
1Scientific RepoRtS |         (2020) 10:4809  | https://doi.org/10.1038/s41598-020-60892-9

www.nature.com/scientificreports

integrative analysis of gut 
microbiome and metabolites 
revealed novel mechanisms of 
intestinal Salmonella carriage in 
chicken
Khin K. Z. Mon1, Yuhua Zhu1,2, Ganrea chanthavixay1, colin Kern1 & Huaijun Zhou1*

intestinal carriage of Salmonella enteritidis (Se) in the chicken host serves as a reservoir for transmission 
of Salmonella to humans through the consumption of poultry products. the aim of the current study 
was to examine the three-way interaction that occurred between host metabolites, resident gut 
microbiota and Salmonella following inoculation of Se in two-week-old layer chicks. our results 
revealed an overall alteration in gut microbiome and metabolites in association with Se infection. 
Enriched colonization by different microbial members throughout the course of experimental infection 
highlighted significant fluctuation in the intestinal microbial community in response to Salmonella 
infection. As changes in community membership occurred, there was also subsequent impact on 
differential regulation of interlinked predicted functional activities within the intestinal environment 
dictated by Salmonella-commensal interaction. Alteration in the overall microbial community following 
infection also has a ripple effect on the host regulation of cecum-associated metabolic networks. 
The findings showed that there was differential regulation in many of the metabolites in association 
with Se colonization in chickens. perturbation in metabolic pathways related to arginine and proline 
metabolism as well as tcA cycle was most prominently detected. taken together, the present 
findings provided a starting point in understanding the effect of intestinal Salmonella carriage on the 
microbiome and metabolome of developing young layer chicks.

Salmonella enterica subsp. enterica serovar Enteritidis (SE) infection in the chicken host has a significant impact 
on the poultry industry as it serves as a source of contamination not only to other chickens in co-housing facil-
ities but also due to its high zoonotic potential for the human population through consumption of contami-
nated food. In fact, CDC reported over half a billion eggs were recalled in 2010 due to a nationwide outbreak of 
human foodborne salmonellosis caused by Salmonella Enteritidis contamination in shell eggs (https://www.cdc.
gov/salmonella/2010/shell-eggs-12-2-10.html). In addition, most of the Salmonella serovars (more than 2,500 
serotypes classified) are not host-restricted and have the capability to colonize a wide variety of the animal spe-
cies, which make it even more difficult to detect and eradicate the pathogen1. In the chicken host, depending on 
the immune-competence level of the host as well as infecting Salmonella serovars, three potential disease out-
come can result: acute/fatal, chronic salmonellosis or bacterial clearance2,3. One of the most prevalent causes of 
food-borne associated illness in human is to Salmonella Enteritidis4,5.

The gut of newly hatched chicks is a relatively sterile environment, which provides ample opportunity for 
the incoming pathogen or other microorganisms to colonize and expand freely in the gut6,7. During the early 
post-hatch period, chicks are exposed to external factors such as food, water, and environment that begin the 
transitional developmental stage of the gut microbiota, which undergoes dynamic changes with increased diver-
sity and complexity as host ages8–10. Exposure to SE during the early post-hatch period in chickens is critically 
detrimental to the overall development of the gut microbiota, with reported observations of reduction in micro-
bial diversity as well as expansion in pathogen related members of the microbial community6,11. During the first 
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month of life, the cecum microbial community of the chicken host undergoes dramatic fluctuation with species 
succession and changes12. Mature and strong presence of the core gut microbiota community is a key to devel-
oping stable functional gastrointestinal tracts with the ability to confer protection against potential pathogen 
colonization. Transfer of mature and stable gut microbiota from adult chickens to newly hatched chicks also has 
suggested its effect on improving colonization resistance against SE7. To our knowledge, the potential ability of 
the transitional phase in developing resident gut microbiota of two-week old chicks to confer protection against 
SE colonization in the gut has not yet been explored.

Intestinal carriage of Salmonella Enteritidis in the poultry host does not cause substantive gastrointestinal dis-
ease and is asymptomatic13. In order for pathogens like SE to colonize, survive and persist in the hostile intestinal 
environment of eukaryotic hosts with competing commensal microbiomes, it will either have to alter the host 
molecular & cellular functions or the host will have to reprogram its tolerance strategies towards the pathogen14. 
Maintenance of the overall gut homeostasis environment requires highly comprehensive interplays between the 
host, microbial communities and their metabolites15. Composition of gut-associated metabolites can be re-shaped 
by the interaction that occurred between the host, Salmonella, and resident gut microflora during the infec-
tion16. Therefore, integrative analysis of intestinal microbiota and gut-associated metabolomic response during 
the course of SE infection will provide a more in-depth understanding of the three-way interaction among the 
host, Salmonella and microbial community. This will lead to the development of novel prevention and control 
strategies of SE infection in poultry production. The aim of the current study was to investigate and characterize 
the effect that SE infection has on the resident gut microbiome, microbial functional activities and the metabo-
lome in young layer chicken hosts.

Results
colonization and persistence of Salmonella enteritidis in two-week old layer chicks. After oral 
inoculation of two-week-old layer chicks with SE, no clinical signs were observed in the infected chicks. At the 
early infection time-point of 3 dpi (days post-infection), successful colonization of SE was detected in cecal con-
tent at 4.1 × 106 cfu/g. Subsequently, the bacterial burden in the cecum of the infected chicks remained at a similar 
level throughout the experiment until 21 dpi (Fig. 1). At all measured post-infection time points, SE colonization 
was confined to the cecum with no bacterial load recovered from the systemic organs of spleen and liver. The 
geometric means of the bacterial loads recovered from the cecum were combined from two separate animal trials 
as there was no significant difference detected in the dataset between two trials.

Effect of SE persistent colonization on the resident microbial population. There were a total of 168 
samples combined from two independent animal trials with 130 SE infected chicks and 38 non-infected chicks across 
four time-points. While analyzing the microbiome composition, rarefaction (a subsampling technique) was per-
formed which randomly subsampled each sample to an equal count and assumes that the count of observations for 
each sample is equal (this addresses unequal sequencing depth problem between samples). This allowed the contrast 
of the microbiome ecosystem independent of the differences in sequencing depth or sample size proportion between 
the treatment groups. From the Illumina MiSeq dataset, a total of 2,941,667 reads were generated with 59,762 dif-
ferent Operational Taxonomic Unit (OTUs) identified. Alpha diversity metric, both Chao1 richness and Shannon’s 
diversity index, were measured between the non-infected and SE-infected groups across all time points (Figs. 2A,B, 
3A,B, 4A,B, 5A,B). Comparing the Shannon’s diversity between the two groups at each time point showed no sig-
nificant differences across all infection time points. On the other hand, the Chao1 richness measurement, which 
reflects how many different taxa are present in samples, indicated a significant increase in the SE-infected group 
compared to the non-infected group at all time points except 3dpi. Principle component analysis using beta-diversity 

Figure 1. Persistent high cecal-colonization number of SE across four post-infection time-points. Bacterial 
load recovered from cecal content were plotted and represented as geometric mean + standard errors. All data 
from two separate trials were combined and represented in the graph. Approximately 33 samples contributed to 
the means at each timepoints.
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with weighted UniFrac measured the phylogenetic similarities shared between the communities. Separations in 
the group clustering patterns on the PCoA plot (with corresponding R value reported) over the three week time 
course of infection indicated that more visible separation of clustering between the two groups was observed at 
later timepoints of infection. At 3 dpi, there was no clear separation in the clustering between the two groups (r = 
0.302, p = 0.01). However as the infection time progressed, a separation between two groups became more appar-
ent with a significant increase in r value at 7 dpi (r = 0.522, p = 0.001), 14 dpi (r = 0.697, p = 0.001) and 21 dpi 
(r = 0.717, p = 0.001) (Figs. 2C, 3C, 4C, 5C). To identify differentially abundant taxonomic features at the family 
level, the linear discriminant analysis (LDA) together with effect size measurement (LEfSe) method was utilized. 
LDA score provided by LEfSe identifies the members of the microbial community that were present at a different 
level between non-infected samples and SE-infected samples with Kruskal-Wallis sum rank test. Positive LDA 
scores signified increased abundance of taxonomic features in SE-infected samples while negative LDA scores rep-
resented the microbial biomarkers that were enriched in non-infected samples (Figs. 2D, 3D, 4D, 5D). Enrichment 
of the Lactobacillaceae family was identified in non-infected chicks, whereas Eubacteriaceae, Ruminococcaceae, 
Bacillaceae, Streptococcaceae, and Peptostreptococcaceae were significantly enriched in the SE-infected chicks at 3 
dpi. As the SE infection progressed, a reduced number of enriched discriminative microorganisms in the infected 
host was identified compared to the non-infected host. Only members belonging to the Eubacteriaceae fam-
ily were significantly enriched in the SE-infected group at 7 dpi. Once again, Lactobacillaceae were significantly 
enriched in the non-infected group along with Planococcaceae, Anaeroplasmataceae, and Turicibacteraceae at 
7dpi. For SE-infected chicks at 14dpi, Lachnospiraceae and Streptococcaceae were significantly enriched whereas 
Planococcaceae, Leuconostocaceae, Turicibacteraceae, Rhizobiaceae, and Chromatiaceae were overrepresented in 
the non-infected host. Overrepresentations of six groups were identified at 21 dpi in the non-infected host, which 
included the Anaeroplasmataceae, Peptostreptococcaceae, Enterococcaceae, Turicibacteraceae, Comamonadaceae, 
and Chromatiaceae family. The Ruminococcaceae family was the only group identified to be highly enriched in the 
SE-infected chicks at 21dpi.

Predictive microbial functions based on 16S rdna data (PICRUSt analysis). The Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) tool was applied to infer intes-
tinal microbial functions in association with SE infection. Based on the microbiome profile obtained from 16S 
rRNA data and the available reference genome database, PICRUSt predicts the functional composition of the 
metagenome in host-associated communities17. Differentially abundant functional features between the infected 

Figure 2. Comparison analysis of cecum microbiota profile at 3dpi: (A,B) alpha diversity metrics, (C) beta 
diversity, and (D) LEfSe analysis. (A) Chao1 richness estimate, (B) Shannon’s diversity index, (C) Principal 
coordinates analysis (PCoA) performed with weighted UniFrac distances showed no clear separation 
pattern between two groups. (D) Histogram of the Linear Discriminant Analysis (LDA) score computed for 
differentially abundant taxa (family level) with cut-off LDA score >2.0. Negative LDA score (red) highlight the 
enriched taxa in non-infected chicks and positive LDA score (green) are abundant taxa in SE-infected chicks.
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and the non-infected groups were compared and analyzed by Statistical Analysis of Metagenomic Profiles 
(STAMP)18. Predicted microbial functions were then aligned to the Kyoto Encyclopedia of Genes and Genomes 
(KEGG), level 3, to identify significant differences (p < 0.05) in biological processes and pathways (Fig. 6A–D). 
Functional pathways associated with human diseases were filtered out from the analysis. Only a few of the pre-
dicted functional pathways were differentially regulated at 3dpi and 21dpi timepoints with significant downreg-
ulation in categories mostly related to metabolism (sphingolipid, galactose, inositol phosphate, carbohydrate, 
vitamins & cofactor, beta-alanine) in the SE-infected group. There was more fluctuation in predicted microbial 
functional pathways at 7dpi and 14dpi. A total of thirty-one differentially abundant functional pathways were 
predicted at 7dpi (12 enriched and 19 decreased abundance in the infected chicks compared to the non-infected). 
Specifically, functional pathways that were related to genetic information processing (RNA degradation, ribo-
some, DNA replication, ribosome biogenesis, mismatch repair) as well as nucleotide metabolism (purine, pyrim-
idine) were significantly downregulated in the SE-infected group at 7dpi. At 14 dpi, 20 predicted KEGG pathways 
were differentially represented with seven of them enriched, while thirteen were downregulated in association 
with SE infection. Functional genes associated mostly with general cellular metabolism & biosynthesis and envi-
ronmental processing and signaling (bacterial secretion system, membrane and intracellular structural mole-
cules, signal transduction mechanisms) were more abundant in the non-infected chicks.

Effect of SE persistent colonization on cecum metabolites profile. For metabolomic profiling, 
cecum samples were randomly selected from two independent trials with equal sample sizes from both treatment 
groups across four timepoints (with the exception of one sample at 14 dpi that failed the mass spectrometry run 
and was omitted from further data analysis). A total of 435 metabolites (191 identified and 244 unknown) from 
39 samples were identified from cecal content using Gas Chromatography-Time-of-Flight Mass Spectrometry 
(GC-TOF MS). The metabolites datasets were input into MetaboAnalyst19–24, a web-based analytical pipeline for 
data processing, normalization, statistical analysis and metabolic pathway analysis. Both univariate and multivar-
iate analyses were performed on the metabolites datasets to compare and identify the distinguishing features that 
differentiate the gut-associated metabolites of non-infected chicks and SE-infected chicks across four time-points. 
The univariate analysis with volcano plot method (comparing the fold change to statistical significance) iden-
tified significant accumulation of metabolites in the SE-infected group compared to the non-infected group at 
different timepoints (Table 1). At 3 dpi, a total of 6 significant metabolites were found with 4 identified and 2 
unknown metabolites. A total of 78 significant metabolites (33 known & 45 unknown) were identified at 7dpi, 

Figure 3. Comparison analysis of cecum microbiota profile at 7dpi: (A,B) alpha diversity metrics, (C) beta 
diversity, and (D) LEfSe analysis. (A) Chao1 richness estimate, (B) Shannon’s diversity index, (C) Principal 
coordinates analysis (PCoA) performed with weighted UniFrac distances showed no clear separation 
pattern between two groups. (D) Histogram of the Linear Discriminant Analysis (LDA) score computed for 
differentially abundant taxa (family level) with cut-off LDA score >2.0. Negative LDA score (red) highlight the 
enriched taxa in non-infected chicks and positive LDA score (green) are abundant taxa in SE-infected chicks.
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the most across four time points. Out of the 33 identified metabolites, 8 metabolites were significantly reduced 
while 25 metabolites were significantly increased in the SE-infected group. There was a total of 3 differentially 
expressed metabolites found at 14 dpi (1 known & 2 unknown) with up-regulation of 1 annotated metabolite in 
the SE-infected group. At 21 dpi, 21 metabolites were significantly altered with 9 known and 12 unknown metab-
olites. Only 3 identified metabolites were found accumulated while 6 identified metabolites found to be reduced 
in the SE-infected group compared to the non-infected group.

For multivariate analysis, both PCA and PLS-DA were performed to identify discriminant features associated 
with SE infection. Three-dimensional PCA followed by an unsupervised pattern recognition method was first 
used to detect the intrinsic clusters and to detect possible outliers. The result revealed that the metabolite profile 
between the two groups exhibited an ambiguous separation pattern with some degree of overlap in clustering, 
as seenin the PCA plots (Fig. 7). To further examine the differential abundance pattern of metabolites and to 
identify the potential biomarkers contributing to group separation, PLS-DA24, a supervised method, was per-
formed. A much better group separation pattern that distinguishes the non-infected and SE-infected groups 
was seen at all four time-points in the two-dimensional score plot generated by PLS-DA (Fig. 8A–D). Variance 
in the data among the five component measurements was derived and PLS-DA score plots showing the variance 
in component 1 and component 2 were generated, respectively. To make an assessment on the accuracy of the 
PLS-DA predictive model, as well as the statistical significance of the analysis, leave-one-out cross validation was 
performed with reported accuracy rate, R2 and Q2 value for each of the five components at all four time points 
(Table 2). Across all four time-points, the PLS-DA model on the current data had consistently high accuracy rates 
of >75%, R2 value at ~0.99, and Q2 scores >0.5 (at 7dpi) and close to 0.5 (3dpi, 21 dpi) except at 14 dpi where Q2 
<0.5, suggesting that the PLS-DA model was robust. To identify metabolites that contribute most significantly 
to a separation between the two groups in the PLS-DA plot, Variable Importance in Projection (VIP) scores were 
analyzed where high VIP scores indicated a greater contribution of the metabolites to the group separation. The 
top 15 metabolites at each time-point with their respective VIP scores are shown in (Fig. 8A–D). The Student’s 
t-test was used to identify the top 25 metabolites that were differentially altered between the non-infected and the 
SE-infected groups, which were visualized using a heat map (Fig. 9A–D). This analysis suggested that the majority 
of the metabolites were highly abundant in the SE-infected group at first three time points of infection (3 dpi, 7 
dpi, and 14 dpi). However, at 21 dpi a reversed pattern in metabolite abundance was found with only a few metab-
olites being more abundant in the SE-infected group compared to the non-infected group.

Figure 4. Comparison analysis of cecum microbiota profile at 14dpi: (A,B) alpha diversity metrics, (C) beta 
diversity, and (D) LEfSe analysis. (A) Chao1 richness estimate, (B) Shannon’s diversity index, (C) Principal 
coordinates analysis (PCoA) performed with weighted UniFrac distances showed no clear separation 
pattern between two groups. (D) Histogram of the Linear Discriminant Analysis (LDA) score computed for 
differentially abundant taxa (family level) with cut-off LDA score >2.0. Negative LDA score (red) highlight the 
enriched taxa in non-infected chicks and positive LDA score (green) are abundant taxa in SE-infected chicks.
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Differential regulation of metabolic pathway analysis associated with Se infection. The 
Significance Analysis for Microarrays (SAM) method24 was utilized to identify the most discriminant biomarker 
metabolites associated with the SE infected state, using q-value ≤ 0.1. Collectively, significant metabolites iden-
tified from the univariate analysis, PLS-DA and SAM were then screened and selected through a statistical sig-
nificance criteria of FDR adjusted p-value <0.1, fold change threshold >1.5, q-value <0.1, and PLS-DA VIP 
score >1.0 for pathway analysis. A list of selected biomarker metabolites with their respective statistical values 
is presented in Table 2. Un-annotated metabolites were omitted from the list for further downstream pathway 
analysis. Based on the significant known biomarkers that matched the database, metabolic pathway enrichment 
analysis was performed to identify the potential pathways that were perturbed during SE infection. Up-regulation 
of 11 potential metabolic pathways were identified in response to SE infection (Fig. 10). Out of the 11 pathways 
identified, arginine and proline metabolism were the most significantly enriched with –log p-value >2 and path-
way impact >0.06. Likewise, potential downregulation of metabolic pathways was determined using biomarker 
metabolites that were significantly reduced in the SE-infected group compared to the non-infected group. A total 
of six potential metabolic pathways were down-regulated in response to SE infection. Out of them citrate cycle 
(TCA cycle) was most significantly perturbed with –log p-value >2 and pathway impact >0.06 (Fig. 11).

Discussion
Immediately after hatch, exposure to exogenous microorganisms in the environment begins the assembly and 
developing phase of the gut microbiota in the chick host10. The microbial community then begins to diverge and 
its composition (both diversity and abundance of each species) fluctuates as the chick ages8,9. Two-week old chicks 
presented a unique infection model as it helped to address the question of whether the transitional developmen-
tal stage of the gut microbiota in chicken hosts provide a protective role in gut colonization resistance against 
Salmonella. Despite high doses of SE inoculum used in the study, we didn’t observe a systemic infection phenotype 
in our model and bacterial colonization was exclusively localized in the cecum of the infected chicks. In the cur-
rent study, the intricate interplay at the intestinal level between Salmonella, host and resident gut microbiota was 
examined through integrative analysis of the microbiome, predictive metagenome, and gut-associated metabolites.

We had previously characterized the structural changes that occur in the gut microbiota of one-day old 
chicks as a direct consequences of SE infection. Findings from our previous study showed that inoculum of SE 
in newly hatched chicks significantly altered the cecum microbiota with an overall reduction in diversity and 

Figure 5. Comparison analysis of cecum microbiota profile at 21dpi: (A,B) alpha diversity metrics, (C) beta 
diversity, and (D) LEfSe analysis. (A) Chao1 richness estimate, (B) Shannon’s diversity index, (C) Principal 
coordinates analysis (PCoA) performed with weighted UniFrac distances showed no clear separation 
pattern between two groups. (D) Histogram of the Linear Discriminant Analysis (LDA) score computed for 
differentially abundant taxa (family level) with cut-off LDA score >2.0. Negative LDA score (red) highlight the 
enriched taxa in non-infected chicks and positive LDA score (green) are abundant taxa in SE-infected chicks.
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expansion in specific members of the community: the Enterobacteriaceae family11. With the current two-week 
old infection model, changes in the gut microbiome community were less substantial in comparison, with an 
absence of a specific species dominance in the community linked to SE-infected status. This was supported by the 
Shannon’s diversity index data from all four post-infection timepoints (no significant difference) suggesting that 
distributions of major microbial members of the community between the SE-infected and non-infected groups 
were similar. On the other hand, a spike in species richness (Chao1 index) associated with SE infection across 
three time-points (7dpi, 14dpi, 21dpi) in this study indicates increased colonization by minority members of the 
community following the infection. In the current model, fluctuation in the microbiome community appears to 
occur independently without affecting the Salmonella colonization in the intestine. Differences in the microbial 
perturbation signature between the one-day old and two-week old infection model might be related to both the 
gut-associated immune system and the microbiota developmental stage of the host.

Metagenome functional prediction associated with the chicken gut microbiome also highlighted differential 
regulation in various pathways between the non-infected and the infected groups. The functional changes occur-
ring at the earliest (3dpi) and latest (21dpi) timepoint of infection were much fewer in comparison to significant 
fluctuation occurring at the intermediate stages of the experimental infection timeline (7dpi and 14dpi). Lack 
of drastic functional gene differences at the late timepoint of SE infection (21dpi) might indicate the microbial 
community between the two groups adopted similar metagenomic patterns despite exhibiting taxonomic differ-
ences. Reduced activity in genetic information processing and nucleotide metabolism (purine & pyrimidine) in 
the SE-infected chickens might suggest a scale back in the maintenance of microbial cellular and intestinal activity 
at 7dpi. Functional genes associated with ribosomal activity were also more abundant in the non-infected group 
than the SE-infected group. Such decrease in ribosomal activity might suggest that Salmonella infection poten-
tially interfere with key protein biosynthesis processes of intestinal microbes. Similarly, the taxonomic changes 
at 14dpi were also accompanied by an alteration in the predictive metagenomic profile of the SE-infected chicks. 
There was downregulation in bacterial secretion system, signal transduction mechanism and membrane intra-
cellular structural molecules pointing towards a possible downshift in intestinal microbes’ ability for adhesion 
and attachment of eukaryotic cells. This may provide a plausible explanation in terms of microbial membership 
fluctuation within the community during the experimental time course of infection.

Figure 6. PICRUSt metagenome inference analysis based on 16S rRNA dataset: (A) 3dpi, (B) 7dpi, (C) 14dpi, 
and (D) 21dpi. (A–D) Prediction of significant KEGG pathways (level 3) that were differentially regulated in 
SE-infected group compared to non-infected group (p < 0.05). Mean proportion of functional pathways is 
illustrated with bar plots and dot plots indicate the differences in mean proportions between two groups based 
on p-values obtained from two-sided Welch’s t-test.
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Persistence of Salmonella intestinal colonization in birds trigger the host to undergoes immunometabolic 
reprogramming in an effort to limit the damage caused by the Salmonella without affecting or reducing the bac-
terial load in the poultry host14,25,26. Overall cecum-associated metabolomic dataset as well as our unpublished 
RNA-seq data on the cecal tonsil from the same birds provided evidence that there are changes in host response 
to SE infection in terms of both global gene expression pattern and metabolites profile. The most significant 
numbers of differentially expressed metabolites were detected at 7dpi. Specifically, up-regulation of arginine and 
proline metabolism was detected in association with SE infection. Unpublished cecal tonsil RNA-seq data also 
showed the upregulation of arginine associated pathways at 3dpi, confirming and validating the metabolites path-
way analysis. Arginine availability in the host, as well as arginine utilization strategies by the host, largely contrib-
ute to the regulation of the host defense mechanism and outcome of the disease during the infection27. Arginine 
is a common amino acid substrate that is competed for by both arginase for ornithine & proline synthesis and 
inducible nitric oxide synthase (iNOS) for nitric oxide production28. Generation of nitric oxide (NO) by iNOS 
during Salmonella infection is one of the key innate immune responses to induce inflammation as part of the host 
defense mechanism29,30. The fate of the pathogen survival and replication within the host is dependent on the 

DPI Metabolites

Volcano plot SAM PLS-DA

FC log2(FC) FDR adjusted p-value q-value VIP score

3 DPI

hexadecylglycerol NIST 0.353 −1.501 0.051 0.069 2.321

Isoribose 0.072 −3.802 0.073 0.080 2.219

octadecylglycerol 0.202 −2.306 0.073 0.080 2.215

5-aminovaleric acid 0.031 −5.016 0.077 0.091 2.194

7 DPI

citric acid 8.581 3.101 0.009 0.018 1.817

uric acid 5.561 2.476 0.005 0.016 1.866

adipic acid 3.203 1.679 0.046 0.037 1.608

2-ketoisocaproic acid 2.844 1.508 0.028 0.027 1.712

O-acetylserine 0.621 −0.688 0.046 0.037 1.609

3,4-dihydroxycinnamic acid 0.597 −0.745 0.019 0.022 1.757

2-hydroxy-2-methylbutanoic acid 0.596 −0.746 0.068 0.049 1.552

homocystine 0.523 −0.934 0.046 0.037 1.613

pyridoxine 0.401 −1.320 0.028 0.027 1.705

alanine-alanine 0.386 −1.373 0.074 0.052 1.532

xylonolactone NIST 0.383 −1.384 0.079 0.056 1.509

galactinol 0.379 −1.399 0.064 0.047 1.560

glutamine 0.331 −1.597 0.110 0.076 1.434

2-hydroxyglutaric acid 0.314 −1.671 0.104 0.071 1.469

D-erythro-sphingosine 0.306 −1.710 0.074 0.052 1.523

Daidzein 0.271 −1.882 0.051 0.041 1.586

3-hydroxybenzoic acid 0.251 −1.995 0.030 0.028 1.694

3,4-dihydroxybenzoic acid 0.227 −2.141 0.045 0.036 1.629

2-isopropylmalic acid 0.201 −2.315 0.031 0.028 1.693

nicotinamide 0.196 −2.354 0.005 0.016 1.856

putrescine 0.179 −2.484 0.005 0.016 1.868

adenosine 0.151 −2.727 0.061 0.045 1.604

5-hydroxy-3-indoleacetic acid 0.140 −2.841 0.076 0.054 1.528

4-hydroxybenzoate 0.123 −3.029 0.046 0.037 1.614

Inosine 0.104 −3.268 0.038 0.030 1.652

beta-glutamic acid 0.095 −3.394 0.104 0.071 1.458

Isoribose 0.077 −3.694 0.018 0.022 1.764

3,4-dihydroxyphenylacetic acid 0.050 −4.309 0.110 0.076 1.428

5-aminovaleric acid 0.022 −5.481 0.000 0.014 1.962

14 DPI fructose-6-phosphate 0.328 −1.608 0.109 0.091 2.185

21 DPI

2-hydroxyvaleric acid 1.805 0.852 0.052 0.049 1.999

2-hydroxy-2-methylbutanoic acid 1.769 0.823 0.112 0.090 1.932

4-hydroxyphenylacetic acid 6.667 2.737 0.136 0.098 1.804

octadecanol 2.874 1.523 0.136 0.099 1.798

pentadecanoic acid 2.857 1.515 0.136 0.097 1.845

O-acetylserine 3.161 1.660 0.140 0.103 1.798

Table 1. List of statistically significant biomarker metabolites selected from combined analysis of volcano 
plot analysis (fold change 1.5 & FDR adjusted p-value ≤ 0.1 from t-test), PLS-DA (VIP score >1.0), and SAM 
(q-value ≤ 0.1) with its respective statistical values.
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regulation of iNOS expression and subsequently NO production. Inhibition or down-regulation of iNOS has been 
shown to enhance intracellular proliferation and survival of Salmonella in mice models31,32. NO production can 
be negatively regulated by the enzymatic action of arginase through its competition for the common substrate, 
arginine. In our current model, arginine availability in the host appeared to be channeled towards the enzymatic 
action of arginase rather than iNOS to produce ornithine, which in turn serves as a precursor for the synthesis 
of proline, thereby essentially suppressing NO production level. Therefore, we speculate that up-regulation of 
arginase-associated pathways (arginine and proline metabolism) in the current model could have been part of 
the host metabolic adjustment strategies to dampen the intestinal inflammation during Salmonella infection. 
Consequently, the resulting metabolic adjustment of the host could offer protection for Salmonella colonization 
in the otherwise hostile environment of the gut.

In addition, the analysis of the metabolites revealed reduced citrate (TCA) cycle activity in the SE-infected 
group compared to the non-infected group. Inhibition or decreased activity of TCA was supported by a decreased 
amount of citrate acid metabolites in the cecal content of the infected chicks at 7dpi in our current study. 
Decreased TCA cycle activity revealed a change in host cellular energy metabolism during Salmonella infection. 
The exact mechanism by which the reduction of host TCA cycle activity is related in response to Salmonella 
infection in the gut is unknown. However, there had been some insights gained from studies related to the innate 
immunity metabolic reprogramming strategies. Upon activation by the invading pathogen components like 
lipopolysaccharide (LPS) from gram-negative bacteria, innate immune cells have been reported to undergo a 
metabolic switch from TCA cycle to aerobic glycolysis which results in overall decreased TCA cycle activity33. 
Therefore, innate immune activation triggered by LPS stimuli from SE might have contributed to the alteration in 
host metabolic response during SE infection.

In summary, a microbial shift in two-week old SE-infected hosts was directed towards the enrichment of 
non-specific minority members of the community in the cecum. As changes in microbial community mem-
bership occurred, there was subsequent impact on the differential regulation of the inferred metagenome func-
tional activities of the intestinal microbes. Metabolic adjustment strategies adapted by the host in response to 
SE infection also resulted in significant alteration in cecum-associated metabolites and its associated pathways. 
Taken together, the current study provided an important novel insight into the gut microbiome’s and metabolites’ 

Figure 7. Unsupervised pattern recognition method, 3D Principal Component Analysis (PCA) plot was 
generated with normalized sample peak intensities across four time-points to detect the intrinsic cluster 
between two treatment groups as well as to identify possible outliers within group: (A) 3dpi, (B) 7dpi, (C) 14dpi, 
and (D) 21dpi.
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contribution to intestinal Salmonella carriage in chicken. Furthermore, these results have laid a solid founda-
tion for further investigation of the underlying molecular mechanism of SE colonization and persistence in the 
chicken.

Materials and Methods
Animal experiments. The highly inbred genetic line UCD003, layer chicks from the University of 
California, Davis’s poultry farm, was utilized in the current study. Immediately following hatch, chicks were 
transferred to housing chambers with pine shavings on a concrete floor in a temperature-controlled environ-
ment. Chicks were housed in two separate chambers with identical environmental conditions to separate the 
control group from infected chicks. The chicks were given ad libitum access to water and non-medicated com-
mercial feed. Before inoculation, all chicks were clocal swabbed to confirm the absence of SE. At two weeks of age, 
chicks were inoculated (via oral gavage) with 109 colony forming units (c.f.u) of S. Enteritidis (TN2) kanamycin 
and carbenicillin-resistant strain (kindly provided by Dr. Andreas Baumler at University of California, Davis) 
while control chicks received phosphate buffered saline (PBS). After infection, the inoculum was checked to 

Figure 8. PLS-DA score plots for comparisons of the metabolites profiles in the SE-infected (green) and the 
non-infected (red) groups with top 15 important metabolites selected on the basis of VIP score. High VIP score 
indicates greater contribution of the metabolites to the group separation. (A) 3dpi, (B) 7dpi, (C) 14dpi, and (D) 
21dpi.

DPI Measure 1 comps
2 
comps

3 
comps

4 
comps

5 
comps

3 DPI

Accuracy 0.6 0.8 0.8 0.8 0.8

R2 0.852 0.975 0.995 0.999 0.999

Q2 −0.047 0.430 0.499 0.498 0.450*

7 DPI

Accuracy 1.0 1.0 1.0 1.0 1.0

R2 0.956 0.995 0.999 1.0 1.0

Q2 0.703 0.778 0.783 0.789 0.790*

14 DPI

Accuracy 0.778 0.667 0.778 0.778 0.778

R2 0.952 0.998 1.0 1.0 1.0

Q2 0.244 0.313 0.336 0.342 0.342*

21 DPI

Accuracy 0.8 0.8 0.8 0.7 0.7

R2 0.918 0.981 0.998 1.0 1.0

Q2 0.412 0.465* 0.458 0.451 0.448

Table 2. Result of leave-one-out cross validation for PLS-DA model with reported accuracy rate, R2 and Q2 
value for each of the five components across four timepoints. Accuracy rate >75%, R2 value = 1, Q2 scores >0.5 
confirm the significant & predictive power of the PLS-DA model.

https://doi.org/10.1038/s41598-020-60892-9


1 1Scientific RepoRtS |         (2020) 10:4809  | https://doi.org/10.1038/s41598-020-60892-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

confirm the dosage amount through serial dilution plating method. At four time points of 3, 7, 14, and 21 days 
post infection (dpi), chicks were euthanized with carbon dioxide asphyxiation. Cecal contents were collected for 
enumeration of bacterial numbers, 16S rRNA gene sequencing and metabolite analysis. Salmonella Enteritidis 
numbers from cecal content, spleen and liver were determined by plating serial ten-fold dilution on MacConkey 
agar containing both kanamycin & carbenicillin antibiotics. The geometric mean of the SE bacterial counts was 
reported as c.f.u. per gram of the cecal content, spleen, and liver. Data collected from two separate repeated trials 
were combined together for microbiota analysis. For the metabolite profile, cecal content collected from five rep-
resentative control chicks and five SE-infected chicks at each time point (except on 14dpi where one failed sample 
from SE-infected group was excluded for analysis) were submitted for Gas Chromatography-Mass Spectrometry 
(GC-MS) analysis. All animal experiments performed in the current study were approved by the Institutional 
Animal Care and Use Committees at the University of California, Davis (IACUC#19272). All experiments in this 
study were performed in accordance with IACUC guidelines and regulations.

Figure 9. Heat map of the top 25 most significant metabolites from student t-test’s analysis that distinguished 
between the non-infected and the SE-infected groups (A) 3dpi, (B) 7dpi, (C) 14dpi, and (D) 21dpi.

Figure 10. Metabolic pathway analysis performed with up-regulated biomarkers metabolites from all four 
time-points that matched the Gallus gallus (Chicken) database. Larger circles, higher and closer to Y-axis 
showed higher impact of the pathway and color ranging from yellow to red mean metabolites from input list are 
involved in the pathway with different level of significance (Red = higher significance). Arginine and proline 
metabolism most significantly enriched with –log p-value >2 and pathway impact >0.06.
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Sample preparation for 16S rRNA gene sequencing and metabolic profiling. Approximately 150 mg 
of cecal content harvested were first subjected to 5 minutes of bead beating step at maximum speed setting in the 
Bullet Blender Storm 24 (Next Advance Inc, Averill Park, NY). DNA was then isolated using the Zymo fecal DNA 
miniprep kit (Zymo Research, Irvine, CA) in accordance with manufacturer’s instructions. DNA concentrations 
were analyzed on Nanodrop and then stored at −20 °C until further use. Isolated DNA was then used as a template 
in PCR amplification for construction of 16S rDNA libraries. V4 hypervariable regions of the 16S rRNA gene were 
targeted for amplification with forward primer, F515 (5′NNNNNNNNGTGTGCCAGCMGCCGCGGTAA3′) and 
reverse primer, R806 (5′GGACTACHVGGGTWTCTAAT3′) (primers kindly provided by Dr. Elizabeth Maga). 
The V4 region was selected for its reported high classification consistency in microbial profiling studies34,35. The 
forward primer contained the linker region (GT) as well as a unique 8 base pair barcode sequence (N) for each 
of the individual samples to be sequenced. PCR amplification was performed in 25 µl reactions containing 12.5 µl 
of 2x GoTaq Green Master Mix (Promega, Madison, WI, USA), 0.5 µl of each of the forward and reverse primers, 
2 µl of DNA template and 9.5 µl nuclease-free water. The PCR program consisted of the following steps: initial 
denaturation at 94 °C for 3 minutes, 35 cycles at 94 °C for 45 sec, 50 °C for 1 minute, 72 °C for 1 minute 30 second 
and final extension step at 72 °C for 10 minutes. Visual inspection of the PCR products was performed on a 1% 
agarose gel stained with SYBR safe (Life Technologies, CA, USA). All samples were amplified in triplicate and 
combined prior to PCR purification with QIAquick PCR Purification kit (Qiagen, Valencia, CA, USA) following 
the manufacturer’s instruction. Purified products were pooled together in equal concentration for submission to 
the UC Davis Genome Center, DNA Technology Core Facility. The 16S rDNA libraries were then sequenced for 
250 bp paired-end reads on the Illumina MiSeq platform. The raw sequencing data is available at the European 
Nucleotide Archive (http://www.ebi.ac.uk/ena) under the EBI accession: ERP108716. For the metabolic profiling, 
frozen samples of the cecal content were submitted to the NIH West Coast Metabolomic Center, UC Davis.

Microbiome data processing and analysis. The QIIME version 1.9.136 pipeline was used to de-multiplexed, 
quality-filter and analyze the multiplexed sequence reads obtained as described previously11. Briefly, OTU were 
clustered against GreenGenes 16S rRNA reference database version 13_8 at 97% identity. Both alpha (Chao1 rich-
ness & Shannon’s diversity) and beta diversity metrics (weighted uniFrac PCoA plot) were used to analyze the 
overall microbiota profile. Alpha diversity metrics were evaluated with Mann-Whitney U test while ANOISM with 
999 permutations was performed with reported r and p value for beta-diversity with weighted unifrac PCoA36. 
Analysis of the relative abundance of the microbial community at family phylogenetic level was performed with lin-
ear discriminant analysis (LDA) effect size analysis (LEfSe) in the Galaxy framework37,38. The LEfSe built-in work-
flow performs three steps to detect features that are statistically significant among the biological class of interest. It 
first uses the non-parametric Kruskal-Wallis sum rank test to analyze all features and detect significant differential 
abundance features in classes of interest. Next, Wilcoxon rank-sum test performs pairwise comparison between 
the subclasses within different classes to determine whether it follows the class level trend. As the last step, Linear 
Discriminant Analysis (LDA) is performed to estimate the effect size of differentially abundant features with respect 
to classes, which are consistent with the subclass grouping within classes and ranked them accordingly39. The alpha 
value of 0.05 and an effect size threshold of 2 were used to identify the significant biomarkers in each group.

PICRUSt functional metagenomic prediction. Metagenomic functional features of the microbial com-
munity were predicted using phylogenetic investigation communities by reconstruction of unobserved states 
(PICRUSt)17. Closed-reference OTU picks from QIIME were aligned to search for 16S sequences matching against 
the green genes reference OTUs at 97% identity. Generated biom file was normalized by dividing each OTU by 

Figure 11. Metabolic pathway analysis performed with down-regulated biomarkers metabolites from all four 
time-points that matched the Gallus gallus (Chicken) database. Larger circles, higher and closer to Y-axis 
showed higher impact of the pathway and color ranging from yellow to red mean metabolites from input list 
are involved in the pathway with different level of significance (Red = higher significance). Citrate cycle (TCA 
cycle) was most significantly perturbed with –log p-value >2 and pathway impact >0.06.
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known/predicted 16S copy number abundance and used for metagenomic prediction with PICRUSt where Kyoto 
Encyclopedia of Genes and Genomes (KEGG) genes & pathway abundance for each individual sample were gener-
ated. Data were then analyzed with Statistical Analysis of Taxonomic and Functional Profiles (STAMP) version 2.1.318. 
Differentially represented functional pathways (level 3 in hierarchy, representing KEGG pathways) between the two 
conditions (presented in extended error bar plots) were analyzed with two-sided Welch’s t-test on every pair of means 
where p <0.05 was considered significant. Confidence intervals of 95% were obtained by inverting the Welch’s tests.

Metabolite data analysis. Metabolites data sets from a total of 39 samples (20 non-infected and 19 
SE-infected chicks) were analyzed with MetaboAnalyst 3.019–24 (http://www.metaboanalyst.ca/faces/home.xhtml) 
for statistical analysis. Peak intensity raw data set were filtered first with interquantile range. Data were then log 
transformed and normalized by auto scaling. Both univariate and multivariate analyses were performed on the 
data set to differentiate the metabolite profiles of non-infected and SE-infected group as well as to identify poten-
tial biomarkers associated with SE-infection. For univariate analysis, significant metabolites that were differentially 
represented in the two groups were analyzed with volcano plots that incorporated both fold change threshold of 
1.5 and t-test, with an FDR adjusted p-value ≤ 0.1. Principal component analysis (PCA) was performed with unsu-
pervised multivariate analysis. For supervised multivariate analysis, partial-least squares discrimination analysis 
(PLS-DA) was performed and validated using R2 (close to 1) and Q2 (>0.5) threshold value based on leave-one-out 
cross validation. Higher score of both R2 (closer to 1) and Q2 >0.5 were used to confirm the significant & pre-
dictive power of the PLS-DA model. Contribution of the biomarker metabolites to the group separation in the 
PLS-DA model was ranked using the variable importance in projection (VIP) score >1. Hierarchical clustering 
with heatmap analysis based on student t-test was used to identify differential expression of the top 25 metabo-
lites between the two conditions. Significance analysis for microarrays (SAM) method (designed to address the 
false discovery rate, FDR) was utilized to identify the top discriminant metabolites with q-value ≤ 0.1. Candidate 
biomarker metabolites were then selected for differential regulation of metabolite pathway analysis using the com-
bined statistical criteria of FDR adjusted p-value <0.1 & fold change threshold of 1.5 (Volcano plot analysis), 
q-value ≤ 0.1 (SAM), and VIP score >1.0 (PLSDA). Up-regulation of identified biomarker metabolites associated 
with SE-infection were mapped to the gallus gallus (chicken) pathway library with pathway analysis algorithms of 
hypergeometric test and relative-betweenness centrality (pathway topology analysis). Likewise, down-regulation 
of the pathway with an associated reduced level of identified metabolites were performed in the same manner.
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