.392, respectively, and average values were 0.026, 0.025, and 0.023, respectively. Similarly, for bottom 
NASC, the sum sensitivity scores of static factors were the highest; however, the average value was close to the 
other two. It showed that the bottom fishery resources density was influenced by multiple factors. However, the 
human factors, such as overfishing, were not considered, and therefore we are unsure of its effect on the bottom 
fishery resources density.

Important abiotic factors.  We found that the factors had different contributions in different water layers. 
It could be the result of different compositions of fishery creatures. There could be some creatures in the quantity 
that were substantially affected by some factor or factors in the surface mixed layer, so that these factors would 
contribute highly to surface fishery density as the first level-related factors. Similarly, for the bottom cold water 
layer, it may have several creatures affected by different factors. Therefore, the bottom fishery resource density 
was the first level related factor for many species, which did not have significant factors influenced by multiple 
factors. There are many kinds of fisheries resources in the offshore of the Northern South China Sea, and the 
composition is complex. The majority of fishery creatures live in the bottom cold water layer.

Temperature is one of the major abiotic stress factors. ST above 2 m in the surface mixed layer, belonging to 
group A and level one, was the most important factor for both surface and bottom cold water layers. Moreover, 
it contributed the largest difference to fishery resources as compared with other factors. Sea surface temperature 
is one of the major factors influencing the surface layer. It has a direct impact on surface NASC, such as jellyfish 
that have a tendency for temperature and temperature  difference35. However, it also had a great influence on 
the bottom NASC, probably because ST could indirectly affect the bottom cold water layer. For example, the 
temperature has an influence on fish  parasites36 and fish community  structure37. DT, belonging to the level two 
in group B, had an immense effect on bottom NASC, which was also one of the important dynamic factors in 
the first level, indicating that temperature change greatly influenced fish  behavior38,39. However, the sensitivity 
and extent of the reaction to temperature variation differed with species and  age40.

Nitrite is the intermediate oxidation state between ammonia and nitrate, and nitrite toxicity could affect fish. 
Nitrite is usually taken up across the gills along with chloride, which disturbs several physiological functions, 
including ion regulation, respiration, and cardiovascular, endocrine, and excretory  processes41. There exists 
a large difference in nitrite toxicity among fishes based on multiple internal and external factors. Important 
factors include water quality (i.e., pH, temperature, and cation, anion, and oxygen concentrations), exposure 
time, species, size, age, and individual fish  susceptibility42. N2-10 m, one of the important static factors for the 
surface mixed layer and belonging to level two in group A, directly affected surface NASC, which indicated that 
sea creatures are more sensitive to nitrite. N2-20 m was the first important feature in class B that had a direct 
impact on the bottom NASC, which belonged to one of the static characteristics of the near bottom. This also 
indicates that nitrite had a higher possibility of having a direct impact on marine life in the bottom layer. Besides, 
the factors related to nitrites, such as N3-d1020 and N4-10 m, only had also had some influence on the bottom 
cold water layer.

Water depth, belonging to group C, greatly influenced both surface and bottom NASC. The proportion of 
certain fish species increased with an increase in water depth. For example, the proportion of Cephalopods was 
relatively high within the range of 40 to 100 m, and the proportion of crustacean was higher within the range 
of 10–20  m43.

Salinity difference (DS), which belonged to group C and was one of the dynamic factors, immensely affected 
both surface and bottom NASC. Salinity varied slightly in the same period; therefore, SS (2 m above surface 
mixed layer) and BS (2 m above the bottom cold water layer) did not correlate with factors related to seasonal fish 
migration. However, DS still influenced the vertical distribution of both surface and bottom cold water layers.

In addition, P-d1020 and BT (2 m above the bottom cold water layer) had some effect on NASC. They may 
have an indirect effect on the distribution of fishery resources or a direct effect with a time lag, although there 
was no clear evidence of their significant sensitivity in this study.

On the contrary, there were certain factors with less influence on water layers, such as SS (2 m above surface 
mixed layer), BS (2 m above bottom cold water layer), P-0 m, N4-20 m, and N2-d020; however, it did not imply 
that they had no function. The spatial distribution and age structure of organisms vary within water layers, which 
could lead to differences in the sensitivity of factors for each layer. If the relationships between species and factors 
are certain, or the rank list of the sensitivity of factors could be acquired, then creatures and their proportion in 
different water layers could be estimated.
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Fishery  resource distribution and other  factors.  There are many different kinds of abiotic factors, 
and only a few of them were used in this study. The abiotic factors collected at the same sampling point are 
concurrent. In fact, time-lagged data of some abiotic factors are also very worth studying, such as chlorophyll. 
Chlorophyll is often considered having a 30-day accumulation period prior to being reflected in higher trophic 
levels through ocean food  chains44,45. However, the food chain is affected by many factors, e.g., human inter-
ference and alien species. Therefore, time-lag studies may be more suitable to be carried out without human 
interference. Similarly, synchronous studies are often susceptible to external factors, such as strong changes in 
the weather, which could lead to a big change in the sensitivity ranking of important factors by affecting surface 
mixed  layer46,47. These may be related to the diverse behavior of marine organisms in the face of changing living 
conditions.

In addition to abiotic factors, the distribution of fishery resources may be affected by other ecological factors 
(human factors, biotic factors), especially bottom fishery resources. There may be many human factors that can 
affect the distribution of marine fishery  resources45, including fishing, breeding, wastewater discharge, etc. The 
human factors affecting the seabed fishery resources described in the study mainly refer to the overfishing with 
bottom trawl as the main fishing method. Overfishing also affects the structure of the food chain, with unpre-
dictable effects on time lag. As for biotic factors, different species act as biotic factors for each other, and their 
mutual relations include predation, competition, and  symbiosis48,49. Further, even within the same species, there 
are intraspecific relationships.

Vertical probability distribution characteristics of fishery resources, obtained by fisheries acoustics techniques, 
are different from traditional fishing (i.e., bottom trawls and fishing nets with LED lights), which is featured 
with two dimensions. Here, the third dimension was added, making the analysis for fishery resources probability 
distribution more comprehensive and showing the importance of fishery resources density distribution in dif-
ferent water layers better. Stratification research on fishery resource density improved the evaluation of fishery 
resources. It was more multidimensional as compared with traditional plane analysis (e.g., fishery resources 
assessment model, physical habitat simulation model).
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