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Alzheimer’s disease, mild cognitive 
impairment, and normal aging 
distinguished by multi-modal 
parcellation and machine learning
Jinhua Sheng   1,2*, Meiling Shao1,2, Qiao Zhang3, Rougang Zhou4,5, Luyun Wang1,2 &  
Yu Xin1,2

A 360-area surface-based cortical parcellation is extended to study mild cognitive impairment (MCI) 
and Alzheimer’s disease (AD) from healthy control (HC) using the joint human connectome project 
multi-modal parcellation (JHCPMMP) proposed by us. We propose a novel classification method 
named as JMMP-LRR to accurately identify different stages toward AD by integrating the JHCPMMP 
with the logistic regression-recursive feature elimination (LR-RFE). In three-group classification, the 
average accuracy is 89.0% for HC, MCI, and AD compared to previous studies using other cortical 
separation with the best classification accuracy of 81.5%. By counting the number of brain regions 
whose feature is in the feature subset selected with JMMP-LRR, we find that five brain areas often 
appear in the selected features. The five core brain areas are Fusiform Face Complex (L-FFC), Area 
10d (L-10d), Orbital Frontal Complex (R-OFC), Perirhinal Ectorhinal (L-PeEc) and Area TG dorsal 
(L-TGd, R-TGd). The features corresponding to the five core brain areas are used to form a new 
feature subset for three classifications with the average accuracy of 80.0%. Results demonstrate 
the importance of the five core brain regions in identifying different stages toward AD. Experiment 
results show that the proposed method has better accuracy for the classification of HC, MCI, AD, and 
it also proves that the division of brain regions using JHCPMMP is more scientific and effective than 
other methods.

Alzheimer’s disease (AD) is the most common type of neurodegenerative disorder characterized by progressive 
impairment of memory and other cognitive functions in elderly people worldwide, and results in elderly people 
to death eventually. Pre-clinical stage of Alzheimer’s disease, also known as mild cognitive impairment (MCI), is 
a transitional state between normal aging and AD, often an early warning signal of AD. The correct recognition 
of MCI and AD plays an important role in the prevention, early detection and intervention of AD, and lays a 
foundation for the exploration of effective treatment methods for AD in the future.

The Human Connectome Program (HCP) proposed a multi-modal parcellation (MMP)1 of the human cere-
bral cortex with 180 areas per hemisphere. The HCPMMP is based on surface-registered multi-modal MR acqui-
sition and objective semi-autonomic nerve anatomy, and the criteria are sharp changes in cortical architecture, 
function and connectivity. A range of studies2–4 have demonstrated that the widespread application of HCPMMP 
can help to understand the healthy brain and dementia, such as AD, schizophrenia (SCZ), Parkinson’s disease 
(PD). Some studies have shown that the brain connectivity for neurodegenerative diseases has changed signifi-
cantly, and the topological structure of the brain network has been disrupted4–8. Network measurement of differ-
ent regions of the human brain is considered to be an effective feature for recognition of cognitive impairment 
patients9. The HCPMMP sample was derived from 210 healthy adults but there are few studies on the cerebral 
cortex of AD patients. JHCPMMP introduced HCPMMP into the cerebral cortex of AD patients and applied it to 
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the classification of HC, MCI, and AD10. The main goal of our study is to demonstrate an automated and accurate 
method for identification of AD, MCI and HC.

Method
A novel classification approach is proposed to accurately identify different stages toward AD by integrating the 
JHCPMMP with the logistic regression-recursive feature elimination (LR-RFE), which is named as JMMP-LRR. 
This method is applied to complete the entire experiment. Firstly, the sparse network is obtained by using 
JHCPMMP10. The process of this step is to process the fMRI data, project it to CIFTI Space, and obtain the sparse 
network through MMP. Secondly, we calculate the 9 attributes of brain networks, including strength, betweenness 
centrality, local efficiency etc, and obtain 3,240 candidate features of each subject. Subsequently, we apply LR-RFE 
to select the 30 features of each subject. Finally, the classifier of OVR-SVM is applied to classify the extracted 
features of HC, MCI and AD for classification. The process of the three-class classification in this paper is shown 
in Fig. 1.

Data preprocessing.  The brain is parcellated with 180 areas per hemisphere by using HCPMMP atlas, 
which delineates the cortical architecture, function, and connectivity. The sparse network is obtained with the 
help of JHCPMMP10. The process of this step is to process the fMRI data, project it to CIFTI Space, and obtain the 
sparse network through MMP. MMP can show dramatic changes in cortical thickness, myelin atlas, task fMRI, 
and resting fMRI for each brain region. The correlation can be calculated for 360 areas. The sparse network is 
generated by searching the proportion of the strongest weights (PSW). The purpose of this step is to reduce noise 
and weakly correlated connections.

Network features in each node of the connectivity network are calculated as the candidate features. The fea-
ture vector of each sample contained strength (S), betweenness centrality (BC), clustering coefficient (CC), local 
efficiency (LE), eigenvector centrality (EC), k-coreness centrality (KC), page rank centrality (PC), Subgraph 
centrality (SC) and flow coefficient (FC). The software calculating graph theoretical measures can be the Brain 
Connectivity Toolbox (BCT, available at: https://sites.google.com/site/bctnet/).

For single local network measure, a vector of 360 × 1 is formed in which each vector represents an eigenvalue 
from the corresponding functional area in brain cortex. By calculating the attributes of the brain network, a fea-
ture matrix of 360 × 9 is formed, and each feature is stored in a column. The advantage of scaling each column 
of the eigenvalue matrix is that the range of the eigenvalue is not too large, which leads to the dominance of the 
more valuable features in classification. Each feature is normalized to the range−1 1. Therefore, the 360 × 9 = 3,240 
candidate features are generated for classification of HC, MCI and AD.

Feature selection.  The network-based measure generates the 3,240 candidate feature values for clas-
sification, which greatly affects the calculation cost and classification accuracy. Then, the 3,240 candidate 
features was a feature vector for each subject. Noisy and irrelevant features often lead to over-fitting problem. 
Generally, feature selection should be implemented before classification by extracting a subset of feature from 
the original 3,240 candidate features, which could reduce training time, test time and improve classification 
performance.

There are two main methods for feature selection, including filter, wrapper. The characteristic of filter feature 
selection is to select features from data first, and then train the learner, the process of feature selection is inde-
pendent of subsequent learners. The wrapper method uses an inductive algorithm directly to evaluate the feature 

Figure 1.  The process of the three-class classification.
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subset, which is generally better than filter method in terms of prediction accuracy, but usually more computa-
tionally intensive.

Recursive feature elimination (RFE) is a common method in wrapper feature selection. From the final perfor-
mance of the learner, the wrapped feature selection is better than the filtered feature selection. The RFE method 
continuously eliminates the features with low contribution scores on the basis of the iterative method, and then 
ranks each feature in each cycle to delete the n features with the lowest score.

LR-RFE algorithm is applied to extract important features from the 3,240 features. The main idea of LR-RFE 
algorithm is to repeatedly eliminate features with low contribution scores based on the iterative method, and 
rank each feature in each cycle using LR algorithm to delete the 10 features with the lowest score. The process is 
repeated for the remaining features until all features are traversed. From the 3,240 features, 30 optimal feature 
subsets are selected by using LR-RFE. The LR-RFE algorithm is implemented for finding optimal feature subset 
in Python using the Sklearn package.

Figure 2.  The process of separating AD from HC, MCI, and AD.

Pseudo-code for the Recursive Feature Elimination (RFE) algorithm.
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SVM classifier.  One-vs-the-rest support vector machine (OVR-SVM) is applied to achieve high classifica-
tion accuracy after the dimension of the features has been reduced by LR-REF. SVM is a binary classification 
model to find a hyperplane to segment the samples. Dealing with multi-class classification problems requires 
the construction of a suitable multi-class classifier. This paper adopts OvR multi-class strategy, also known as 
one-vs-all.

OvR is the most commonly used strategy for multi-class classification. One class at a time is taken as a pos-
itive example, and the other classes are taken as a negative example to train N classifiers. If only one classifier is 
predicted as a positive class, the corresponding class label is used as the final classification result. The OvR-SVM 
is a multivariate statistical method that can be used for classification. In this paper, we use OVR-SVM as the 
classifier.

The mathematical principle of OVR-SVM is as follows: When you want to distinguish K classes, the problem 
can be expressed as the mathematical problem described in Eqs. 1–311.
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Through feature selection, the number of data samples in the experiment is 72 and the number of features 
is 30, which is consistent with the characteristics of small sample and high dimension. It also indicates that 
OVR-SVM is very suitable for the three-class classification.

LR-RFE algorithm steps.
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In this process, we use three two-class classifiers, the first two-class classifier is HC as the case, MCI and AD 
as the counterexample, the second two-class classifier is MCI as the case, HC and AD as the counterexample, 
the third two-class classifier is AD as the case, HC and AD as the counterexample. Figure 2 shows the process to 
distinguish AD from HC, MCI, and AD.

We also carry out two-two classifications for HC, MCI, and AD by usingthe SVM algorithm.

Classification and performance metrics.  In a pair of training and testing groups, high classification rates 
may be contingent, so in order to evaluate the prediction performance of the model and reduce over-fitting, we 
cross-validate the data by 5 folds. The principle of K-fold cross-validation is to divide the whole data into k parts 

Predicted 
Class A

Predicted 
Class B

Predicted 
Class C

Actual Class A True A (TA) False A&B (FAB) False A&C (FAC)

Actual Class B False B&A (FBA) True B (TB) False B&C (FBC)

Actual Class C False C&A (FCA) False C&B (FCB) True C (TC)

Table 1.  Confusion matrix of three classification.

Subjects HC MCI AD

Number 24 24 24

Gender(M/F) 16/8 12/12 12/12

Age(mean ± std) 76.3 ± 9.4 76.7 ± 8.7 76 ± 3.8

Table 2.  Basic Information of Sampled Subjects.

Classes Target Classifier Accuracy (%)

Three classes
AD vs. 
MCI vs. 
HC

SVM 89.0%

LR 88.0%

KNN 71.0%

Table 3.  The three-classification average accuracy of different classifier.

Figure 3.  The AD vs. MCI vs. HC classification performance metrics report. Note: 10000.0 stands for AD; 100.0 
stands for MCI; 1.0 stands for HC.

Classes Target Classifier Accuracy(%)

Two classes

AD vs. 
HC

SVM 98.0%

LR 97.0%

KNN 92.0%

MCI vs. 
AD

SVM 92.0%

LR 92.0%

KNN 92.0%

HC vs. 
MCI

SVM 95.5%

LR 91.0%

KNN 81.0%

Table 4.  The two-classification average accuracy of different classifier.

https://doi.org/10.1038/s41598-020-62378-0


6Scientific Reports |         (2020) 10:5475  | https://doi.org/10.1038/s41598-020-62378-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

of equal size. Using the model of other k-1 subsets to train classifiers, one of the K parts is tested12. In this experi-
ment, the evaluation model uses the following evaluation indicators: Accuracy, Precision, Recall, F1-score. Table 1 
lists the confusion matrix of three classification. Each performance is defined in Eqs. 4–7.
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Feature Area ID Hemisphere Area

252 72 R 10d

537 177 L TE1m

792 72 R 10d

851 131 R TGd

1264 184 L V2

1278 198 L FFC

1369 289 L MI

1391 311 L TGd

1485 45 R 7Am

1515 75 R 45

1599 159 R LO3

1603 163 R VVC

1676 236 L 6 v

1720 280 L OP4

1788 348 L lg

1811 11 R PEF

1893 93 R OFC

2087 287 L TA2

2106 306 L PHA1

2232 72 R 10d

2320 160 R VMV2

2329 169 R FOP5

2462 302 L PeEc

2502 342 L 31a

2613 93 R OFC

2655 135 R TF

2718 198 L FFC

2722 202 L PIT

2789 269 L A10p

2822 302 L PeEc

Table 5.  The information of 30 features corresponding to 24 cortical areas.

Area 
Name

Parcel 
Index Feature Area Description Other Name

FFC 18 1278, 2718 Fusiform Face Complex FFA, FG2

10d 72 252, 792, 2232 Area 10d 10, Fp1, Fp2

OFC 93 1893, 2613 Orbital Frontal Complex 11 m, 13b, 13 m, 14r, Fo1

PeEC 122 2462, 2822 Perirhinal Ectorhinal ATFP, AFP1, 35,36

TGd 131 851, 1391 Area TG dorsal TG

Table 6.  The information of 11 features corresponding to the 5 cortical areas.
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Results
The brain MR imaging data of 72 subjects (mean age:76.3 ± 7.7 years, range: 55.8–95.9 years, meal/female: 40/32) 
used in this paper are obtained from the Alzheimer’s disease Neuroimaging Initiative (ADNI database (adni.loni.
usc.edu), including T1 and T2 structure data, resting state fMRI with eyes open, field map. In the present study, 
24 subjects per groups in three classes of HC, MCI and AD were analyzed in this study. Table 2 lists the demo-
graphics of all this subjects.

In this paper, the final feature vectors, which are obtained after dimension reduction using LR_REF, are clas-
sified by SVM. A total of 2,160 feature vectors (72 subjects × 30 features) are used for classification. The state rec-
ognition of HC, MCI, AD is performed with the three two-class SVM classifiers. We use the SVM classifier which 
is implemented by and choose Linear as kernel.The parameters of SVM are determined by 5-fold cross-validation 
method. The classification results are summarized in Table 3. As can be seen form the Table 3, the OVR-SVM 
classifier achieved the accuracy of 89% for classification of three groups of HC, MCI, and AD. Moreover, we fur-
ther applied two typical methods, namely, logistic regression (LR) and K-nearest neighbor (KNN) in Alzheimer’s 
disease recognition to the same imaging data for a comprehensive comparison. The classification results are sum-
marized in Table 3, which shows that the proposed method achieves better performance than other two methods. 
The AD vs. MCI vs. HC classification performance metrics are showed in Fig. 3.

To estimate the generalization ability of our proposed method, experiments are also performed on three binary 
classification tasks (HC vs. AD, MCI vs. AD, and HC vs. MCI). The classification accuracies of two classes are 98.0% 
for AD vs. HC, 92.0% for MCI vs. AD, and 95.5% for HC vs. MCI. Similarly, we further applied logistic regres-
sion (LR) and K-nearest neighbor (KNN) to the same imaging data for two-class classification as a comparison.  
The classification results are summarized in Table 4, which shows that the proposed method achieves better per-
formance than other two methods.

The brain regions corresponding to the 30 features involved in classification. With HCPMMP’s rules for divid-
ing brain regions, the number of the brain region in the right brain is 1–180, and the number of the brain region 
in the left brain is 181–360. Because the brain is symmetrical, the brain region of the left brain can also be found 
in the right brain.

In the three-class classification and two-classification of Alzheimer’s disease, we used the 30 features corre-
sponding to the 24 cortical areas in Table 5.

As shown in Table 5, we further analyzed the information of 30 features and then found the five key cortical 
areas, and each and each cortex area corresponded to two or more features, namely Fusiform Face Complex 
(L-FFC), Area 10d (L-10d), Orbital Frontal Complex (R-OFC), Perirhinal Ectorhinal (L-PeEc) and Area TG dor-
sal (L-TGd,R-TGd). The corresponding characteristics of specific key areas are shown in Table 6. Their specific 
distribution in the brain is shown in Fig. 4.

Figure 4.  The five core cortical areas’ specific distribution in the brain.

Modle Set 1 Set 2 Set 3

SVM 89% 80% 48%

LR 88% 78% 49.8%

Table 7.  The classification accuracies corresponding to different brain areas and features. Note: Set 1: 
classification accuracies in SVM and LR with 24 brain areas and 30 features; Set 2: classification accuracies in 
SVM and LR with 5 core brain areas and 11 features; Set 3: classification accuracies in SVM and LR with 11 
features and random 5 brain areas from 24 brain areas except 5 core brain areas.

https://doi.org/10.1038/s41598-020-62378-0
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In order to further analyze the five core Cortical areas, the 11 features corresponding to the five Cortical areas 
of FFC, 10d, OFC, PeEc and TGd are selected from 30 features corresponding to the 24 Cortical areas, which are 
used to classify HC, MCI, and AD. Subsequently, we use the 5-fold cross-validation of SVM and LR to classify 
these separately. From Table 7, the accuracies of the classification in SVM and LR with 11 features are 80% and 
78%, respectively.

In addition, the accuracies of the classification in SVM and LR with 30 features of 24 cortical areas are 89% and 
88%, respectively. Furthermore, in order to analyze the role of the features of five cortical areas in classification, 
we randomly select the corresponding features of the five cortical areas in the remaining 19 cortical areas to cal-
culate the accuracy of classification. The training and test are repeated 10 times to get the average accuracies for 
SVM and LR. The classification results of Accuracy_3 were given in Table 7.

From Table 7, the classification accuracies of Set 2 are closer to that of Set 1, but the classification accuracies 
of Set 3 are much lower than that of Set 1. Obviously, when the features are taken from five Cortical areas of 
FFC, 10d, OFC, PeEc and TGd, the classification accuracy is high than random five cortical areas. Therefore, we 
observe that the five cortical areas have a great impact on the results of the three-class classification.

Discussion
Most previous studies focused on the two-class classification between HC, MCI, and AD, and they have achieved 
great accuracy. With the imaging data of ADNI database, some studies also reported recognition results of 
three-class classification between HC, MCI, and AD. As shown in Table 8, our method obtained higher accuracy 
than previous studies using old brain parcellation methods. It shows that our parcellation scheme benefits the 
classification of HC, MCI, and AD. It also proves that the division of brain regions of JHCPMMP is more scientific 
and effective than other methods.

As shown in Table 7, when the features are taken from five cortical areas of FFC, 10d, OFC, PeEc and TGd, the 
classification accuracy is high than that using five random cortical areas. Therefore, the five cortical areas have 
a great impact on the results of the three-class classification. And this finding has been confirmed in previous 
clinical papers.

Zebrowitz13 observed lower activation, specificity, and resting blood flow for older adults than younger adults 
in the fusiform face area (FFA) but not in other regions of interest, and then the facial selection mechanism of 
the elderly was uncoordinated. Bludau et al.14 found that Fp1 and Fp2 have different contributions to functional 
networks. Fp1 was involved in cognition, working memory and perception, whereas Fp2 was part of brain net-
works underlying affective processing and social cognition. Grabenhorst et al.15 pointed out that OFC can affect 
people’s function of feeling happiness, pain, and reward and punishment. Ding et al.16 found that human TPC 
actually includes anterior parts of areas 35, 36, and TPC seems to be involved in social and emotional processing 
to a large extent, including facial processing, recognition and semantic memory. Olson et al.17 studied that TGd 
may combine complex and highly processed perceptual input with visceral emotional response. Thus, there five 
areas all have been confirmed to be involved in human facial processing, emotional perception and memory func-
tion. Therefore, our results were in line with those reported in previous studies, showing significant importance 
to further explore the treatment strategies of Alzheimer’s disease, and carry out early intervention to delay the 
deterioration of the disease.

Conclusion
We propose a method JMMP-LRR which combines LR-RFE and JHCPMMP for three classifications of AD 
patients. fMRI data is processed by JHCPMMP to obtain small samples, ultra-high-dimensional data, these data 
directly involved in classification will cause too long running time and low classification accuracy, JMMP-LRR 
can solve the problem very well. The features obtained by using LR-RFE as feature extraction were more recogniz-
able for the three classifications of AD patients, and could achieve high classification accuracy. By analyzing the 

The step of calculating the brain region.
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features obtained by LR-RFE, we find 5 brain regions were sensitive to AD patient identification: L-FFC, L-10d, 
R-OFC, L-PeEc, (L-TGd, R-TG). Only use the functional features of these 5 brain regions, we could achieve high 
accuracy. The accuracies of the two experiments using the JMMP-LRR method were higher than the current 
method. It also proves that JHCPMMP is better than other brain partitioning methods in identifying patients 
with AD.

Data availability
Data collection and sharing for this project is funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(National Institutes of Health, USA).
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classes Authors Target Modality Machine Learning Brain Segmentation Method Accuracy

Two classes

Suk et al.18

AD vs. HC

MRI + PET Multi-Kernel SVM 93 regions

95.9%

MCI vs. HC 85.0%

MCI-C vs. MCI-NC 75.8%

Ortiz et al.19

AD vs. HC

FDG-PET + sMRI SVM (Linear) 42 subcortical regions

92%

MCI vs. AD 84%

HC vs. MCI 86%

Li et al.20

AD vs. HC

MRI + PET RBM and SVM 93 volumetric regions

91.4%

MCI vs. HC 77.4%

AD vs. MCI 70.1%

MCI.C vs. MCI.NC 57.4%

Khedher et al.21

HC vs. AD

sMRI(T1) SVM(Linear) SPM8

87.12%

HC vs. MCI 77.62%

MCI vs. AD 85.41%

Our Method

AD vs. HC

fMRI Linear-SVM J-HCPMMP

98.0%

MCI vs. AD 92.0%

HC vs. MCI 95.5%

Three classes

Quintana et al.22 MCI vs. AD vs. HC NPR ANN 55 regions 66.67%

Zhang et al.23 MCI vs. AD vs. HC MRI SVM (RBF) 66 volumetric features 81.5%

Tong et al.24 MCI vs. AD vs. HC sMRI(T1) + PDG-PET + CSF + Genetics NGF + SVM 83 anatomical regions 60.26%

Lama et al.25 MCI vs. AD vs. HC sMRI(T1) PCA + RELM FreeSurfer 5.3.0 61.58%

Son et al.26 MCI vs. AD vs. HC sMRI(T1) + rs-fMRI Random Forest 10 subcortical regions 53.3%

Our Method MCI vs. AD vs. HC fMRI Linear-SVM J-HCPMMP 88.0%

Table 8.  Comparison of classification accuracy for recent studies.
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