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Furo[3,2-c]coumarin-derived Fe3+ 
Selective Fluorescence Sensor: 
Synthesis, Fluorescence Study and 
Application to Water Analysis
Norfatirah Muhamad Sarih1,2, Alexander ciupa3, Stephen Moss3, Peter Myers4, 
Anna Grace Slater3,4, Zanariah Abdullah2, Hairul Anuar tajuddin2 ✉ & Simon Maher1 ✉

Furocoumarin (furo[3,2-c]coumarin) derivatives have been synthesized from single step, high yielding 
(82–92%) chemistry involving a 4-hydroxycoumarin 4 + 1 cycloaddition reaction. They are characterized 
by FTIR, 1H-NMR, and, for the first time, a comprehensive UV-Vis and fluorescence spectroscopy 
study has been carried out to determine if these compounds can serve as useful sensors. Based on the 
fluorescence data, the most promising furocoumarin derivative (2-(cyclohexylamino)-3-phenyl-4H-
furo[3,2-c]chromen-4-one, FH), exhibits strong fluorescence (ФF = 0.48) with long fluorescence lifetime 
(5.6 ns) and large Stokes’ shift, suggesting FH could be used as a novel fluorescent chemosensor. FH 
exhibits a highly selective, sensitive and instant turn-off fluorescence response to Fe3+ over other 
metal ions which was attributed to a charge transfer mechanism. Selectivity was demonstrated against 
13 other competing metal ions (Na+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Al3+, Ni2+, Cu2+, Zn2+, Co2+, Pb2+ 
and Ru3+) and aqueous compatibility was demonstrated in 10% MeOH-H2O solution. The FH sensor 
coordinates Fe3+ in a 1:2 stoichiometry with a binding constant, Ka = 5.25 × 103 M−1. This novel sensor 
has a limit of detection of 1.93 µM, below that of the US environmental protection agency guidelines 
(5.37 µM), with a linear dynamic range of ~28 (~2–30 µM) and an R2 value of 0.9975. As an exemplar 
application we demonstrate the potential of this sensor for the rapid measurement of Fe3+ in mineral 
and tap water samples demonstrating the real-world application of FH as a “turn off” fluorescence 
sensor.

Coumarin is an aromatic heterocyclic compound made up of two fused six-member aromatic rings, between 
benzene and pyrone, to form as a benzopyrone. The academic literature contains an abundance of information 
regarding the synthesis and bioactivities of coumarin derivatives1–3. Research involving this ring system has been 
applied to a wide range of areas including pharmaceuticals4, optical brighteners5, fluorescents6–14 and laser dyes15. 
Recently, we developed a novel mixture of simple organic fluorescents, including furocoumarin, to generate high 
purity white light emission when applied as a coating to a commercial UV LED16. Furocoumarins are one of the 
coumarin derivatives that can be classified into two groups, i. furan fused benzene ring (psoralen and angelicin) 
and ii. furan fused lactone ring (furo[3,2-c]coumarin, furo[2,3-c]coumarin and furo[3,4-c]coumarins)17. Both 
psoralen and angelicin compounds are commonly studied because of their abundance in nature compared to 
the fused furan on the lactone ring17. In this study, furo[3,2-c]coumarin has been chosen as a suitable fluorescent 
heterocyclic candidate as it gives an excellent yield based on published reports18–20. Furthermore, the synthesis 
method for furo[3,2-c]coumarin is both efficient and straightforward (one-pot). It is found in natural products, 
for example, rhizome of Salvia miltiorrhiza Bunge and exhibits potent biological activity (antitumor, antioxi-
dant, anticoagulant, antifungal, anticancer) with several therapeutic applications21. Nair and co-workers reported 
their preparative procedure which involves a [4 + 1] cycloaddition with in-situ generated heterocyclic coumarin 
methides and isocyanides18. Since coumarins typically show excellent spectroscopic properties, high stability and 
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low toxicity22, we hypothesized that furo[3,2-c]coumarin derivatives could have potential as fluorescent sensor 
probes.

The study of fluorescent probes for metal ion detection is a vibrant research field, attracting great interest due 
to both the importance of detecting heavy metals but also because this sensing approach can offer high sensitivity 
and fast response times with relatively simple instrumentation requirements23–25. Due to the low concentrations 
at which metal ions are present, for example in biosystems and in the environment, high-sensitivity probes are 
essential for practical applications26,27. In recent years, a large number of fluorescent sensors from coumarin 
derivatives have been reported for metal ion detection28, such as Cu2+ 29–32, Zn2+ 33–37, Al3+ 38,39, Mg2+ 40–42 and 
Fe3+ 43–47. Reference48 gives an overview of some of the sensing materials used for Fe3+ detection.

Among the metal ions, iron is an essential trace element found in living organisms, and both its deficiency 
and excess are associated with various disorders, such as Alzheimer’s, Parkinson’s disease49–51 and anemia52. An 
excessive amount of iron in the human body can cause toxic damage to various organs including the heart and 
liver52, whilst a lack of iron is related to weakened cognitive growth and decreases the capacity for physical work53. 
In severe excess it is known to be lethal and death has occurred following human ingestion of ~40 mg/kg54. The 
major source of daily iron intake for humans is from food (e.g., green vegetables contain 20–150 mg/kg55) with 
drinking water (assuming an average concentration of 0.3 mg/L) accounting for ~0.6 mg of daily intake. Iron 
concentration in surface waters is usually <~1 mg/L but much higher concentrations are encountered in ground-
water (e.g., >50 mg/L). Excess iron in the environment can also arise due to chemical treatment processes (e.g., 
coagulation) and from corrosion of ferrous materials. In the USA, the environmental protection agency (EPA) 
guidelines state that the maximum level of Fe3+ in drinking water is 5.37 µM56, and in the UK, the drinking water 
inspectorate (DWI) has set a maximum concentration limit for total iron at 200 µg/L57.

The analysis of Fe3+ is of great importance for various application areas including biomedical58, environ-
mental59 and aquatic60. In previous work successful attempts have been reported for the detection of Fe3+ 43–47. 
However, in each case, selectivity is not demonstrated for some heavy metals (that exhibit properties similar to 
those of Fe3+) which could interfere with detection61. For example, we note that Ru3+, which amongst the variety 
of transition metal ions, theoretically, has the greatest similarity to Fe3+, is not tested for potential interference. 
Ruthenium is mainly used in the electronics62–64 and chemical industries65,66, but it also used for biomedical 
purposes such as anti-cancer drugs67,68. Therefore, for any Fe3+ fluorescent probe, it is important to extensively 
demonstrate selectivity, testing with other heavy metals including ruthenium, as it can be present in the environ-
ment69, biological systems70 and water71 samples.

Herein, for the first time, we perform a fluorescent study of furo[3,2-c]coumarin derivatives. In particular, we 
show that the derivative, 2-(cyclohexylamino)-3-phenyl-4H-furo[3,2-c]chromen-4-one (FH), is as an effective 
fluorescent sensor which exhibits high selectivity for Fe3+, tested against 13 other competing metal ions, including 
Ru3+ and Fe2+. Finally, we demonstrate the potential of this novel chemosensor for the rapid measurement of Fe3+ 
in real water samples.

Results and discussions
The structures of the furocoumarin derivatives (FH, FCl, and FNO2) were characterized by 1H NMR and FTIR. 
These results are in good agreement with the chemical structures for furocoumarin from the literature18,19. Table 1 
summarizes the UV-Vis and fluorescence spectroscopy data of FH, FCl and FNO2. Fig. S1, shows the UV-Vis 
spectra of FH, FCl and FNO2 in ethanol. In Fig. 1, the fluorescence spectra of FH and FCl show higher inten-
sity than FNO2. The main contributing factor responsible for the high fluorescence intensity of furocoumarin is 
related to its planar and rigid structure72. Fluorescence of FNO2 was severely quenched, contrary to the responses 
for FH and FCl. Chloro- in FCl is a weaker electron withdrawing group (EWG) than -NO2 in FNO2, however, 
the chloro- substituent can also donate through the aromatic ring, which has a high electron density, as the atom 
is enriched with non-bonding electrons. Therefore, it can be through a π-electron delocalization promoter rather 
than a nitro group, which acts as a relatively strong EWG as illustrated in Fig. 2. In this case, chlorophenyl would 
be a donor group to the furocoumarin moiety (an acceptor group). It has been reported that the EWG decreases 
electron density of the aromatic ring with the exception of the halogen substituent group73. The EWG of the 
nitro group in the benzene ring (nitroaromatic) has empty π∗ orbitals of low energy, which are good acceptors 
of electrons. Therefore electron-rich fluorescent molecules can potentially undergo strong quenching via a pho-
toinduced electron transfer (PET)74, fluorescence resonance energy transfer (FRET) or electron exchange energy 
transfer with nitroaromatics75–77. Hence, we attribute the higher fluorescence intensity to the chloro- over the 
nitro- substituent.

Compounds [M] Abs
Molar 
Abs λex (nm) λem (nm) ФF

Stokes 
shift (nm) τ (ns)

FH 1.00 × 
10−6 0.37 2.00 × 105 375 492 0.48 127 5.61

FCl 1.00 × 
10−6 0.20 3.70 × 105 375 491 1.00 126 4.17

FNO2
1.00 × 
10−5 0.22 5.70 × 104 380 440 nd 60 nd

Table 1. Concentration [M], Absorbance (Abs), fluorescence lifetimes (τ) and quantum yield (ФF) for 
fluorescence properties of furocoumarin derivatives in ethanol solution. nd = not determined.
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Fluorescence and UV–Vis titration studies of FH with other metal ions. The photophysical com-
plexation studies of FH with an extensive series of metal salts including: Na+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, 
Al3+, Ni2+, Cu2+, Zn2+, Co2+, Pb2+ and Ru3+ in methanol, was performed using fluorescence spectroscopy. As 
shown in Fig. 3, the mixture of FH with Fe3+ was the only test sample that exhibited no fluorescence emission 
(i.e., turn-off) in the wavelength range from 430 to 700 nm. Remarkably, in the presence of 50 μM of various 
metal ions, fluorescence spectra of FH exhibited an appreciable fluorescence emission except in the case of Fe3+, 
which resulted in a noticeable turn-off fluorescence response. This fluorescence spectral change was also observed 
visually when examined with a UV transilluminator (380 nm) as illustrated in Fig. S2. The interaction of FH with 

Figure 1. Fluorescence Spectra of Furocoumarin derivatives (FC, FH, FNO2) in ethanol. Inset: Photograph 
image of furocoumarin in ethanol under UV lamp illumination.

Figure 2. Possible mechanisms whereby chloro- substituent (R = Cl) donates electron through aromatic ring 
compared with nitro- substituent (R = NO2).

Figure 3. Fluorescence spectra of FH (0.5 μM) in the presence of different metal ions (100 equiv.) in methanol.
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Fe3+ leads to an immediate fluorescence turn-off, while for the other metal ions, a slight fluorescence quenching 
is observed by the naked eye. As mentioned, the planar and rigid structure of the FH molecule makes it a highly 
fluorescent compound. However, when chelation occurs, there is a transfer of charges within the fluorescent 
ligand-metal system which then causes fluorescence quenching78,79. Therefore, it can be inferred that the fluores-
cence quenching of FH in the presence of Fe3+ is due to a ligand-metal charge transfer (LMCT) mechanism. This 
suggestion is supported by considering the paramagnetic nature of Fe3+ with an unfilled d shell, this would take 
part in the energy and/or electron transfer processes leading to quenching of the fluorescence80,81. We suspect, 
when Fe3+ binds with FH, the fluorescent opens a non-radiative deactivation channel induced by the unfilled d 
shell, resulting in fluorescence quenching due to electron transfer82. Thus, the mechanism of LMCT could happen 
promptly due to the strong paramagnetic quenching property of Fe3+, leading to a severe fluorescence quenching 
effect (i.e., turn-off) to coordinate between FH and Fe3+.

To gain a quantitative evaluation of the relation between the change in emission intensity of FH and the 
amount of Fe3+ interaction, a fluorescence titration experiment was carried out with varying concentrations of 
Fe3+ (Fig. 4). The emission intensity of the peak at 511 nm was systematically quenched by increasing the concen-
tration of Fe3+ from 5 to 50 μM. Moreover, the emission intensity at 511 nm was linearly proportional (correlation 
coefficient, R2 > 0.99) to the concentration of Fe3+ over the range of 0–30 μM, with a limit of detection of 1.93 µM 
(Fig. S3). These observations revealed that FH is suitable for use as a sensor for the quantitative measurement of 
Fe3+. To investigate the binding stoichiometry between FH and Fe3+, a Job’s plot experiment was carried out by 
keeping the total concentration of FH and Fe3+ ions at 20 μM and changing the molar ratio of Fe3+ from 0 to 1. As 
shown in Fig. S4 the result indicates a maximum molar fraction of 0.7, indicating the formation of 1:2 complex of 
FH and Fe3+. This agrees with complexes previously reported83,84. On the basis of changes in emission intensity at 
511 nm, the stoichiometric ratio and apparent binding constant of FH with Fe3+ was determined using Benesi–
Hildebrand (B-H) linear regression analysis. From the B − H plot, a 1:2 stoichiometry between FH with Fe3+ was 
confirmed with an association constant of 5.25 × 103 M−1 (Fig. S5).

Competition experiment using fluorescence spectroscopy. To further investigate the practical 
applicability of FH as a selective sensor for Fe3+, a competition experiment was carried out for FH in the pres-
ence of Fe3+ mixed with other metal ions (Na+, K+ Mg2+, Ca2+, Fe2+, Mn2+, Al3+, Ni2+, Cu2+, Zn2+, Co2+, Pb2+, 
Ru3+). Interestingly, the fluorescence emission intensity was quenched in every case after mixing Fe3+ with each 
of the candidate metal ions (Fig. 5). Thus, FH shows great promise as a highly selective and sensitive fluorescence 
turn-off sensor for the detection of Fe3+ even in the presence of other analogous ions (in particular, Fe2+ and 
Ru3+). Furthermore, based on the general trend in Fig. 5, it is apparent that 3+ cations tend to exhibit stronger 
binding that effects fluorescence quenching of FH. This may be due to stabilization of the binding with an anion 
(NO3−); 2 bonds at FH and one bond with anion. Consider, for example Al3+, where the cation can bind in a 
similar way. This tridentate binding is certainly more stable than the other 2+ cations with bidentate binding. It 
is also apparent that Fe3+ shows better binding with FH than Fe2+ which can be attributed to the cationic radii, 
since Fe3+ is much smaller than Fe2+ about half the size of the Fe3+ radius85. When considering 1+ cations it is 
interesting that Na+ also quenches FH but with K+ to a lesser extent. This is probably related to the single bond 
with FH that is not very stable. Moreover, Na+ has better electronegativity compared to K+, which one expects 
promotes better binding with FH.

Proposed sensing mechanism. To study the reasonable binding mode of FH and Fe3+, mass spectrome-
try analysis has been carried out and supports the formation of a 1:2 FH-Fe3+complex. As illustrated in Fig. S6, 
FH exhibits an intense protonated peak at m/z 360.21, while in the presence of Fe3+, a peak at m/z 595.55 is 
observed, which is attributed to the formation of a protonated FH:(Fe3+NO3)2 complex. For the mentioned results 
above, as well as the Job’s plot (Fig. S4), we suspect that the sensing mechanism for the 1:2 binding modes of 
the FH-Fe3+complex is as suggested in Fig. 6. IR spectroscopy was used to elucidate the coordination mode 

Figure 4. Fluorescence emission spectra of FH (0.5 μM) titrated with Fe3+ (0–100 equiv.) in methanol.
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between FH and Fe3+ (Fig. S7), shows the FTIR spectra of FH before and after the addition of Fe3+. A shift in 
the characteristic absorption band in the FTIR spectra confirmed the coordination behavior for FH-Fe3+. Upon 
the introduction of Fe3+, an extremely broad peak appeared between 3665 and 3125 cm−1, which is attributed 
to the involvement of nitrogen from the primary amine (NH) and oxygen from furan in the binding of Fe3+. 
Furthermore, the stretching vibration frequency of the pyrone carbonyl (C=O) at 1720 cm−1 is shifted to 1605 
cm−1.

Fluorescence and UV–vis titration studies of FH with other metal ions (in water/methanol (9:1, 
v/v)). Fluorescence quenching in protic solvents is a common problem with previously reported fluorescence 
sensors86, In order to confirm FH is not susceptible to this issue and to demonstrate a real-world sample applica-
tion, the photophysical properties of sensor FH were examined in a predominantly aqueous environment, water/
methanol (9:1, v/v) at 5 µM. This composition of 9:1 v/v water/methanol was at the maximum solubility of FH in 
water. Changes to the fluorescence properties of FH caused by various metal ions are shown in Fig. 7. The result 
shows Fe3+ also produces significant quenching in the fluorescent emission of FH. The other tested metals only 
show relatively insignificant changes, except Co2+, Na+ and K+. So, it can be concluded that FH also has high 
selectivity for recognition of Fe3+ in a predominantly aqueous solution. The fluorescence spectra of FH (5 µM) in 
water/methanol (9:1, v/v), in the presence of various concentrations of Fe3+ ion (0.2–8 equiv.), are shown in Fig. 8, 
which shows quenching in the fluorescent emission of FH when the concentration of Fe3+ is increased. A Job’s 
plot of FH with Fe3+ also indicates the formation of a 1:2 complex (Fig. S8). A competitive assay (Fig. 9) confirms 
that FH can still detect Fe3+ even in the presence of other heavy metals. Thus, in a predominantly aqueous solu-
tion, FH exhibits high selectivity for Fe3+ over the other tested metal ions except Co2+, Na+ and K+.

Figure 5. Competitive experiments in the FH + Fe3+ system with potential interfering metal ions. FH (0.5 μM), 
Fe3+ (50 μM), and other metals (50 μM). Excited at 374 nm and emission measured at 511 nm.

Figure 6. Proposed binding mode of FH with Fe3+.
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Figure 7. Fluorescence spectra of FH (5 μM) in the presence of different metal ions (10 equiv.) in water/
methanol (9:1, v/v).

Figure 8. Fluorescence emission spectra of FH (5 μM) titrated with Fe3+ (0.2–8 equiv.) in water/methanol (9:1, 
v/v).

Figure 9. Competitive experiments in the FH + Fe3+ system with interfering metal ions. FH (5 μM), Fe3+ 
(50 μM) and other metals (50 μM) in water/methanol (9:1, v/v). Excited at 374 nm and emission measured at 
511 nm.
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Determination of Fe3+ in real water samples. To investigate the applicability of the FH sensor in real-
istic environmental samples, recovery studies were carried out in mineral drinking water and tap water sam-
ples doped with Fe3+, using fluorescence emission spectroscopy. Testing on these water samples was performed 
without any sample pre-treatment except for the addition of FH, Fe3+ and allowing 1 minute for mixing. From 
Table 2, we can see that the recoveries of Fe3+ were from 91.5% to 125%. These data indicate that FH as a sensor 
has significant potential for the practical detection of Fe3+ in various aqueous samples where other potentially 
competing species are present.

Conclusion
In summary, we have successfully synthesized and for the first time, characterized, the fluorescence properties 
of furocoumarin derivatives (FH, FCl and FNO2). These were synthesized by mixing 4-hydrocoumarin, benzal-
dehyde derivatives, and cyclohexyl isocyanide under reflux conditions within 24 h using singlestep high yielding 
chemistry (82–92% yield). All compounds are purified from recrystallisation preventing the need for time con-
suming column chromatography and showing that this chemistry is amenable to automated high throughput 
synthesis and screening technologies. Both FH and FCl produce strong fluorescence intensity whilst FNO2 does 
not, as a result of strong electron withdrawing from –NO2 causing fluorescence quenching of furocoumarin. 
Furthermore, the fluorescence study has led us towards a successful demonstration of a novel coumarin-based 
fluorescent (FH) ratiometric chemosensor, with an LMCT mechanism attributed to the recognition of Fe3+ in 
methanol and also in water/methanol (9:1, v/v). FH formed 1:2 complexes with Fe3+ and exhibited a fluorescence 
turn-off response to Fe3+. Extensive competitive selectivity experiments in methanol have been performed for 
Na+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Al3+, Ni2+, Cu2+, Zn2+, Co2+, Pb2+ and Ru3+ demonstrating that FH has higher 
selectivity towards Fe3+ (fluorescence turn-off) than other analogous ions and other previously reported Fe3+ 
sensors (to the best of our knowledge). In an aqueous environment the probe selectivity reduces but the “turn 
off ” effect is still operational confirming water does not fully quench fluorescence. The potential of this sensor has 
been further highlighted by testing with untreated mineral and tap water samples. This result sets the foundation 
for a second generation of sensors with improved sensing properties and water solubilizing groups with the real 
potential of developing a fully aqueous furocoumarin based sensor, which is the subject of future work.

Materials and Methods
Materials. All reagents were purchased from commercial suppliers and used without further purification. 
The salts used in stock solutions of metal ions were Al(NO3)3.9H2O, CaCl2, CoCl2.6H2O, Cu(NO3)2.4H2O, 
FeCl2.4H2O, Fe(NO3)3.9H2O, KOH, MgCl2, MnCl2, NaOH, NiCl2.6H2O, Pb(NO3)2, RuCl3 · H2O, Zn(NO3)2 · 
6H2O.

Instrumentation. 1H NMR (400 MHz) spectra were acquired on a Bruker AVANCE 400 MHz NMR 
Spectrometer using TMS (tetramethylsilane) as internal standard. All stock solutions of the samples for both 
UV-Vis and Fluorescence studies were prepared at 0.1 mM in different solvents (ethanol, chloroform and ethyl 
acetate) and diluted in 10 mL with appropriate concentrations. UV-vis absorption and fluorescence spectra of 
the furocoumarin derivatives (in solution) were recorded on a CARY 60 UV-Vis spectrophotometer and CARY 
Eclipse Fluorescence Spectrometer, respectively. Excitation and emission monochromator band pass were kept 
at 5 nm using a quartz cell cuvette (1 × 1 cm). The absolute quantum yields were calculated using quinine sul-
fate in 0.1 M H2SO4 as a standard. Fluorescence lifetime measurements were performed with the use of an FLS 
1000 Spectrometer (Edinburgh Instruments, Livingston, UK) at room temperature. In these experiments the 
fluorescence lifetimes of the furocoumarin derivatives in methanol were measured using the photon counting 
technique (requiring at least 10,000 photons per second to be counted because the signal-to noise ratio becomes 
unsatisfactory at lower count rates87) with an excitation wavelength set to 374 nm in all the cases. UV-vis absorp-
tion and fluorescence spectra of FH and all metal ions were performed with the use of a Cary 5000 UV-Vis-NIR 
Spectrophotometer (Agilent Technologies) and FLS 1000 Spectrometer (Edinburgh Instruments), respectively. 
Paper spray ionization mass spectrometry (PSI-MS)88–90 was performed on a Waters Xevo TQ-MS (Waters, 
Wilmslow, UK).

Synthesis of furo [3,2-c] coumarin derivatives. Equimolar amounts of 4-hydroxycoumarin and ben-
zaldehyde derivatives were dissolved in benzene (0.2 M) and heated under reflux (Fig. 10). After 30 minutes, 
cyclohexyl isocyanide (1 eq.) was added to the reaction mixture and further refluxed for 24 h. The pure compound 
was obtained by recrystallization from diethyl ether to produce up to 85% yield. These compounds have been 
reported and the characterization data agree with previous studies18,19.

Water samples
Added 
(µM)

Found 
(µM) Recovery (%) RSD (%)

Mineral water

2.0 2.1 105 0.71

10.0 10.0 100 5.71

20.0 19.3 96.5 9.60

Tap water

2.0 2.5 125 0.5

10.0 9.8 98 6.9

20.0 18.3 91.5 4.2

Table 2. Analytical results of FH-Fe3+ in water samples.
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2-(Cyclohexylamino)-3-phenyl-4H-furo[3,2-c]chromen-4-one. FH, 92% yield, light yellow powder, m.p. = 
120–122 °C, FTIR = 3250 (NH), 2925–2850 (cyclohexane), 1720 (C=O of pyrone), 1570 (C=C of pyrone), 1H 
NMR = 1.18–2.08(m, 10H), 3.55–3.58 (m, 1H), 4.29 (d, J = 8.32 Hz 1H), 7.27–7.31 (m, 2H), 7.39 (d, J = 4 Hz, 1H), 
7.43 (t, J = 8H, 3H), 7.52 (d, J = 8 Hz, 2H), 7.77 (d, J = 8 Hz, 1H), 1H NMR spectrum of FH as shown in Fig. S9. 
UV-Vis = 375 nm (in ethanol).

2-(Cyclohexylamino)-3-(4-chlorophenyl)-4H-furo[3,2-c]chromen-4-one. FCl, 90% yield, bright crystalline 
yellow, m.p. = 110–112 °C, FTIR = 3289 (NH), 2930–2857 (cyclohexane), 1707 (C=O of pyrone),1593 (C = C of 
pyrone), 1H NMR = 1.16–2.07 (m, 10H), 3.57 (br, 1H), 4.21 (s, 1H), 7.33–7.28 (m, 1H), 7.41–7.39 (m, 4H), 7.47 
(d, J = 6.4 Hz, 2H), 7.77 (d, J = 7.6 Hz, 1H), 1H NMR spectrum of FCl as shown in Fig. S10. UV-Vis = 375 nm (in 
ethanol).

2-(Cyclohexylamino)-3-(4-nitrophenyl)-4H-furo[3,2-c]chromen-4-one. FNO2, 85% yield, reddish orange 
powder, m.p. = 145–147 °C, 3389 (NH), 2929–2851 (cyclohexane), 1736 (C=O of pyrone), 1574 (C=C of 
pyrone), 1H NMR = 1.19–2.11 (m, 10H), 3.67 (m, 1H), 4.60 (d, J = 7.96 Hz 1H), 7.34 (t, J = 6.80 Hz, 1H), 7.45–
7.40 (m, 2H) 7.69 (d, J = 8.72 Hz, 2H), 7.77 (d, J = 7.64 Hz, 1H), 8.22(d, J = 8.64 Hz, 2H), 1H NMR spectrum of 
FNO2 as shown in Fig. S11. UV-Vis = 380 nm (in ethanol).

Fluorescence spectral responses of FH to metal ions. The analysis was conducted for two different 
solvent systems: pure methanol and a water/methanol mixture (9:1, v/v). All stock solutions of the furocoumarin 
(FC) and various metal ions (Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Al3+, Ni2+, Cu2+, Zn2+, Co2+, Pb2+ and Ru3+) were 
analyzed at a concentration of 0.001 M, except Na+ and K+ at 0.2 M in methanol. Then, each of the metal ions 
were diluted to 50 μM, while FH was diluted to 0.5 μM in methanol. For the water/methanol solvent system, FH 
was diluted to 5 μM.

For testing, FH was mixed with each of the metal ions for up to 1 minute (by stirring until no layers could 
be visually observed) after which UV-Vis and fluorescence analysis were carried out. The fluorescence emission 
spectra were recorded from 430 to 700 nm with an excitation wavelength at 374 nm. Both excitation and emis-
sion slit widths were set at 1 nm. For the competing analysis, the fluorescence changes of FH in methanol were 
measured by the treatment of 50 μM Fe3+ ion in the presence of 50 μM other interfering metal ions. All of the 
background metal ions tested showed no interference with the detection of Fe3+ by competitive experiment.
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