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Radiomics prognostication model 
in glioblastoma using diffusion- and 
perfusion-weighted MRI
Ji eun park  1, Ho Sung Kim1*, Youngheun Jo1, Roh-Eul Yoo2, Seung Hong choi  2, 
Soo Jung nam3 & Jeong Hoon Kim4

We aimed to develop and validate a multiparametric MR radiomics model using conventional, diffusion-, 
and perfusion-weighted MR imaging for better prognostication in patients with newly diagnosed 
glioblastoma. A total of 216 patients with newly diagnosed glioblastoma were enrolled from two tertiary 
medical centers and divided into training (n = 158) and external validation sets (n = 58). Radiomic features 
were extracted from contrast-enhanced T1-weighted imaging, fluid-attenuated inversion recovery, 
diffusion-weighted imaging, and dynamic susceptibility contrast imaging. After radiomic feature 
selection using LASSO regression, an individualized radiomic score was calculated. A multiparametric MR 
prognostic model was built using the radiomic score and clinical predictors. The results showed that the 
multiparametric MR prognostic model (radiomics score + clinical predictors) exhibited good discrimination 
(C-index, 0.74) and performed better than a conventional MR radiomics model (C-index, 0.65, P < 0.0001) 
or clinical predictors (C-index, 0.66; P < 0.0001). The multiparametric MR prognostic model also 
showed robustness in external validation (C-index, 0.70). Our results indicate that the incorporation of 
diffusion- and perfusion-weighted MR imaging into an MR radiomics model to improve prognostication in 
glioblastoma patients improved its performance over that achievable using clinical predictors alone.

Glioblastomas are characterized by their morphologic, genetic and gene expression heterogeneity1, which leads 
to resistance to treatment and short term recurrence2. Recent immunohistochemistry and genomic sequenc-
ing analysis has improved the recognition of that the prognostic biomarkers of isocitrate dehydrogenase (IDH) 
and O6-methylguanine-methyltransferase (MGMT) promoter methylation are associated with longer survival3,4. 
However, little progress has been made towards non-invasive prediction of survival in patients with glioblastoma.

Radiomics approaches extract high-dimensional features using automated data-mining algorithms5,6, and 
have shown great promise as surrogate measures of the intra-tumoral heterogeneity of genetic features4. In par-
ticular, radiomics analysis has been successfully applied to prognosis prediction in glioblastomas7,8 using conven-
tional MR imaging with T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), fluid attenuation inversion 
recovery (FLAIR), and contrast enhanced imaging. However, glioblastomas are known to exhibit distinct mor-
phologic characteristics on diffusion-weighted imaging (DWI) or dynamic susceptibility contrast (DSC) imag-
ing, with low apparent diffusion coefficient (ADC) values and high cerebral blood volume (CBV) being related 
to tumor aggressiveness9–11. Furthermore, histogram and texture analyses of ADC or CBV have demonstrated 
prognostic relevance12,13. This opens up the possibility that ADC and CBV maps may provide useful imaging 
signatures relevant to prognostication using radiomics analysis, signatures that are different to those obtained 
from conventional MR imaging.

We hypothesized that incorporating ADC and CBV maps into MR radiomics analysis would enhance sur-
vival prediction in patients with glioblastoma. We therefore developed a multiparametric MR radiomics model 
and compared its performance with a conventional MR radiomics model and established clinical variables. 
Furthermore, we validated its robustness with an external cohort whose data were obtained using different MR 
acquisition protocols. The purpose of this study was to develop and validate a radiomics model using conven-
tional, DWI, and perfusion-weighted MR imaging for better prognostication in patients with newly diagnosed 
glioblastomas.
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Methods
patients. The institutional review board of Asan Medical Center and Seoul National University Hospital 
approved this retrospective study, and the requirement for informed consent was waived. All methods were per-
formed in accordance with the relevant guidelines and regulations. We searched the electronic database of the 
Department of Radiology at our tertiary hospital and retrospectively reviewed patient records between March 2012 
and March 2016. We identified 248 consecutive patients with pathologically confirmed IDH-wild type glioblas-
toma, according to the 2016 World Health Organization Classification of Tumors of the Central Nervous System14. 
The inclusion and exclusion process is shown in Fig. 1. All patients underwent pretreatment multiparametric MRI 
including contrast-enhanced T1-WI (CE-T1), FLAIR, DWI, and dynamic susceptibility contrast (DSC) imag-
ing. All patients were treated with concurrent chemoradiation therapy (CCRT). The standard CCRT procedure2 
consisted of fractionated focal radiotherapy at a dose of 2 Gy per fraction given once daily 5 days per week over a 
period of 6 weeks, for a total dose of 60 Gy. Concomitant chemotherapy consisted of temozolomide at a dose of 
75 mg per square meter per day, given 7 days per week from the first to the last day of radiotherapy, and after a 
4-week break patients receive up to six cycles of adjuvant temozolomide according to the standard 5 day schedule 
every 4 weeks. The dose was 150 mg per square meter and was increased to 200 mg per square meter beginning 
with the second cycle, providing that there were no toxic effects. The exclusion criteria were as follows: patients had 
a prior history of surgical treatment (n = 20), had insufficient clinical information (n = 40), or any of multi-par-
ametric imaging data was missing (n = 25) or unreadable (because of an artifact) (n = 5). These steps yielded 158 
consecutive patients (mean age, 59.5 years old; male - female ratio, 96:62). This cohort was used as a training set 
to develop a radiomics model for prognostication in patients with glioblastoma. Identical inclusion criteria were 
used to SNU cohort obtained between October 2014 and November 2016. From a total of 98 patients, patients were 
excluded if they had a prior history of surgical treatment (n = 10), had insufficient clinical information or did not 
receive CCRT (n = 15), or if any of the multiparametric imaging data was missing (n = 14) or of poor image quality 
(n = 1). Total 58 patients with glioblastoma were finally included and used for external validation of the model.

Imaging data acquisition and post-processing. The accrual process used for developing the model is 
summarized in Fig. 2. In the training set, all MRI studies were performed on the same 3-T unit (Achieva; Philips 
Medical Systems, Best, The Netherlands) using an eight-channel head coil. The brain-tumor imaging protocol of 
our institution includes the following sequences: T2WI, FLAIR imaging, T1WI, DWI, CE-T1, and DSC perfusion 
MRI. DWI was acquired in three orthogonal directions, and the images were combined into a trace image. DWI 
was obtained using the following parameters: repetition time (TR)/echo time (TE), 3000/56 ms; diffusion gradient 
encoding, b = 0, 1000 s/mm2; field of view (FOV), 25 cm; slice thickness/gap, 5 mm/2 mm; matrix, 256 × 256; and 
acquisition time, 39 s. A contrast-enhanced high-resolution anatomical three-dimensional (3D) volume image 
was obtained using a gradient-echo T1-weighted sequence with the following parameters: TR/TE, 9.8/4.6 ms; flip 
angle, 10°; FOV, 256 mm; matrix, 512 × 512; and slice thickness, 1 mm with no gap. DSC perfusion MRI was per-
formed using a gradient-echo, echo-planar sequence during the administration of a standard dose of 0.1 mmol/
kg gadoterate meglumine (Dotarem; Guerbet, Paris, France) at a rate of 4 mL/s using a MRI-compatible power 
injector (Spectris; Medrad, Pittsburgh, PA, USA). The bolus of contrast material was followed by a 20 mL bolus 
of saline administered at the same injection rate. The parameters for DSC MRI were as follows: TR/TE, 1808/40 
msec; flip angle, 35°; FOV, 24 cm; slice thickness/gap, 5 mm/2 mm; and matrix, 128 × 128. The total acquisition 
time for DSC MRI was 1 min 54 s. We applied double dose protocol, where a preload of 0.1 mmol/kg gadoter-
ate meglumine was given before the dynamic bolus, and then the dynamic bolus was administered as another 
0.1 mmol/kg gadoterate meglumine (Dotarem; Guerbet) delivered at a rate of 4 mL/s by an MRI-compatible 
power injector (Spectris; Medrad). The bolus of contrast material was followed by a 20 mL bolus of saline, injected 
at the same rate. The full preload bolus was intended to optimize protocol for CBV estimation15.

The brain tumor MRI in the validation set was also acquired on a 3-T scanner, and included T2WI, FLAIR, 
T1WI, DWI, CE-T1, and DSC perfusion imaging sequences. The acquisition protocols used in the study are 
shown in Supplementary Information 1.

Figure 1. Flow diagram showing the patient selection protocol and the inclusion and exclusion criteria.
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Imaging post-processing. The apparent diffusion coefficient maps were calculated using the b values 
of 0 and 1000 s/mm2, using a two-point estimate of signal decay: ADC = −ln (S[b]/S[0])/b, where b indicates 
the b value and S(0) and S(b) are the signal intensities of images with b values at 0 and 1000, respectively. The 
post-processing of the DSC imaging was performed using commercial software (NordicICE; NordicNeuroLab, 
Bergen, Norway). Leakage correction was performed using the method of Weisskoff et al.16 with further adap-
tations from Boxerman et al.17, with leakage being estimated from the deviation in each voxel according to a 
non-leakage reference tissue response curve. After correction for contrast agent leakage, the whole-brain relative 
CBV was calculated using a numerical integration of the time concentration curve. Next, we normalized the rel-
ative CBV (nCBV) images with the mean intensity of the contralateral normal-appearing cerebral white matter 
at the centrum semiovale, which was manually selected by a researcher (Y.H.J., with 2 years’ of experience in 
neuroimaging processing). The diameter of the selected region of interest (ROI) was 4 mm. The nCBV maps were 
created by dividing each CBV value by the contralateral ROI on a pixel-by-pixel basis.

For 3D CE-T1WI and FLAIR data, signal intensity normalization was used to remove noise and reduce vari-
ance in the T1-based signal intensity of the brain. We applied the hybrid white-stripe method18 for intensity nor-
malization using the ANTsR and WhiteStripe packages19,20 in the R software package (R Foundation for Statistical 
Computing, Vienna, Austria, URL: http://www.R-project.org, 2016). This incorporates processes of the statistical 
principles of image normalization, preserving ranks among tissue and matching the intensity of tissues without 
upsetting the natural balance of the tissue intensities20. Before feature extraction, we excluded outlying image 
intensities from the ADC and nCBV maps by excluding those voxels inside the ROI with a value outside ± 3 
standard deviations of the mean21.

The ADC and nCBV maps were then co-registered to the 3D contrast-enhanced T1WI using SPM soft-
ware (www.fil.ion.ucl.ac.uk/spm/). The co-registration process included the generation of a brain mask 
from 3-dimensional (3D) CE-T1WI and transformation of the ADC and nCBV maps of each patient to the 
brain-extracted 3D CE-T1WI volume using affine transformations with normalized mutual information as a cost 
function22, with 12 degrees of freedom and tri-linear interpolation.

Segmentation of the enhancing tumor region was performed by a neuroradiologist (with 4 years of experience 
in neuro-oncological imaging) who semi-automatically defined the region on the 3D CE-T1 using a segmenta-
tion threshold and region-growing segmentation algorithm implemented using MITK software (www.mitk.org 
German Cancer Research Center, Heidelberg, Germany)18. All segmented images were validated by an expe-
rienced neuroradiologist (with 18 years of experience in neuro-oncologic imaging). Finally, we resampled all 
images into a uniform voxel size of 1 × 1 × 1 mm.

Figure 2. Analysis pipeline for this study. The imaging analysis includes acquisition, co-registration, signal 
intensity normalization for conventional magnetic resonance imaging data, and segmentation. A Cox regression 
with least absolute shrinkage and selection operator method (LASSO) was applied to select significant radiomic 
features. The individualized radiomic score is calculated as the sum of each radiomic variable multiplied by 
a non-zero coefficient from LASSO. Subsequently, a composite prognostic model was built using the features 
showing a significant association, including the individual radiomic score and clinical predictors.
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Radiomic feature extraction. Radiomic features were extracted using Matlab R2014b (The Mathworks, 
Natick, MA), in accordance with previous studies8,23. Details of the radiomic feature extraction are provided in 
the Supplementary Information. Briefly, the radiomic features consisted of four feature groups: seven volume 
and shape features, 17 first-order features, 162 texture features, and 1432 wavelet features. The volume and shape 
features were obtained from the segmented mask and the first-order, texture, and wavelet features were estimated 
using signal intensity. Then first-order features and texture features were calculated from the eight wavelet decom-
position images, which resulted in 1432 wavelet features ([17 + 162] × 8). In total, 1618 features (17 first-order 
statistics, seven volume and shape-based features, 162 texture features, and 1432 wavelet features) were obtained. 
For each patient, 1618 radiomic features were extracted from the T1CE, FLAIR, ADC, and CBV data, resulting 
in a total of 6472 extracted features. Finally, all radiomic features were z transformed for group comparisons. The 
processing time for extraction of the 6472 features was approximately 8 min per patient.

Radiomic feature selection. We used L1-penalized estimation for a Cox regression and the least absolute 
shrinkage and selection operator (LASSO) method24,25 to select the radiomic features for prognostication. Briefly, 
the LASSO is a data analysis method that selects features by fitting a Cox regression model via penalized maxi-
mum likelihood estimation. An individualized radiomics score was developed using the non-zero coefficients of 
the radiomic features. The score is calculated as the sum of each radiomic feature multiplied by a non-zero coeffi-
cient from LASSO. The R software and “glmnet” package were used for the LASSO Cox regression model 
analysis.

individualized radiomics score. An individualized radiomics score was developed using the non-zero 
coefficients of the radiomic features. This score is calculated as the sum of each radiomic feature multiplied by a 
non-zero coefficient from LASSO according to the equation below.

= ×
+ ×

+ ×

+… + ×
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The radiomics score was calculated separately using both conventional radiomic and multiparametric radi-
omic features obtained from conventional MR imaging, ADC maps, and CBV maps. Next, the radiomics score 
was used as an imaging predictor for the prognostication model.

Clinical predictors and outcome definition. Preoperative clinical predictors including the baseline char-
acteristics of sex, age, Karnofsky performance score (KPS; binary, score ≥ 80 or <80), tumor location, tumor 
volume, MGMT promoter status, and extent of surgery (biopsy, partial resection, or gross total resection) were 
collected.

The primary endpoint of the study was overall survival (OS), which was calculated from the day of histo-
pathologic diagnosis until the day of death, as obtained from the national health care data linked to our hospital. 
Patients who were alive at the time of analysis (n = 36, 22.8% in the training set and n = 8, 13.9% in the validation 
set) were right-censored data and included in the analysis. All patients were followed up every 3–6 months after 
surgical treatment. The minimum follow-up time to ascertain survival was 1.8 year.

Statistical analysis. Frequencies and proportions are reported for categorical variables, and the mean and 
standard deviation for continuous variables. Differences between categorical variables and differences between 
continuous variables were assessed using the chi-square test and independent t-test, respectively.

The model development and validation methods in our study adhered to the Transparent Reporting of a mul-
tivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement26. For clinical predictors, 
univariate Cox proportional hazard regression analysis was used to test the association between OS and clinical 
predictors including sex, age at diagnosis, KPS, tumor location, and tumor volume.

For the radiomics-based risk assessment, a linear predictor of the radiomics score was calculated as a weighted 
sum of the covariates in the Cox proportional hazard model, where the weights were the regression coefficients27. 
The optimal cutoff for the radiomics score to stratify high- and low-risk groups was estimated using maxstat in 
R. Prognostic performance was calculated using 10-fold cross validation, which ensured unbiased prediction 
within the sample28. Kaplan-Meier survival curves were constructed, and the significance for stratifying low- and 
high-risk groups was calculated with a log-rank test. The performance of the prognostic model was quantified 
with respect to discrimination and calibration29. Discrimination was measured with Harrell’s concordance prob-
ability index (C-index). The “compareC” package in R was used to compare the C-index values across different 
models. Calibration was tested using the D’Agostino-Nam version of the Hosmer-Lemeshow test30.

A nomogram was built to visualize a multiparametric MR prognostication model using radiomics score and 
clinical predictors. Statistical analyses were performed using R statistical software (R version 3.3.3, R Core Team, 
Vienna, Austria). A P value less than 0.05 was considered statistically significant.

Results
The clinical characteristics of the training and validation cohorts are summarized in Table 1. No differences in sex, 
age, treatment regimen, tumor location, initial KPS, and MGMT promoter methylation status, were found between 
the training and validation cohorts. The median follow-up times were 2.86 years in the training set and 4.47 years 
in the validation set. The median survival was 646 days in the training set and 700 days in the validation set.
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Significant clinical predictors. Among the clinical predictors, older age (hazard ratio 1.02, P = 0.039) and 
lower KPS at treatment initiation (hazard ratio 1.70, P = 0.043) were significant clinical predictors of shorter sur-
vival, while gross total resection rather than biopsy/partial resection was associated with longer survival (hazard 
ratio 0.67, P = 0.0004; Supplementary Table 2). The performance of the clinical predictors including age, KPS, 
and extent of surgery had a C-index of 0.67 (95% CI, 0.64–0.70) in the training set and 0.63 (95% CI, 0.59–0.65) 
in the validation set.

Significant radiomic features to calculate a radiomics score. Six significant multiparametric MRI 
radiomic features were selected using LASSO penalization applied to the training set (Supplementary Fig. 1). The 
individualized radiomics score was calculated using the corresponding coefficients of each feature according to 
the equation described below. Three of thesefeatures are from conventional MRI (1 T1CE and 2 FLAIR), one from 
ADC, and two from CBV maps (Table 2).

Radiomics score 0 07896580 [T1CE_Sum entropy (mean) LLH GLCM dist

3]
0 06340327

[FLAIR_Mean absolute deviation LHH first order]
0 09125977 [FLAIR_High gray level run emphasis (std)]
0 05745977 [ADC_SkewnessHHHfirstorder]
0 03145506 [CBV_Entropy (std) HHL GLCM dist 1]

0 08185888
[CBV_Long run high gray level emphasis (mean)

HHH GLRLM]

= − . ×

=

− .

×
− . × −
− . ×
+ . × =

− .

× −

The optimal cutoff for stratifying the low- and high-risk groups was −0.07. Figure 3 demonstrates the 
performance of the radiomic score using the optimal cutoff for survival prediction in both training and 

Parameter
Training set 
(n = 158)

External validation 
set (n = 58) P value

Sex, n 0.52

Male/Female 96/62 38/20

Age, years 0.27

Median (range) 59.5 (31–83) 57.6 (20–80)

Primary treatment, n [%]

Extent of resection 0.12

Gross-total resection 72 (45.6%) 34 (58.6%)

Subtotal resection 57 (36.1%) 19 (32.8%)

Biopsy 29 (18.4%) 5 (8.6%)

Adjuvant treatment

RT + TMZ 141 (89.2%) 58 (100%) 0.07

Other

RT only 1 (0.6%) 0

TMZ only 4 (2.5%) 0

No RT or TMZ 12 (7.6%) 0

Location 0.62

Frontal or temporal 73 (46.2%) 29 (50%)

Others 85 (53.8%) 29 (50%)

KPS at treatment initiation, n (%) 0.64

≥70 138 (87.3%) 52 (89.7%)

<70 20 (12.6%) 6 (10.3%)

MGMT promoter status, n (%)

Methylated 12 (7.6%) 28 (48.3%) 0.13

Unmethylated 25 (15.8%) 19 (32.7%)

NA 120 (75.9%) 11 (19.0%) NA

Median follow-up time, years 
range) 2.86 (1.06–5.67) 4.47 (3.44–6.18) 0.047

Table 1. Clinical characteristics of the study patients. Abbreviation: KPS, Karnofsky performance score; CCRT, 
concurrent chemoradiation therapy; RT, radiation therapy; TMZ, temozolomide; MGMT, O6-methylguanine-
DNA-methyltransferase gene methylation status;NA, information not available.
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external validation sets. The log-rank tests for the Kaplan Meier survival curves were significant for both training 
(P < 0.0001) and external validation sets (P = 0.018).

The C-indexes for the radiomics score were 0.69 (95% CI, 0.66–0.72) in the training set and 0.64 (95% CI, 
0.59–0.68) in the validation set. The performance of the individual radiomics score using conventional MRI had 
a C-index of 0.65 (95% CI, 0.60–0.69), which was lower than that of the multiparametric MRI.

Performance of the multiparametric MR prognostic model and visualization with a nomo-
gram. We constructed a composite prognostic model using the radiomic prognostication score and the 
significant clinical predictors. Visualization of this model with a nomogram is shown in Fig. 4. The diagnostic 
performance of MR prognostic models is shown in Table 3. The performance of the composite prognostic model 
(radiomics score + clinical predictors) in the training set had a C-index of 0.74 (95% CI, 0.71–0.77) and showed 
good calibration (Hosmer-Lemeshow test, P > 0.05). This performance was significantly better that that of the 
radiomics score alone (C-index, 0.69 [95% CI, 0.66–0.72]; P = 0.004) and the to clinical predictors (C-index, 0.66 
[95% CI, 0.63–0.69]; P = 0.004).

The trend of good discrimination shown by the prognostic model remained when in was applied to the exter-
nal validation set, with a C-index of 0.70 (95% CI, 0.65–0.72). The model was better able to predict OS than the 
radiomics score or clinical predictors, although the differences were not statistically significant. The model was 
well calibrated in the external validation (Hosmer-Lemeshow test, P > 0.05).

Discussion
In this study, we developed and validated a multiparametric MR radiomics model to predict survival in patients 
with newly diagnosed glioblastoma. The model incorporates six features from the radiomic score and important 
clinical predictors including age, KPS, and extent of surgery. The multiparametric MR radiomic features provided 
better performance than conventional MR imaging or single imaging involving ADC or CBV maps, and showed 
improved prognostic value over a well-established clinical model. Moreover, visualization with a nomogram 
provides an easy-to-use prognostication model and facilitates personalized outcome prediction in patients with 
newly diagnosed glioblastoma.

Our model was designed to use an individualized radiomic score to improve prognostication in patients with 
glioblastoma who will be treated with standard CCRT therapy. Despite studies demonstrating that MR imaging 
data can predict survival in patients with glioblastoma31,32, the use of MR imaging to determine the prognosis in 
the clinic is still very limited. In this study, the radiomic score improved survival prediction over clinical predic-
tors, thereby demonstrating the potential of imaging phenotypes for predicting survivalin patients with newly 
diagnosed glioblastoma. Calculation of the radiomics score provides a tool to estimate survival probability at 

Result category CET1 FLAIR ADC CBV

Individual features
Sum entropy (mean) 
LLH GLCM dist = 3
(P = 0.0003)

Mean absolute deviation LHH 
first order (P = 0.0023)
High gray-level run emphasis 
(std)(P = 0.0003)

Skewness HHH first 
order (P = 0.0008)

Entropy (std) HHL GLCM dist = 1 
(P = 0.0014)
Long run high gray-level emphasis 
(mean) HHH GLRLM (P = 0.0003)

Table 2. Selected radiomic features in the multiparametric MRI imaging and in each MRI. P-value for each 
radiomic feature associated with outcome was calculated using univariate Cox proportional hazards regression. 
Abbreviations: CET1 = contrast-enhanced T1-weighted imaging, FLAIR = fluid-attenuated inversion recovery, 
ADC = apparent diffusion coefficient, CBV = cerebral blood volume. H = high-pass filter, L = low-pass filter, 
GLCM = gray-level co-occurrence matrix, GLRLM = gray-level run-length matrix.

Figure 3. Kaplan-Meier survival curves in the training (A) and validation (B) sets stratified based on the 
radiomic prognostic score. Survival curves demonstrate patients with low- and high-risk computing radiomic 
prognostic score.
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1 and 2-years, and may help to guide patients who undergo surgery followed by standard CCRT treatment and 
adjuvant TMZ therapy2.

The six multiparametric MR radiomic features selected in this study clearly disciminated outcomes in the 
both the training set (C-index, 0.691) and validation set (C-index, 0.617). Furthermore, the application of mul-
tiparametric MR radiomic features resulted in the higher performance than achieved with conventional MR 
imaging. Previous prognostic studies using radiomics analysis relied on conventional MRI, and included spatial 
relationships and voxel intensity information, but did not use ADC and CBV maps, which can reflect the physio-
logical linkage to imaging phenotypes. ADC represents tumor cellularity and CBV represents tumor vascularity, 
and skewness of ADC33 and texture analysis of CBV13 have shown prognostic value in newly diagnosed glioblas-
toma. However, there are concerns that MR-based radiomic features may be vulnerable to changes in acquisition 
parameters, as the tumor margin and signal-to-noise ratio can easily vary across conventional MRI imaging pro-
tocols according to different intensity normalization methods34. Also, different acquisition and processing meth-
ods can result in differences on CBV maps35. This may explain the lower performance on the external validation 
set compared with the training set. ADC maps may be more robust across the different acquisition36 schemes, but 
this issue needs to be further studied.

To date, radiomic studies have rarely been validated on an external cohort, and the generalizability of the stud-
ies has been limited. Our model is strengthened by its validation with an external cohort having heterogeneous 
MR acquisition protocols and scanner manufacturers. Furthermore, the survival prediction using the radiomic 
score extends to the individual patient, which fits with the current trend of personalized medicine. The nomo-
gram method could also act as a decision-making support tool before treatment using the variables age, KPS, 
radiomic prognostication score, and extent of surgery. Our results are in accord with a recent study utilizing a 
nomogram for glioma grading37, which showed that incorporation of a nomogram-derived prediction is useful 
for radiomics analysis.

This study is subject to a number of limitations. First, only a small number of patients were included, espe-
cially in the validation set, which results from the acquisition of DWI and DSC imaging in a single session still 
not being widely available. Second, important molecular changes such as MGMT promoter methylation status 

Figure 4. A nomogram predicting the probability of 1 and 2-year survival in patients with glioblastoma. 
Nomogram includes baseline features including radiomics score, age, and Karnofsky performance score and 
extent of surgery.

Refined Model Single Model

Multiparametric MR radiomics 
score + clinical predictors

Multiparametric MR 
radiomics score

Conventional MR 
radiomics score

Clinical 
predictors

Training set

C-index

0.74 0.69 0.65 0.67

Difference 0.057 0.09 0.075

P-value 0.004 <0.0001 0.004

Validation set

C-index 0.70 0.64 0.56 0.63

Table 3. Comparison of prognostic models combining multi-parametric radiomics features for predicting 
overall survival in the training and the validation set. Note: baseline clinical predictors are age, Karnofsky 
performance score, and extent of surgery. p-value refers to the significance in the difference of C indices 
between the combined model and the single model using “CompareC” in R statistical package.
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were not considered in this analysis, and MGMT promoter methylation status is a strong predictor of benefit from 
TMZ therapy38,39. Third, although we tested the influence of MR radiomics using different scanning parameters at 
3.0 T, testing with a 1.5 T system must be completed before our radiomics approach can be used as a multicenter 
imaging biomarker with scanners of both strengths. Finally, the radiomics approach consists of data-driven anal-
ysis, and thus the biological meaning of the radiomics data is often unclear. This can become an obstacle in clin-
ical practice, along with the necessary labor-intensive image processing and data analysis procedures involved. 
Although the averaged feature extraction time required for each patient was 8 minutes, further efforts to reduce 
the time and simplify the analysis will be valuable if the method is to be incorporated into clinical routine.

In conclusion, the multiparametric MR radiomics nomogram improved prognostication for patients with 
newly diagnosed glioblastoma in comparison with an existing clinical model, both before and after standard 
treatment regimens. This nomogram was validated externally and showed robustness. To confirm its value in 
individual prognostication, further prospective trials performing per-patient predictions and incorporating 
molecular and genomic changes, are required.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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