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Landscape of immune cell 
gene expression is unique in 
predominantly WHO grade 1 skull 
base meningiomas when compared 
to convexity
Zsolt Zador ✉, Alexander p. Landry  , Michael Balas   & Michael D. cusimano

Modulation of tumor microenvironment is an emerging frontier for new therapeutics. However in 
meningiomas, the most frequent adult brain tumor, the correlation of microenvironment with tumor 
phenotype is scarcely studied. We applied a variety of systems biology approaches to bulk tumor 
transcriptomics to explore the immune environments of both skull base and convexity (hemispheric) 
meningiomas. We hypothesized that the more benign biology of skull base meningiomas parallels 
the relative composition and activity of immune cells that oppose tumor growth and/or survival. We 
firstly applied gene co-expression networks to tumor bulk transcriptomics from 107 meningiomas 
(derived from 3 independent studies) and found immune processes to be the sole biological mechanism 
correlated with anatomical location while correcting for tumour grade. We then derived tumor immune 
cell fractions from bulk transcriptomics data and examined the immune cell-cytokine interactions 
using a network-based approach. We demonstrate that oncolytic Gamma-Delta T cells dominate 
skull base meningiomas while mast cells and neutrophils, known to play a role in oncogenesis, show 
greater activity in convexity tumors. Our results are the first to suggest the importance of tumor 
microenvironment in meningioma biology in the context of anatomic location and immune landscape. 
These findings may help better inform surgical decision making and yield location-specific therapies 
through modulation of immune microenvironment.

Meningiomas are amongst the most common adult brain tumors and constitute approximately 30% of all intrac-
ranial neoplasms1. Surgery remains a key part of treatment for symptomatic or growing meningiomas and out-
comes are largely determined by tumor biology2,3 and extent of resection4. Approximately 70% of meningiomas 
have benign characteristics and the average disease-free survival is 90% over 10 years2, but lifetime recurrence 
can be as high as 50%5. The extent of surgical excision is largely determined by technical feasibility which is a 
function of anatomical location of the tumor, adherence to adjacent tissue and the eloquent structures limiting 
the extent of removal6. Achieving complete excision of meningiomas that grow around structures at the base of 
the skull (so-called “skull base meningiomas”) poses a particular challenge due to the proximity of neurovascular 
structures as well as the often narrow surgical corridors (these are contrasted from “convexity meningiomas” 
which grow elsewhere in the supratentorial space). Consequently, they may require longer operative times and 
can have lower rates of complete excision. Given the increased likelihood of being left with post-operative residual 
tumour, understanding the biology skull base meningiomas is of particular interest when it comes to developing 
new medical treatments to prevent further growth or recurrence.

Multiple studies show that skull base meningiomas are more likely to have benign biology whereas tumors 
with more aggressive behavior (atypical or malignant meningiomas) can constitute close to 30% of convexity/
parafalcine tumors7–9. Recent studies have analyzed the genetic makeup of meningiomas and found recurrent 
mutations in the neurofibromatosis type 2 (NF2) gene and/or loss of chromosome 22 (NF2/chr22loss) to be more 
prevalent in the cerebral and cerebellar hemisphere10. The vast majority of non-NF2/chr22loss meningiomas are 
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typically benign and tend to be located medially on the skull base. Smoothened, frizzled family receptor (SMO) 
mutations are also implicated in non-NF2/chr22loss and medial meningiomas through increased activation of 
the Hedgehog pathway10. Recurrent polymerase (RNA) II (DNA directed) polypeptide A (POLR2A) mutations 
have recently been found to classify a distinct subset of benign meningiomas with meningothelial histology and 
a preponderance to localize in the tuberculum sellae11. Analysis of methylation subtypes of meningiomas showed 
a relatively greater proportion of skull base lesions among the more benign subgroups with longer disease-free 
survival, when compared to the groups with less favourable outcomes. On the other hand, all tumors in the malig-
nant methylation subtype were located exclusively on the convexity8.

Systems level analysis of gene expression data, which considers genes as units of a system rather than isolated 
entities, can identify key molecular processes which map to biological/clinical phenotypes12,13. This approach car-
ries the distinct advantage of being unbiased in deriving meaning from high dimensional, biologically-modelled 
data. Gene co-expression networks are one example of such system level analysis, wherein similar genes are 
grouped into “modules” of similar function14. This technique has been successfully applied to explore complex 
phenotypes in Huntington’s disease15, peripheral nerve regeneration16 and weight gain17. It has also been used to 
identify relevant subgroups of meningioma18. In the current study we apply this technique along with another 
network-based approach to model the immune landscape of skull base and convexity meningiomas.

We hypothesize that different meningioma locations are associated with distinct biological mechanisms, 
likely related to immune cell composition and/or activity. To capture these geographical patterns in meningioma 
biology we analyzed the transcriptomics profiles of 107 meningiomas originating from either the skull base or 
convexity.

Results
Co-expression network and module-phenotype correlation. A gene co-expression network was 
constructed from 19,011 gene transcripts. Using an adaptive hierarchical clustering model14, we discovered four-
teen gene modules (Fig. 1A). We next compared the biology of both tumor locations by correlating phenotype 
with meta-gene expression levels. Three modules were found to be significantly different between hemispheric 
and skull base meningiomas (Mann Whitney p < 0.05), only one of which annotated significantly (Bonferroni 
p < 0.05) to DAVID gene ontology/pathways (Fig. 1B,C). We do note that one of these modules mapped signifi-
cantly to the “extracellular exosome” cellular compartment, but did not annotate to anything else in DAVID and 
therefore was not considered in further analysis. We also confirmed module significance by correcting the model 
for WHO grade, age, and sex and note that significance is preserved for all 3 modules. Finally, we selected the 
10 most correlated genes to the module eigengene from the 3 modules which are significantly associated with 
tumour location and used these 30 genes in a logistic regression model to predict tumour location. The area under 
the resultant receiver-operating characteristic (ROC) curve was 0.849 (Supplemental Fig. 2).

Figure 1. Gene co-expression network reveals immune function to correlate strongly with meningioma 
location. (A) Gene dendrogram illustrating modules. The grey denotes genes which are not implicated with 
any modules. Labels indicate cytokines which are positively correlated with the module meta-gene expression 
(Pearson correlation>0.6, p < 0.05). (B) Boxplot depicting the correlation between location and meta-gene 
expression level of the only significant module with DAVID annotations (Mann Whitney p = 0.005). As 
indicated in (C), this module maps to diverse immune processes, and is therefore labeled as “immune response 
(universal)”. C: Gene ontology terms ranked by Bonferroni p-value.
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immune composition of meningiomas by location. Using network analysis, we examined the biologi-
cal activity of each immune cell type by correlating them with cytokine expression. On inspection of cytokine-cell 
networks there was a clear difference in the network configurations of convexity and skull base meningiomas 
(Fig. 2). Notably, activated mast cells and neutrophils are present in the convexity network with our cutoff of 
Pearson ρ>0.6, p < 0.05. In this network, mast cells are most correlated with IL-6 (ρ = 0.69, p = 3.0 ×10−6) and 
neutrophils with IL1R2 (ρ = 0.74, p = 2.4 ×10−7). In the skull base network, there are no cell-ligand interactions 
that meet our threshold, though we note that the strongest associations are between BTK and both plasma cells (ρ 
= 0.57, p = 2.4 ×10−7) and monocytes (ρ = 0.54, p = 1.3 ×10−6).

Given the relative complexity of these networks, we sought to analyze the relative “activity” of each immune 
cell by probing the distribution of their correlations with cytokine expression levels19. Analysis of cell “connectiv-
ity” (the area under this distribution) as well as eigenvector centrality (an established measure of node influence 
within a network) demonstrates the importance of mast cells and neutrophils in convexity meningiomas and of 
gamma-delta T cells, monocytes, and plasma cells in skull base meningiomas (Fig. 3).

Discussion
We present a genetic meta-analysis correlating transcriptomics profile with meningioma location. Using a sys-
tems biology approach, we demonstrate an upregulation of various immune processes in skull base meningiomas 
compared to convexity (hemispheric) meningiomas. We further investigated the immune landscape of meningi-
omas by combining leukocyte cell fraction with cytokine expression profile in a network-based analysis. Gamma 
delta T cells were associated with the greatest cytokine connectivity and eigenvector centrality in our network 
of skull base meningiomas, while mast cells and neutrophils played the most central roles in the convexity net-
work. This finding may explain the more benign biology of skull base meningiomas when compared to convexity 
meningiomas.

It is known that the more aggressive grade II and grade III meningiomas are less prevalent in the skull 
base compared to convexity meningiomas7,20. When comparing to meningiomas of the convexity using gene 
co-expression analysis, a key immune module showed significant upregulation in meningiomas of the skull base 
which was maintained after correcting for WHO grade. This suggests that cellular microenvironment, and in 
particular the immune microenvironment, may play an important role in modulating tumor behaviour and in 
explaining differences observed between the two subsets of meningioma being studied. The important role of 
tumour microenvironment has been well demonstrated in a variety of pan-cancer12,21 and central nervous sys-
tem tumour studies22, and has been suggested in meningiomas23–25. Additionally, multiparameter flow cytome-
try studies have demonstrated a heterogenous composition of immune cells in meningiomas23,25. In our study, 
Gamma delta T cells were amongst the most active cell fraction in the skull base cohort based on both overall 
cytokine correlation and eigenvector centrality. Notably, this cell fraction is regarded as an inhibitor of tumor 
growth26. We also note importance of plasma cells and monocytes in this cohort, whose roles are less clear. 
Interestingly, tumour-infiltrating plasma cells have been associated with anti-tumoral activity in ovarian can-
cer27, and monocytes are noted to have both pro and anti-tumoral effects in cancer28. In convexity meningiomas, 
by contrast, we identified activated mast cells and neutrophils as the most connected fraction. Tumor-associated 
mast cells may support the oncogenic environment by releasing pro-tumorigenic stimulants29, thereby triggering 
angiogenesis, tumor cell proliferation/invasion, formation of lymphatic/blood vessel and facilitate the process of 
extravasation of cytokine-producing cells. Mast cells have been detected in upto 90% of high-grade meningioma 
tissue and has been also found to correlate with peritumoral edema30, a feature of aggressive biology in these 
tumours. Additionally, tumour-associated neutrophils have been implicated in cancer progression and poor clin-
ical outcomes31.

Conventional analysis of transcriptomics data often relies on differential single-gene expression levels to filter 
out relevant patterns by comparing the “diseased” and “normal” tissue. These techniques may overlook relatively 
subtle effects across several highly-connected genes, which may nevertheless trigger a robust cellular mechanism. 

Figure 2. Network demonstrating the connectivity of immune cell fractions and cytokine transcriptomics 
in convexity (A) and skull base (B) meningiomas. Cytokines are represented in blue whereas immune cells 
are represented in red. Edge thickness is proportional to Pearson correlation and node size is proportional to 
eigenvector centrality, a measure of the influence of a particular node in the network. Notably, the eigenvector 
centrality ranges from 0 to 0.39 (IL-6) in the convexity model and from 0 to 0.50 (CCL3) in the skull base model. 
Neutrophils and activated mast cells are significantly correlated with cytokines in the convexity model using our 
thresholding criteria, while the skull base model contains only cytokines.
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Gene expression networks are well suited for detecting small, additive biological signals that underlie relevant 
clinical phenotypes. In the first part of our analysis we used this well-established technique14 to show that immune 
processes correlate with location of meningiomas, and investigated this finding further using a network-based 
representation of the interactions between immune cell fractions and cytokine expression patterns. In this second 
technique, we used the sum of cell-cytokine correlations as a measure of immune cell “activity”, which is inspired 
by existing network based approaches19. Importantly, this output corresponds well to eigenvector centrality. 
Although further verification of this approach is needed, we highlight distinct cell fractions and interactions 
between skull base and convexity meningiomas, which align with known differences in clinical behaviour.

There are a number of limitations to this research which must be considered. Firstly, follow up data is lacking 
from all series we have includes which limits our ability to comment on tumour aggressiveness or recurrence 
rates, though our conclusions are nevertheless in alignment with prior knowledge on tumor immunology and 
the biology of convexity vs skull base meningiomas. We also do not have data on treatment regimens at the time 
of tissue collection, though as all patients undergo surgery for primary (non-recurrent) meningiomas and the 
vast majority of tumours our cohort are WHO grade 1, it’s very unlikely that any patients received neo-adjuvant 
treatment. Additionally, the proportion of grade II meningiomas is relatively low in our study (5.3%) compared 
to the prevalence in the population (20–30%). To address this, we have corrected for grade when correlating 
module gene expression with location. We also acknowledge that since skull base tumours are likely to produce 
symptoms and therefore be treated earlier, this may have an effect on the differences in observed biology. Notably, 
the case series of Magill et al.7 shows mean diameters of 2.6–3.6 cm in the skull base compared to 3.6–4.5 cm in 
convexity/falcine/parasaggital regions at the time of surgical excision. However, these findings are likely due to 
the well documented differences in genetic makeup8,10, biology, and growth rate of meningiomas. In non-skull 
base meningiomas, growth rate is higher and time to doubling is lower compared to skull base meningiomas32. 
Furthermore, the transformation of meningioma biology over time is quoted at a rate of 1–2%33 suggesting that 
the distinct biology is likely present from the initial occurrence of the meningioma rather than acquired over 
time. Consequently, the time of discovery/resection is unlikely to play a significant role. Finally, our assessment of 
cytokine activity is on the transcriptomics level as no secretory data was available, yet this approach still provides 
an indirect assessment of how “active” an immune cell type is in terms of cytokine synthesis. Additionally, we 

Figure 3. Immune cell connectivity of meningiomas by location. A-B: Histogram of Person’s correlations for 
the top 3 cell fractions, ranked by connectivity, of convexity (A) and skull base (B) meningiomas. C: Difference 
between cell connectivity values, comparing convexity to skull base (“SB”), where positive values (blue) 
indicate greater connectivity in convexity while negative values (red) indicate greater connectivity in skull base 
meningiomas. D and E: Ranking of eigenvector centrality of each cell type for convexity (D) and skull base 
(E) tumours. F: Difference between eigenvector centrality, with the same conventions as (C). Note the highly 
connected mast cells and neutrophils in convexity meningiomas and T gamma-delta cells, monocytes, and 
plasma cells in skull base (“SB”) meningiomas. A = activated, M = mature, N = naïve, fh = follicular helper, gd 
= gamma-delta, R = resting.
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note that transcriptomics have been successfully used to infer autocrine and heterocrine cellular functions with 
good correlation between mRNA abundance and downstream protein synthesis. Such approaches have been 
successfully implemented to infer cell-cell interactions in lung development34 and aging of the mouse brain35. 
Importantly, we have been able to identify a robust, recurrent signal despite considerable data heterogeneity 
which lends itself to further confirmatory testing with biological assays.

conclusions
Our study is the first to computationally estimate immune cell fractions in location-specific meningioma tissue 
from bulk transcriptomics. We demonstrate distinct immune compositions between hemispheric and skull base 
meningiomas using a network-based approach that considers cell connectivity with cytokine transcriptomics. 
Gamma-delta T cells, with potentially tumour-suppressant activity, are more dominant in skull base meningi-
omas which is in keeping with a more benign biology. This is in contrast to the more central role of potentially 
oncogenic mast cells and neutrophils in convexity meningiomas. These findings give further insight into the 
immune microenvironment of meningiomas and may have implications on future strategies of immune modu-
lation for this challenging disease.

Methods
Data preparation. All data was collected from the Gene Expression Omnibus (GEO), a public repository 
of high-throughput functional genomic data sets36. We used studies containing details on meningioma loca-
tion (skull base and convexity) and WHO grade with corresponding gene expression data11,37, providing us with 
a cumulative sample size of 107 meningiomas (Table 1). All studies obtained microarray data from surgically 
excised primary meningioma tissue. Summary statistics for each study are presented in Table 1. We note that a 
diagram outlining the workflow can be found in Supplemental Fig. 1.

Pre-processing of transcriptomics data. For each study, the microarray data was backgrounded cor-
rected, quantile normalized, and log-2 transformed using the Affy39 and Limma40 R packages for Affymetrix and 
Illumina platforms, respectively. After removing genes that were not common across these studies (such that the 
cohorts could be merged into a single matrix) we were left with 19,011 genes. The 3 studies were then merged, 
scaled to a global mean and standard deviation of 0 and 1, respectively41, and batch-corrected using ComBat, a 
well-established empirical Bayes approach42. The resultant data matrix was used during all subsequent analysis.

Co-expression network analysis. We performed WGCNA of gene expression data using R (version 
3.5.1) to construct a co-expression network and identify biological modules which map to meningioma loca-
tion. Pairwise gene correlations were soft-thresholded with an exponent of 20 to approximate scale-free topol-
ogy, which was ultimately transformed into a biologically-inspired “Topological Overlap Matrix” (TOM), which 
measures pairwise gene similarity in terms of shared topology within the full network14. Highly similar genes are 
then grouped into an adaptive hierarchical clustering tree (dendrogram), yielding “modules” with a minimum 
size of 30 genes. The gene expression profile of each module is represented by a meta-gene computed as its first 
principal component, an established method. The meta-gene score for each module is then compared between 
skull base and convexity meningiomas, with significance considered at Mann Whitney p < 0.05. As an exploration 
of the relationship between cytokine activity and module expression, we label cytokines whose expression levels 
are significantly positively associated with module meta-gene expression (Pearson correlation>0.6, p < 0.05). 
Finally, to assess for network robustness, we select the 10 most correlated genes to the module eigengene from all 
modules which are significantly associated with tumour location and use their expression as inputs into a logistic 
regression model to predict location.

Module-based qualitative analysis. Genes in each of the identified modules were annotated by the 
Database for Annotation, Visualization and Integrated Discovery (DAVID version 6.8)43.

Deconvolution of tumor bulk expression signal. We used CIBERSORT44 (Package EpiDISH version 
1.4.1), a well-established technique to estimate immune cell fractions from our gene expression data. Briefly, the 
method uses support vector regression to compare bulk transcriptomic data from previously derived signature 
matrices from 22 different immune cells in order to estimate the relative prevalence of each of these 22 immune 
cells in the bulk data. The specifics of this technique are beyond the scope of this paper and are described in detail 
in the attached reference. Notably, the input gene expression data is not log transformed and is scaled to a global 
mean and standard deviation of 0 and 1, respectively.

Sample ID
N patients 
(SB)

Mean Age 
(SD)

Sex 
(M:F)

WHO grade 
1 2 3

GSE8872037 12 (7) 56.2 (15.8) 4:7 10 2 0

GSE8426311 84 (53) 56.9 (12.3) 10:2 84 0 0

GSE7725938 11 (11) 52.9 (11.0) 66:18 7 4 0

Total 107 (71) 56.4 (12.6) 80:27 101 6 0

Table 1. Table summary of study population.
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Network analysis of immune cell fractions and expression of cytokines. The complex relation-
ships between immune cells and cytokine expression levels were visualized using network analysis, which demon-
strates associations that are otherwise difficult to appreciate. Such network-based approaches have revolutionized 
research into phenom-genotype similarities and elucidated the genetic basis of diseases45,46, predicted pathways 
of disease progression19, and identified novel drug targets47. Nodes represent immune cells (CIBERSORT output) 
and list of 35 known cytokines derived from the literature21,48 (Supplemental data). Edges represent Pearson cor-
relations, wherein a significance cut-off of <0.05 and effect size cutoff of>0.6 are used. Node size is proportional 
to the eigenvector centrality as computed by the CYTOSCAPE (version 3.6.1) interface. We also compute an 
unweighted eigenvector centrality score (a measure of node influence within a network which is independent of 
Pearson correlations) for each cell types using a network wherein adjacency is defined by significant correlations 
(p < 0.05) in order to assess the degree of influence of each cell within each network. We also define “connectivity” 
as the biological activity of each immune cell (i.e. its overall expression of cytokines), computed as the sum of 
all significant (p < 0.05) Pearson correlations between a cell type and the expression levels of 35 pre-determined 
cytokines (Supplementary data). Cell types were ranked based on both of these metrics.

Data availability
All data referenced in this study is publicly available through the open repository Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo/).
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