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Reconstructing temporal and
spatial dynamics from single-cell
pseudotime using prior knowledge
of real scale cell densities
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& Frank Allgéwer-3*

Modern cytometry methods allow collecting complex, multi-dimensional data sets from heterogeneous
cell populations at single-cell resolution. While methods exist to describe the progression and order

of cellular processes from snapshots of such populations, these descriptions are limited to arbitrary
pseudotime scales. Here we describe MAPIT, an universal transformation method that recovers real-
time dynamics of cellular processes from pseudotime scales by utilising knowledge of the distributions
on the real scales. As use cases, we applied MAPIT to two prominent problems in the flow-cytometric
analysis of heterogeneous cell populations: (1) recovering the kinetics of cell cycle progression in
unsynchronised and thus unperturbed cell populations, and (2) recovering the spatial arrangement of
cells within multi-cellular spheroids prior to spheroid dissociation for cytometric analysis. Since MAPIiT
provides a theoretic basis for the relation of pseudotime values to real temporal and spatial scales, it
can be used broadly in the analysis of cellular processes with snapshot data from heterogeneous cell
populations.

Quantitative single-cell measurements with ten to several thousands of cellular components in large populations
provide new opportunities and challenges to study biological processes!~>. Since cells within heterogeneous pop-
ulations span all stages and transitions of a biological process of interest and hence also the dynamics of cellular
components, the temporal evolution of cellular signalling events can be inferred from static snapshot data. Several
algorithms, such as Wanderlust, Monocle or diffusion pseudotime (DPT), designed to reconstruct cell trajecto-
ries, order single-cell data in pseudotime - a quantitative measure of progress through a biological process*~.
However, these pseudotime trajectories may deviate substantially from the real-time trajectory!®!!. Alternative
approaches attempting to transfer pseudotime to real-time analysis are technically restricted, e.g. limited to cell
cycle analysis'®'%, require specific source data, such as single-cell RNA-seq data'4, or require computationally
expensive estimations of non-identifiable functions®!>. A more detailed discussion on attempts to transform
pseudotime scales is provided in the Supplementary Information.

Here, we developed a measure-preserving transformation of pseudotime into real-time, a MAP of pseudotime
into Time, in short MAPIT'®. MAPiT generalises approaches based on ergodic principles to provide a simple and
at the same time universal method to obtain true scale dynamics from pseudotime ordering (Fig. 1). The method
makes use of pseudotemporal ordering obtained from trajectory inference algorithms and hence is reliant on the
correctness of the provided cell order.

Results

Common pseudotime algorithms order cells on a pseudotime scale based on a distance metric in the data space,
and this metric differs between algorithms'”. Pseudotime values furthermore strongly depend on the measured
cellular components. MAPIT resolves the arbitrariness of pseudotime by nonlinearly transforming pseudotime
to the true scale of the process. This is based on a “measure-preserving transformation” which ensures that the

Yinstitute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany. 2Institute of Cell
Biology and Immunology, University of Stuttgart, Stuttgart, Germany. 3Stuttgart Research Center Systems Biology,
University of Stuttgart, Stuttgart, Germany. “These authors contributed equally: Markus Rehm and Frank Allgéwer.
*email: karsten.kuritz@ist.uni-stuttgart.de

SCIENTIFIC REPORTS | (2020) 10:3619 | https://doi.org/10.1038/s41598-020-60400-z


https://doi.org/10.1038/s41598-020-60400-z
mailto:karsten.kuritz@ist.uni-stuttgart.de

www.nature.com/scientificreports/

Marker 2

Experiment b Pseudotime analysis c Real-time analysis
y y
> > = uniform
B B cell cycle
5 5 spheroid
o o
S O | An=s
Pseudotime f—— (s5)
Cytometry sc-qPCR, algorithms MAPIT DSOS ‘ﬁﬁﬁ
scRNA Seq, . ﬁ Pseudotime ﬁ Real-time
-Wanderlust, Transformation
-DPT, ... —
: g rs)= PN (Puls) 2
<< =<
<] ]
= =
Marker 1 Pseudotime Real-time

Figure 1. MAPiT deduces process dynamics from single-cell snapshot data. (a) Cells from single-cell
experiments of a heterogeneous population are ordered on a process manifold in dataspace by pseudotime
algorithms. (b) Cell density and marker trajectories on pseudotime scale vary with the distance measure used by
the pseudotime algorithm and real temporal trajectories cannot be deduced. Cell density, order and trajectories
for two markers on pseudotime scale are shown for an exemplary process. As an example pseudotime position
of the fifth displayed cell s; and associated area under the cell density curve Ay _; are indicated in gray. (c)
Nonlinear transformation of pseudotime scale recovers true scale dynamics. MAPiT uses prior knowledge of
cell densities on the real scale to transform pseudotime to real time by enforcing equality for the area under the
density curves at corresponding points on both scales (gray areas). Cell order and marker trajectories are shown
for an exemplary uniform distribution on the real scale. Positions of cells across the cell cycle (dashed, orange)
or decreasing number of cells towards the centre of spheroid cultures (dotted, yellow) are other real scale
densities.

area under the curve is conserved when transforming a probability distribution (Materials and Methods). The
transformation requires knowledge of the distributions (or cumulative distributions) of cells on both scales (pseu-
dotime and desired scale). Pseudotime values from experimental data can be used to calculate the distribution on
the pseudotime scale. In contrast, a priori knowledge of the process of interest must be used to derive the distri-
bution of cells on the desired real-time scale, as we demonstrate in the following examples.

We first applied MAPIT to analyse cell cycle progression. To this end, we used a static flow cytometric meas-
urement of DNA and mAG-hGeminin (1-110), a fluorescent ubiquitination-based cell cycle indicator (Fig. 2a)'>8,
in unperturbed NCI-H460/geminin cells to reconstruct the kinetics of geminin. The pseudotime obtained with
the markers (Fig. 2b) was mapped to the temporal scale on which the the cell cycle progresses, namely the age of
a cell (time since cytokinesis). To achieve this, MAPiT derives real-time trajectories from the steady state age
distribution'>>!? (Fig. 2¢). Temporal trajectories of geminin obtained with MAPIT corresponded excellently to
geminin kinetics obtained by single cell time-lapse microscopy (Fig. 2d), as exemplified by the boost in geminin
intensity at approximately 7h, indicating the onset of S-phase. This result therefore highlights the temporal accu-
racy of the real-time scale obtained by MAPIT for cell cycle analysis based on snapshot flow cytometric data.

Multicellular spheroids grown from cancer cells are widely used as avascular tumour models?*-*2. As a conse-
quence of nutrient and oxygen deprivation within the spheroids, proliferative cells begin to enclose inner layers
of quiescent and necrotic cells, resembling a zonation found in solid tumours**?*. Current routine methods to
study spatial distributions and patterns of cellular markers are restricted to intact spheroids, technically cumber-
some and of limited throughput, since they rely on sequential spheroid fixation, sectioning and imaging proce-
dures. By dissociating tumour spheroids for single cell experiments, spatial information across which cell-to-cell
heterogeneities in tumour cells spheroids manifest is lost. We applied MAPiT to study if we can recover spatial
scales from flow cytometric measurements of dissociated spheroids in a reliable and robust manner. For our stud-
ies, we grew spheroids of HCT116 cells to diameters of approximately 500 um. Besides standard light scatter
readouts like forward scatter (FSC), indicating cell volume, cells were in addition stained for DNA as measure for
cell cycle stage, RNA as indicator for transcriptional activity, Ki-67 as marker for proliferation and p27 as marker
for quiescence (Fig. 3). To apply MAPIT to these data, the distribution of cells on the spatial scale had to be taken
into account, which in the case of radial symmetry of spheroids is the density of cells in relation to the distance
from the spheroid surface (Figs. 4c, S2). In brief, the volume of a spherical shell on the spheroid surface, normal-
ised to the volume of the whole sphere equals the cumulative distribution of cells in relation to the distance from
the surface. A more detailed discussion on spheroid volume and related growth rate is provided in the
Supplementary Information.

We first validated MAPiT results against images of stained spheroid sections. Following the workflow depicted
in Fig. 3, we prepared Ki-67 distributions from 11-day old HCT116 spheroids with MAPiT. Spheroids from the
same culture were sliced and stained for Ki-67 as described in Materials and Methods (Fig. 4a). We then quanti-
fied transversal signal intensities in the spheroid sections (Fig. 4b). MAPIT indeed recovered the spatial positions
of single cells, with the reconstructed Ki-67 distribution correlating excellently with intensity profiles obtained
from confocal microscopy of spheroid sections stained for Ki-67 (Fig. 4d).
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Figure 2. MAPIT recovers cell cycle dynamics. (a) Schematic of the cell cycle with geminin expression, a
marker for cell cycle progression, starting at the onset of S phase. (b) DNA and geminin signals from an
unsynchronised population of NCI-H460/geminin cells were used to obtain a pseudotemporal ordering of the
population. (¢) MAPIT employs steady state age distribution of unsynchronised cell populations with cell cycle
length T'. (d) Reconstructed temporal profile of the marginal geminin signal density p(y|x) obtained with
MAPIT and single-cell trajectories from time-lapse imaging correlate strongly. The geminin intensity, spanning
several orders of magnitude, exceeds the detection range in the imaging experiment such that G1 phase cells
had signals below the detection limit.

Spheroid analysis workflow
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Figure 3. MAPiT recovers spatial positions of cells within spheroids from flow cytometric data. Illustration

of spheroid analysis workflow. Individual cells derived from dissociated spheroids were analysed for different
markers by flow cytometry. Spatial information can be recovered by applying MAPiT to pseudotime trajectories
of measured markers.
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Figure 4. MAPiT derived Ki-67 distribution in an 11-day-old HCT116 cell spheroid. (a) Representative
spheroid cross-section stained for Ki-67. Rectangles display cross sectional signal intensities for comparison
with MAPIT. (b) Transversal quantified Ki-67 intensities in spheroid sections (rectangles in (a),n = 9). (c)
MAPIT employs cell density in radial-symmetric spheroids with radius r, of which the derivation is contained in
detail in the Materials and Methods. (d) Marginal Ki-67 signal density obtained by MAPIT from flow
cytometric data (blue) closely match Ki-67 intensity profiles determined microscopically in spheroid cross-
sections.

Next, we examined if MAPIT can also capture the heterogeneity within the different zones in the spheroid,
typically a proliferative layer followed by quiescent and finally necrotic cells.

The DNA content of cells in the outermost spheroid layers exhibited a bimodality typically for proliferating
cells with subpopulations in G1 (2N), S and G2/M (4N) phases (Fig. 5a). In contrast, the majority of cells in the
inner layers remain in a quiescent G1/GO0 (2N) state. The distinct distributions of additional markers, Ki-67, p27
and RNA content corresponded to this pattern (Fig. 5a).

We then studied the robustness of MAPIT, by comparing its performance to recover the spatial position using
different pseudotime algorithms, markers and spheroid sizes. We first used the Wanderlust and Diffusion Maps
algorithms®® to obtain a pseudotemporal ordering. The order of cells was largely conserved in both algorithms
(Fig. 5b, monotonously increasing data points), however the pseudotime values were clearly different between
both algorithms (Fig. 5b, deviation from the diagonal). Transforming the DPT and Wanderlust axis to a distance
scale with MAPIT resulted in almost identical spatial profiles of Ki-67, RNA and p27 (Fig. 5¢), thereby prov-
ing that MAPIT results are not affected by the pseudotime algorithm. MAPiT should likewise provide identical
marker trajectories unaffected by the choice of markers used to generate the pseudotime order. To validate this,
we conducted "leave one out cross validation", where we took subsets of the markers as input to the Wanderlust
and DPT algorithms, and compared the results obtained by MAPiT. MAPiT robustly provided correct distance
profiles of all markers in all combinations, demonstrating that MAPIT is not influenced by the choice of inputs
to the pseudotime algorithms (Fig. S1). Thus, MAPIT is not affected by the choice of markers or pseudotime
algorithms, provided that the order of cells on the pseudotime scale reflects the sequence or directionality of the
biological processes.

Spatial reconstruction by MAPIT also provides scope to significantly accelerate high throughput stud-
ies that make use of advanced 3D culture-based cell screens, such as spheroid based viability assays and drug
effect screens. Indeed, spheroids are considered superior models in comparison to conventional cell cultures?,
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Figure 5. Studying cellular composition in spheroids of HCT116 cells with MAPIT. (a) Marginal signal
densities p(y|x) of indicated markers related to the distance from the surface, as obtained by MAPiT. Signal
frequencies at the outermost layer and at 150 pm distance from the spheroid surface, as indicated by the dashed
rectangles, are shown for an exemplary 11-day-old spheroid. (b) Comparison of single-cell positions in
pseudotime, as obtained by Wanderlust or DPT algorithms. (c¢) MAPiT robustly reconstructs cell positions,
irrespective of the pseudotime algorithm used. Ranges show 50% confidence intervals of the signal intensities
obtained from transforming Wanderlust and DPT pseudotime data. (d) Schematic of spheroid growth. (e)
Spheroid growth follows a linear growth model. Microscopically obtained data shows spheroid radius over 15
days after seeding from# = 23 spheroids in three independent replicates. (f) Median profiles for Ki-67, RNA
and p27, as obtained by MAPIT, were conserved throughout spheroid sizes (median of n = 3 spheroids, in three
independent replicates). Notable deviations towards the ends of the profiles (dashed) and thus within the centre
of the spheroids arise from inaccuracies due to the low number of cells available for analysis at these locations.

but spatiotemporal analyses still require cumbersome and manual labour-intensive work for the analysis of
cross-sectional slices. MAPIT performed reliably in 3D reconstruction when processing flow cytometry data from
dissociated spheroids of different sizes and ages, based on Ki-67, RNA and p27 amounts (Fig. 5d-f). The profiles
for Ki-67, RNA and p27 were conserved throughout spheroid sizes, indicating a dependence of these markers
solely on the distance from the surface (Fig. 5f) and therefore their suitability for spatial reconstruction. Overall,
robust spatial markers together with MAPiT therefore allow the rapid and versatile reconstruction of spheroids,
providing a basis for studying spatiotemporal changes in other measurable variables.

Discussion

In summary, MAPIT provides a solution to a fundamental problem, namely the transformation of pseudotime to
real-time or the true scale of a biological process. For example, snapshot single-cell data of cell populations can be
converted to extract real-time kinetics of cellular processes and responses, which otherwise could only be obtained
by live-cell microscopy, which is more complex, time consuming and limited by the availability of suitable live-cell
reporters. By reconstructing spatial and temporal spheroid compositions from single-cell data, MAPIT provides
insights to the evolution of cellular heterogeneity within tumour-like microenvironments and allows to understand
how responsiveness to therapeutics manifests within spheroidal environments. Since MAPiT provides the means to
not only employ flow cytometric data but data from any other single-cell based high-throughput multiplex measure-
ment, such as CyToF or single-cell RNA-seq, it provides a foundation for high-throughput and high-content studies
of 3D-spheroid models by recovering the spatial information lost during spheroid dissociation. By extension, applying
MAPIT to other single-cell snapshot data, such as single-cell transcriptomics and proteomics data, might significantly
improve the inference of complex regulatory processes and networks by recovering real temporal and spatial dynamics.
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In the present paper we apply MAPiT to two examples where we obtained the distribution on the desired
scale by theoretical view on the source of heterogeneity. Constructing a target distribution for other processes
i.e. the most common application of pseudotime single-cell analysis on stem cell differentiation, might be more
challenging.

In the case of differentiation process, it might be necessary to not only measure cellular components for sin-
gle cell analysis, but also cell death and cell division rates at every stage of the process (further discussed in the
Supplementary Information). A time scale separation argument can be used to regard cell death and cell division
as processes perpendicular to the cell differentiation. A suitable choice of markers may then allow inference of cell
death and division rates from single cell data. We envision that combination of ergodic theory and mathematical
models (as discussed in the Supplementary Information) to map single-cell differentiation data with MAPiT on a
real time scale. Label data (e.g. sampling timepoints) may likewise be used to support or validate MAPiT results.
However, knowing sources and sinks along the process like cell death or cell division is critical for obtaining the
right real-time distribution and subsequent correct transformation with MAPiT.

Recently, pseudotime algorithms were further developed to robustly recognise also branching processes in
differentiation pathways®*>?%, providing scope to apply MAPIT to study differentiation dynamics in individual
branches. MAPIT could be applied to all paths from the root to the end points on the respective branches treating
other the flow of cells into other branches as sinks.

Overall, MAPIT is a robust and universal tool to recover temporal or spatial cellular trajectories from
high-throughput, high-dimensional single-cell experiments. MAPiT can be combined with pseudotime algorithms,
and a MATLAB implementation is available through GitHub (https://github.com/karstenkuritz/MAPiT)'S.

Materials and Methods

Calculation of pseudotime.  Cells were ordered in pseudotime in MATLAB R2017b (MathWorks, Natick,
MA, USA) using two different algorithms: Wanderlust® and DPT*. The algorithms were run with 10000 randomly
chosen cells. Prior to performing pseudotime analysis, doublets, dead cells and outliers were gated out. Both
algorithms require a user defined set of root cells for constructing the pseudotime trajectories. For the cell cycle
analysis a set of cells in the centre of the G1 population, with low DAPI and geminin signal, was chosen. For the
spheroid analysis cells with high Ki-67 and high RNA signal which are known to be located at the surface of the
spheroids were chosen.

MAPIT theory. MAPIT is based on the measure-preserving transformation which states that one must con-
serve the area under the curve when transforming a probability distribution to another scale.

Consider a measure space (X, %, \), where x isa set, ' isac — ring of measurable subsets of X, and A is
the measure. Given a map 7 from a measure space (X, %, \)to ameasure space (Y, &, u), 7 is called measurable
if A € S implies 77 '(A) € L. Given that 7 is measurable, T is called measure-preserving if A € S implies
M7 7Y(A)) = u(A). We denote the pseudotime values with s € [0, 1], real-time scale with x € [0, T]and meas-
ured signals with y € R. Based on the general definition of a measure-preserving map 7, the transformation
7: s — x of adistribution of cells in pseudotime p(s)to the distribution of cells on the real-time scale p.(x) reads

@ |
p = | T | g6 i), "
Px) = B(r(x)). 2)

The mapping 7: s — x from pseudotime to real-time was obtained by solving equation (2) for 7, which then
depends on the cumulative distributions of cells on both scales

7 Yx) = P;l(Px(x)), or (3)

7(s) = P (B()). (4)

Thus, by definition, the transformation 7 requires knowledge of the distribution (or cumulative distribution) of
cells on the pseudotime scale and the desired scale. If these distributions are positive (larger zero) over their sup-
port, then the cumulative distributions are monotonically increasing and the inverse exists. Once the mapping 7
is known, one can apply the transformation to the joint densities of pseudotime and the observed quantities
pis y)to obtain the desired joint distribution of the true scale x and measured markers y

dr (x)

p(x, y) = (%), y).

(5)

Furthermore, we calculate the conditional or marginal density p (y|x), which might be more informative, by
normalizing the joint distribution with the real-time distribution

R0 = pGe ) [ 5o ) &y, o
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Distributions in pseudotime for spheroid data were obtained by kernel density estimation on pseudotime values
s;» using a Gaussian kernel with reflecting boundary ats = {0, 1},

p(s) :%ZZI(J\/MS[, hy) + M = sls;, hy) + M2 — s|s;, hy))

— 1 N
=i Milslsi B )

Density in pseudotime for cell cycle data was estimated by kernel density estimation with linked boundary con-
ditions to account for doubling of cell density during cell division®. Joint densities were calculated as sum of the
product of the individual kernels

s y) = %Zil[/\/;(ﬂsi, hy) N(}’

Bandwidths h; and h, were derived from Silverman’s rule”.

o)} ®

Distributions on the real scales. The distributions on the real scales can either be derived from theoretical
considerations or from empirical measurements (discussed in Supplementary Information).

Cell density with respect to cell age in proliferating populations. ~For analysis of cell cycle-dependent processes
with single-cell measurements, MAPIT requires the distribution of cells related to their cell cycle stage or equiva-
lently their age a. Cell age, refers to the time since cell birth via cytokinesis. Our analysis is based on the following
assumptions: (1) population is unperturbed and in its exponential growth phase, (2) no cell death in the popula-
tion, (3) cell cycle progression is homogeneous. We thus restricted our analysis to unperturbed cell populations
in their exponential growth phase with growth rate y and cell cycle length T related by v = I"TZ In such a case, the
theoretical steady state age distribution of a cell population is given by*:

ya

p(a) =2ve " 9)
The cumulative distribution and its inverse can be obtained in closed form:

Pa)=2(1 —e ™), (10)

_ 1 y
P ):—_m[ ——}.

SR S (1)
Thus, in case of an unperturbed cell population it is sufficient to know the growth rate of the population to recover
cellular age with MAPiT and thus obtain the temporal changes related to cell cycle progression of measured mark-
ers from one single-cell experiment. We verified all assumptions by live cell imaging. In addition, light scattering
characteristics in the flow cytometric datasets were used to probe the population for cell death.

Cell density in tumour cell spheroids with respect to distance from surface. ~ Cell density depending on the distance
from the surface was obtained from sphere geometry (Fig. 2b, Supplementary Information Fig. S2). Our analysis
is based on the following assumptions: (1) Spheroids are radial symmetric, (2) all cells in the spheroid have the
same size. We verified both assumptions by visual inspection of whole spheroids and spheroid slices. The volume
of a sphere with radius r is given by

_4 3
Vi(r) = gﬁr . (12)

The volume of a spheroid with necrotic core with radius ry = max(r — dy, 0)equals
Vu(r, ry) = Vs(r) - Vs(VN): (13)

with dy; being the distance from the surface where the necrotic core begins. The volume of a spherical shell at
distance x from the surface of the spheroid with necrotic core is then given by

V(x) = Vy(r, ry) — Viu(r — x, ). (14)

Normalising (14) with the total spheroid volume V), results in the normalised volume with respect to the distance
to the surface of the spheroid which represents the cumulative distribution of cells related to the distance from the
surface

V(x) - (r — x)3
P, = = .
x(x) Vau(r, 1) e ri, (15)

MAPIT is furthermore based on the probability density function and the inverse of the cumulative distribution
which can be calculated analytically
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(r — x)2

P (16)

P;l(y) =r— %[y(rﬁ, — )+ 1. (17)

Spheroid radius r and the radius of first appearance of a necrotic core ry were inferred from experiments,
described in more detail in the Supplementary Information. For the present study we used ry = 270 pmanda
spheroid radius based on the linear regression

Py (x) =3

r(t) = 19.2 + 22.4¢ (18)

for spheroid growth as shown in Fig. 5e.

Cell culture. The human colon carcinoma cell line HCT116 was obtained from the Banca Biologica e Cell
Factory of the IRCCS Azienda Ospedaliera Universitaria San Martino in Genoa (ICLC HTL95025). The geminin
expressing non-small-cell lung cancer NCI-H460 cells have been described previously'®. NCI-H460/geminin cells
were maintained in RPMI 1640 medium (Gibco, 21875034) supplemented with 5% heat-inactivated fetal calf
serum (FCS, Pan - Biotech GmbH; P303309) and HCT116 cells were cultured in RPMI 1640 medium with 10%
heat-inactivated FCS at 37 °C in a humidified incubator with 5% CO,. For generation of tumour cell spheroids,
cells were transferred into Terasaki multiwell plates (Greiner bio-one; 653180) in a volume of 25 ;. RPMI 1640
medium with a concentration of 4000 cells/ml. Thereafter, the plates were inverted to allow spheroid formation at
the bottom of the emerging hanging drops and placed in humid chambers located in the incubator. Two to three
days after seeding, formed spheroids were transferred to agarose-coated 96-well cell culture plates (Greiner
bio-one; 655180 coated with 1.5% agarose (Carl Roth GmbH & Co. KG; 3810.3) in RPMI 1640 medium).
Spheroid growth was monitored with an EVOS FL Cell Imaging System (Thermo Fisher Scientific Inc.) and sphe-
roid diameters were determined from generated pictures using the Fiji software (distribution of ImageJ*).

Time-lapseimaging. NCI-H460/geminin cells were imaged for their total cell cycle length and length of G1
or S/G2/M phases by time-lapse fluorescence microscopy using the Cell Observer system (Carl Zeiss,
Oberkochen, Germany) equipped with a humidified imaging chamber at 37 °C and 5% CO,. Randomly chosen
cells were manually tracked for at least one full cell cycle and geminin signal intensity was recorded. Cell trajecto-
ries were obtained using the Tracking Tool (tTt) and qTfy for single-cell tracking and quantification of cellular
and molecular properties in time-lapse imaging data®. For comparison to MAPiT derived results, background
signal 6, of cell trajectories and scaling factor 6, for single-cell trajectories were chosen to maximise the
log-likelihood between MAPIT density and individual traces,

N K,
max log [p(t., (y. — 0)0,)],
‘9;; g Py U ) (19)

where p is the density obtained from MAPIT and y are live cell imaging values for geminin of cell i at time-points
t; after cell division.

Generation of spheroid sections and immunofluorescence staining for Ki-67. To generate sphe-
roid sections, spheroids were fixed with 4% paraformaldehyd for 10 min at room temperature. Thereafter, sphe-
roids were washed three times with PBS and finally kept in a sucrose solution (30% sucrose (Carl Roth GmbH &
Co. KG; 4661) in PBS) at 4 °C. After 48 h, the sucrose solution was removed and replaced with Tissue Freezing
Medium (A. Hartenstein GmbH; TTEK). Such embedded spheroids were stored at —20°C and finally cut into 10
wm slices with a CM30505 cryostat. Generated sections were mounted on Polysine Microscope Adhesion Slides
(Thermo Fisher Scientific Inc.; 10219280), fixed with 4% PFA for 10 min at room temperature (RT) and washed
twice with PBS for 5 min. Thereafter, permeabilization was carried out with 0.1% Triton X-100 in PBS for 10 min
before the slices were incubated with blocking solution (5% FCS and 0.1% Triton X-100 in PBS) for 30 min at RT.
Incubation with the primary antibody against Ki-67 (1:400, Cell Signalling Technology; #9449) was carried out in
blocking solution for 1 h at RT. Thereafter, sections were washed two times with blocking solution before they
were incubated with the secondary antibody Alexa Fluor 647-conjugated goat anti-mouse IgG (1:500, Thermo
Fisher Scientific Inc.; A-21236) solved in blocking solution for 1 h at RT in the dark. Next, sections were washed
with blocking solution and incubated with DAPI (1 pg/ml in PBS, Thermo Fisher Scientific Inc.; D1306) to stain
DNA for 10 min at RT before they were covered with coverslips using Fluoromount-G® (SouthernBiotech; 0100-
01). Samples were dried and fluorescence was analysed with a LSM 710 laser scanning microscope (Carl Zeiss,
Oberkochen, Germany) and the blue edition of the ZEN software.

Flow cytometric analysis. Tumour cell spheroids were dissociated with trypsin/EDTA (Gibco; 59418C)
and single cells were fixed with 4% PFA in PBS for 10 min. Thereafter, permeabilization was carried out with 90%
ice-cold methanol in PBS for 30 min on ice. Subsequently, cells were washed two times with a washing solution
(5% FCS, 0.05% BSA (Sigma-Aldrich; A2058), 0.02% NaN (Carl Roth GmbH & Co. KG; Ca4221) in PBS) before
they were incubated with the primary antibodies diluted in washing solution for 1 h at RT (anti-Ki-67, Cell
Signalling Technology; #9449 and anti-p27, Cell Signalling Technology; #3686). Next, cells were washed and
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incubated with the respective secondary antibodies, Alexa Fluor 488-conjugated goat anti-rabbit IgG and Alexa
Fluor 647-conjugated goat anti-mouse IgG diluted in washing solution for 1 h (1:100, Thermo Fisher Scientific
Inc.; A11008 and 1:500, Thermo Fisher Scientific Inc.; A21236). After washing, cells were incubated with 100 p/
Hoechst 33342 solution (10 ug/ml Hoechst 33342 (Thermo Fisher Scientific Inc.; H3570) in PBS with 0.05% BSA
and 0.02% NaN,) for 1 h at 37 °C, followed by the addition of 5 ;4! Pyronin Y (stock solution: 100 pg/ml solved in
ddH, 0, Sigma-Aldrich; 83200) and incubation for 15 min at 37 °C. Finally, cells were pelleted, dissolved in PBS
and fluorescence was measured by flow cytometry with the MACSQuant analyser 10. NCI-H460/geminin cells
were analysed as described in'>.

Data size and statistical reporting. This section reports statistics of the described experiments. We
abbreviate the number of biological replicates, representing replicates under the same protocol but in different
experiments, with n,,. Technical replicates abbreviated by n, are obtained in identical experimental conditions, e.g.
flow cytometric measurements of n, = 3 spheroids from the same culture. Furthermore, we denote the samples
size, e.g. number of single cells in a single cell experiment, by ..

Flow cytometry measurements of HCT116 spheroids were performed in three independent experiments
(n, = 3). Each experiment was carried out with three spheroids (n, = 3). A samples size of n,=10,000 cells was
subsequently used for analysis with MAPiT. Ki-67 profiles in sliced spheroids are reported for one representative
spheroid, with few defects caused by the slicing procedure (n, = n, = 1). Nine profiles throughout the spheroid
resulted in n, = 18 rim-to-core profiles. Cell cycle analysis of flow cytometric measurements was done with n.=
10,000 cells in one representative experiment (1, = n, = 1). Live-cell imaging was done in one experiment
(n, = n, = 1) wherein we recorded the geminin intensity of n, = 12 randomly chosen cells over one full cell
cycle.

§ Signal intensities in the spheroid experiments were normalised to the median intensity of all cells up to a dis-
tance of 150 pm from the surface. MATLAB code for comparison of MAPiT analysis with imaging data is availa-
ble in the MAPIT repository (https://github.com/karstenkuritz/MAPiT)'S.
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