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optimization of culture conditions 
for differentiation of melon based 
on artificial neural network and 
genetic algorithm
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Artificial neural network is an efficient and accurate fitting method. It has the function of self-learning, 
which is particularly important for prediction, and it could take advantage of the computer’s high-speed 
computing capabilities and find the optimal solution quickly. In this paper, four culture conditions: agar 
concentration, light time, culture temperature, and humidity were selected. And a three-layer neural 
network was used to predict the differentiation rate of melon under these four conditions. Ten-fold cross 
validation revealed that the optimal back propagation neural network was established with traingdx as 
the training function and the final architecture of 4-3-1 (four neurons in the input layer, three neurons 
in the hidden layer and one neuron in the output layer), which yielded a high coefficient of correlation 
(R2, 0.9637) between the actual and predicted outputs, and a root-mean-square error (RMSE) of 0.0108, 
suggesting that the artificial neural network worked well. According to the optimal culture conditions 
generated by genetic algorithm, tissue culture experiments had been carried out. The results showed 
that the actual differentiation rate of melon reached 90.53%, and only 1.59% lower than the predicted 
value of genetic algorithm. It was better than the optimization by response surface methodology, which 
the predicted induced differentiation rate is 86.04%, the actual value is 83.62%, and was 2.89% lower 
than the predicted value. It can be inferred that the combination of artificial neural network and genetic 
algorithm can optimize the plant tissue culture conditions well and with high prediction accuracy, and 
this method will have a good application prospect in other biological experiments.

Plant tissue culture is a collection of techniques used for studying plant growth, differentiation, gene function and 
genetic recombination, also an important method for breeding and rapid propagation of crops1,2, and thus has 
been widely used in plant research and agricultural production. As a common technique for plant production, 
tissue culture is easy to operate, without the need for high-precision instruments. However, there are still some 
shortcomings in plant tissue culture, such as cumbersome experimental steps and long cycle. During the whole 
tissue culture experiment, callus induction and organ differentiation are the critical steps where the explants ded-
ifferentiate and form calluses, and then differentiate into plantlets. The calluses undergo a complicated process 
to differentiate into a variety of plant tissues and organs, and many problems may occur during this process3. So, 
suitable tissue culture conditions are crucial for callus induction and differentiation process. It will be a tedious 
and time-consuming process to explore specific tissue culture conditions for each plant species due to the large 
number of plant species. Therefore, the parameters for the model plants such as Arabidopsis thaliana and tobacco 
are adopted in most tissue culture experiments. However, the optimal hormone concentration4, culture tempera-
ture, humidity, light intensity and duration for in vitro culture differ among plant species5,6, and vitrification and 
browning often happen under these unsuitable conditions, and subsequently the entire experiment may fail7,8. 
Therefore, it is of great significance to develop a simple method to rapidly optimize the tissue culture conditions 
for different plants and to improve the overall efficiency of tissue culture experiments.

Artificial neural networks (ANNs) are developed to deal with noisy, incomplete data and nonlinear prob-
lems9. ANNs have the ability to identify and approximate any complex nonlinear systems, by which mathematical 
models can be established rapidly with limited experimental data10,11. Moreover, ANNs are more accurate than 
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other common fitting methods (such as response surface methodology)12. Training function and the number of 
neurons in the hidden layer are two factors that directly affect the performance of neural networks13. Studies have 
shown that 10-fold cross validation is a good choice to provide error estimates14, and thus can be used to deter-
mine the optimal training function and the optimal number of neurons in the hidden layer of neural networks.

Genetic algorithm is a search algorithm used to solve optimization in computational mathematics, it was 
mostly wide used evolutionary algorithms (EA) algorithms. Genetic algorithms (GAs) are adaptive heuristic 
search algorithms premised on the evolutionary ideas of natural selection and genetic, and have been extensively 
used in combination with ANNs for solving optimization problems15. Genetic algorithm belongs to the family 
of meta heuristic algorithms. Metaheurisics can be further divided into two groups: those that are evolutionary 
algorithms (EA) and swarm intelligence16. The most prominent representatives of nature-inspired metaheuristics 
are evolutionary algorithms (EA) and swarm intelligence17,18.

GA is the most well-known representatives of EA, and swarm intelligence are inspired by the social and coop-
erative behavior of ants, bees, birds, fish, etc19.

One of the most relevant characteristics of group system is that individual agents show intelligent behavior 
together, without the central component to coordinate and guide their activities20.

GA can be used in combination with other algorithms to produce better results. GI-ABC, ABC were modified 
based on genetic algorithm (GA) operators and were applied to the creation of new candidate solutions, which 
improves the performance of the ABC algorithm by applying uniform crossover and mutation operators from 
genetic algorithms21.

GA proved to be capable of solving large number of NP hard problems also, including problems from the 
domain of WSNs22. Sharma, G etc proposed a distributed range-free node localization algorithm for three dimen-
sional WSNs based on the GA23. Similarly, by applying the localization algorithm that employs GA, the localiza-
tion accuracy of unknown nodes in WSNs was improved24, and a novel range free localization algorithm based on 
GA and connectivity was proposed recently also25.

Naturally inspired algorithms have been successfully used in combination with other ANNs, especially with 
Convolutional Neural Networks (CNN). Convolutional neural network (CNN) is a kind of special deep neural 
network. CNN have proved to be a robust method for tackling various image classification tasks16, and has been 
widely used in the field of computer vision in recent years26. GA have many successful applications in the domains 
of deep learning and CNNs17,18. Better results can be obtained by applying meta-heuristic methods such as genetic 
algorithm (GA)17 and swarm intelligence27 to the process of CNN hyperparameter optimization.

In this study, the differentiation of tissue-cultured melon was induced under different conditions (agar 
concentration, relative humidity, culture temperature and light duration were set at three levels each), and a 
three-layer neural network was used to predict the non-linear relationship between the culture conditions and 
differentiation rate, based on which a GA was used for global optimization to determine the optimal combination 
of culture conditions.

Results
CCD result. The rate of differentiation measured by CCD experiment and that predicted using ANN were 
represented in Table 1.

Neural network. Artificial neural network is able to inversely regulate the weights and thresholds of the 
neurons of the input layer by comparing the difference between the actual output and the predicted output, to 
minimize the overall error28. As shown in (Fig. 1), five-fold cross validation revealed that the minimum MSE 
value was achieved with traigdx (a network training function that updates weight and bias values according to 
gradient descent momentum and an adaptive learning rate) among the 11 training functions, when there were 
six neurons in the hidden layer. Therefore, traingdx was considered as the optimal training function of the neural 
network we established.

About training function “traingdx”: when BP neural network is trained, learning speed too fast may cause 
instability, too slow it will take too much time, and different training algorithms also have a great impact on the 
performance of the network. Some studies believe that “trainlm” is more suitable for fitting functions. Indeed, 
using “trainlm” can obtain higher model accuracy than “traingdx”. However, once the test data is used for simu-
lation, the error between simulation output value and real value is higher than “traingdx” method. As shown in 
Fig. 1, the error between simulation output value and real value of test data cannot be reduced by “trainlm”. In this 
paper, the “traingdx” with a slow learning rate is used as the training method. And the average error between the 
simulation output value and the real value is the smallest. Therefore, “traingdx” is used as the training function. 
Although “traingdx” has the problems of slow learning speed and long training time, the training time of the 
model is not considered because of the small sample size of the data in this paper.

Then, the function was used to perform ten-fold cross validation to determine the optimal number of neurons 
in the hidden layer. As shown in (Fig. 2), the MSE value between the actual and predicted outputs decreased 
dramatically at first with the number of hidden layer neurons increasing from 1 to 20, but then decreased slightly 
with the number of hidden layer neurons increasing from eight to thirteen. Because the non-linearity between 
the factors selected in the experiment and the response value is weak, if the number the hidden layer and neu-
rons were too much, the structure of the BP neural network will be complicated, and the training time will be 
prolonged. What’s more important is that the model will be over fitting, reducing the generalization ability of the 
model, and reducing the prediction accuracy. As shown in the Fig. 2, when the number of hidden layer neurons is 
3, the average error between the simulated output value of the test data and the true value is the smallest.

So, 3 was considered as the optimal number neurons in the hidden layer. In summary, the optimal back-
propagation neural network was established with traingdx as the training function and the final architecture of 
4-3-1 (four neurons in the input layer, 3 neurons in the hidden layer and one neuron in the output layer), which 
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yielded a high coefficient of correlation (R2, 0.9637) between the actual and predicted outputs, and a RMSE value 
of 0.0108, as shown in Table 1, indicating that the neural network worked well and achieved a high accuracy of 
prediction.

No. Y1 Y2 Y3 Y4

The rate of differentiation (P, %)

Actual values Predicted values

1 −1 −1 −1 −1 83.21 82.89

2 −1 −1 −1 1 80.37 80.26

3 −1 −1 1 −1 76.53 77.35

4 −1 −1 1 1 74.82 76.15

5 −1 1 −1 −1 80.15 81.83

6 −1 1 −1 1 76.38 76.28

7 −1 1 1 −1 73.75 73.66

8 −1 1 1 1 69.85 69.88

9 1 −1 −1 −1 87.82 87.35

10 1 −1 −1 1 85.38 82.54

11 1 −1 1 −1 83.34 83.23

12 1 −1 1 1 80.52 79.97

13 1 1 −1 −1 85.5 85.62

14 1 1 −1 1 82.99 81.63

15 1 1 1 −1 80.33 80.85

16 1 1 1 1 76.51 76.74

17 −2 0 0 0 76.29 75.87

18 2 0 0 0 78.52 80.11

19 0 −2 0 0 82.59 84.84

20 0 2 0 0 78.38 79.83

21 0 0 −2 0 78.43 81.47

22 0 0 2 0 71.87 71.38

23 0 0 0 −2 80.26 79.69

24 0 0 0 2 76.37 76.19

25 0 0 0 0 82.98 83.16

26 0 0 0 0 83.25 83.16

27 0 0 0 0 83.06 83.16

28 0 0 0 0 83.32 83.16

29 0 0 0 0 82.65 83.16

30 0 0 0 0 83.29 83.16

31 0 0 0 0 83.37 83.16

RMSE 0.0108

R2 0.9637

Table 1. Show the rate of differentiation measured by CCD experiment and that predicted using ANN.

Figure 1. Comparison of the 11 BP algorithms with 6 neurons in the hidden layer.
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Optimal culture conditions for differentiation of melon produced by the genetic algorithm. As 
shown in (Fig. 3), over 15 generations, the fitness value of the genetic algorithm approached towards the maxi-
mum 91.97%, which was the maximum predicted differentiation rate, and could be achieved under the culture 
conditions as follows: agar concentration of 0.8%, light duration of 8 h/d, culture temperature of 20°C and humid-
ity of 58.85%.

Validation of optimal culture conditions. The optimal culture conditions produced by the genetic algo-
rithm were then verified by tissue culture experiment. As shown in Table 2, the actual differentiation rate of the 
three replicates in the experiment was 90.53% on average, which was only 1.44% lower than the predicted value, 
suggesting that the optimal culture conditions produced by the genetic algorithm are reliable and feasible.

Figure 2. Relationship between number of neurons in the hidden layer and MSE.

Figure 3. Curve of fitness value per generation of the genetic algorithm.

Replicates GA predicted value (%) Actual value (%)

1

91.97

90.35

2 89.97

3 91.26

Mean 90.53

Error (%) 1.59

Table 2. Show the comparison between GA predicted and actual differentiation.
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To predict the differentiation rate of melon under different culture conditions, a BP neural network was estab-
lished with traingdx as the training function and the final architecture of 4-3-1 in the present study, which yielded 
a high coefficient of correlation (R2, 0.9637) between the actual and predicted outputs, and a RMSE value of 
0.4971, indicating that the artificial neural network meets statistical requirements. The optimal culture conditions 
for differentiation induction of melon produced by the genetic algorithm were agar concentration of 0.8%, light 
duration of 8 h/d, culture temperature of 20 °C and humidity of 58.85%. Under these conditions, the differentia-
tion rate of melon was improved to 90.53%, which was 1.59% lower than GA-predicted value (91.97%), but about 
22.66% higher than the differentiation rate (74.98%) achieved under previous culture conditions. The results 
proved that artificial neural networks combined with genetic algorithms are able to optimize the tissue culture 
conditions of plants. Similarly, this method can also be used to optimize other stages of tissue culture and rapid 
propagation conditions of plants in vitro.

Comparison with the optimization by response surface methodology. The optimal culture con-
ditions for differentiation induction of melon produced by response surface methodology of the CCD design 
method of the Design-Expert software were the agar concentration of 0.68%, light duration of 10 h/d, culture 
temperature of 25.5 °C and humidity of 64.22%, with the correlation (R2, 0.8751), and the predicted differentia-
tion rate was 86.04%. Under this predicted conditions, as shown in Table 3, the actual differentiation rate of melon 
was to 83.62%, which was 2.89% lower than predicted value. These results indicating that the neural network was 
better than the response surface methodology in this experiment.

Discussion
Many genes expressions in plants are affected by environmental factors stress. This method can also optimize 
the selected stress factors, regulate the expression of target genes more effectively, which would be helpful to the 
study of genes function. In addition, a lot of the functional components of medicinal plants are plant secondary 
metabolites, which have been widely used in medicine. Some productions and accumulation of plant secondary 
metabolites are mostly affected by environmental factors29. For example, many medicinal plants have great differ-
ences in their medicinal properties when the plants grown under different environments30. Using this method, we 
can quickly and accurately obtain some medicinal plants growth conditions which conducive to the productions 
and accumulation of functional components.

We have developed a fast and accurate method for optimizing plant tissue culture conditions. This method is 
flexible to use, the experimenter can set the condition factors and levels according to the actual situation, and use 
the optimization algorithm model to optimize the condition parameters quickly, thereby achieving the purpose 
of improving the experimental success and saving the experiment time.

Materials and Methods
Callus induction. The seeds of a melon cultivar Jiashi were shelled manually, sterilized and inoculated onto 
MS medium. The cotyledons that began to turn green were collected, cut into small pieces of 5 mm long and 5 mm 
wide, plated onto preculture medium (MS + 1.0 mg/L 6-BA + 0.1 mg/L NAA), cultured first in the dark for 48 h, 
and then under a 16-h light/ 8-h dark photoperiod until callus formation was observed.

Differentiation induction. The calluses were transferred onto differentiation medium (MS + 1.0 mg/L 
6-BA + 0.1 mg/L IAA), and cultured under different conditions, designed with a five-level four-factor central 
composite design (CCD)31. The independent variables were agar concentration, light duration, culture tempera-
ture and relative humidity. The variables and their levels for the CCD were represented in Table 4.

Determination of differentiation rate. Differentiation rate was calculated using this formula:

ω ω
ω

=
−

×P 100%0 1

0

where, P is the differentiation rate, ω0 is the number of inoculated calluses; ω1 is the number of calluses that dif-
ferentiated into plantlets.

Design of neural network architecture. A three-layer backpropagation (BP) neural network was devel-
oped with Matlab 7.0 (The MathWorks, Inc., USA), with the factors that affect differentiation induction of melon 
as the inputs, and the differentiation rate as the output. The tan-sigmoid transfer function tansig was used in the 
hidden layer, and the linear transfer function purelin in the output layer. The architecture of the BP neural net-
work was designed as follows:

Replicates GA predicted value (%) Actual value (%)

1

86.04

83.85

2 82.65

3 84.37

Mean 83.62

Error (%) 2.89

Table 3. Show the comparison between response surface methodology predicted and actual differentiation.
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Ten-fold cross validation. The BP neural network was trained based on the experimental data obtained 
from CCD, using 11 different training functions, and the number of neurons in the hidden layer was set between 
1 and 15. A ten-fold cross validation approach was used to determine the optimal training function of the neural 
network and the optimal number of neurons in the hidden layer, and the mean square error (MSE)-the average 
squared error between the network outputs and the target data was used to evaluate the prediction accuracy of the 
network. In order to improve the stability and accuracy of prediction, the cross-validation was repeated ten times 
and results were averaged. Mean square error (MSE) was defined as follows:

ˆMSE
n

P P1 ( )
i

n

i i
2∑= −

where, Pi is target data (actual differentiation rates), Pî is network outputs (predicted differentiation rates), and n 
is the number of target data.

Evaluation of prediction accuracy of the neural network. The prediction accuracy of the neural net-
work was evaluated by the correlation coefficient (R2) and root-mean-square error (RMSE) between the network 
outputs and target data. The correlation coefficient (R2) was calculated using the formula as follows:
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where, Pi is target data (actual differentiation rates), P̂i is network outputs (predicted differentiation rates), and n is 
the number of experimental data.

Root-mean-square error (RMSE) was calculated using the formula as follows:

∑= − ˆRMSE
n

P P1 ( )
i

n

i i
2

where, Pi is target data (actual differentiation rates), Pî is network outputs (predicted differentiation rates), and n 
is the number of target data.

Optimization using genetic algorithm. According to the relationship of differentiation rate with agar 
concentration, light duration, culture temperature and humidity was established according to the BP neural net-
work. The trained neural network was used as a fitness function of the genetic algorithm. The optimization vari-
ables were represented as floating-point numbers. The genetic algorithm was run by setting the initial population 
size at 20, crossover probability at 0.8, and the maximum number of iterations at 100. The prediction accuracy of 
the genetic algorithm was evaluated by the relative error between the GA predicted data and the actual experi-
mental data, which was calculated using the formula as follows:

=
′ −

×E
P P

P
(%) 100

where, P’ is the differentiation rate predicted using GA, and P is the actual differentiation rate measured in tissue 
culture experiment.
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