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Preferential uptake of 
polyunsaturated fatty acids by 
colorectal cancer cells
Adriana Mika 1, Jaroslaw Kobiela2, Alicja Pakiet   1, Aleksandra Czumaj3, Ewa Sokołowska3, 
Wojciech Makarewicz4, Michał Chmielewski5, Piotr Stepnowski1, Antonella Marino-Gammazza6,7 
& Tomasz Sledzinski   3*

Although a growing body of evidence suggests that colorectal cancer (CRC) is associated with 
alterations of fatty acid (FA) profiles in serum and tumor tissues, available data about polyunsaturated 
fatty acid (PUFA) content in CRC patients are inconclusive. Our study showed that CRC tissues contained 
more PUFAs than normal large intestinal mucosa. However, serum levels of PUFAs in CRC patients were 
lower than in healthy controls. To explain the mechanism of PUFA alterations in CRC, we measured FA 
uptake by the colon cancer cells and normal colon cells. The levels of PUFAs in colon cancer cell culture 
medium decreased significantly with incubation time, while no changes were observed in the medium in 
which normal colon cells were incubated. Our findings suggest that the alterations in tumor and serum 
PUFA profiles result from preferential uptake of these FAs by cancer cells; indeed, PUFAs are essential 
for formation of cell membrane phospholipids during rapid proliferation of cancer cells. This observation 
puts into question potential benefits of PUFA supplementation in CRC patients.

Alterations in lipid metabolism are currently considered a characteristic feature of many malignancies, including 
colorectal cancer (CRC)1. Fatty acids (FAs) are a heterogeneous group of lipids with different chain length, degree 
of saturation and metabolic effects2. A growing body of evidence shows that CRC is associated with alterations 
of FA profiles in serum and tumor tissues3–8. Recently, we demonstrated an increase in the levels of saturated and 
monounsaturated very long chain FAs in tumor tissues and sera of CRC patients3, co-existing with enhanced 
expression of FA elongases 1 and 6 in cancer tissues3. This phenomenon was also reported by other authors6,9. 
In our present study, we centered around polyunsaturated FA (PUFA) profiles in CRC patients. PUFAs were 
shown to produce pleiotropic effects in humans, including inflammation control and mitigation of risk for car-
diovascular diseases, autoimmune disorders, obesity and cancer2. Serum PUFA content depends on diet and/or 
supplementation of those FAs, as two of them, linoleic acid (LA, 18:2 n-6) and α-linolenic acid (ALA, 18:3 n-3), 
cannot be synthesized by humans. However, once delivered to human body, LA and ALA can be metabolized to 
other PUFAs by delta-5 and delta-6 desaturases and elongases 2,4 and 52. PUFAs belong to two families, n-3 and 
n-6, which, respectively, attenuate or enhance an inflammation, the process implicated in CRC development. 
n-3 PUFAs produce anti-inflammatory effect via multiple mechanisms, including action of their oxidized deriv-
atives, whereas n-6 PUFAs, especially arachidonic acid (ARA, 20:4 n-6), are known as precursors of proinflam-
matory eicosanoids10. Published data on association between fish consumption or fish oil supplementation and 
CRC risk are inconclusive; some studies showed that dietary intake of n-3 PUFAs was associated with decreased 
risk and mortality from CRC11,12. But other studies did not confirm this association13,14. There are some studies 
on the potential role of PUFAs in diagnosis of CRC. Some authors found that lower ALA and LA and higher 
ARA levels in plasma are associated with increased CRC risk7,15,16. Rifkin et al.17 found that increased risk of 
colorectal adenoma is associated with higher levels of ARA and lower levels of eicosapentaenoic acid (EPA, 20:5 
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n-3) in erythrocyte membrane phospholipids. In contrast the results of Zhang.et al.18 suggest that decreased 
ARA and docosahexaenoic acid (DHA, 22:6 n-3) may be diagnostic indicators of early-stage CRC. Also there 
are studies suggesting that some oxidized metabolites of PUFAs might be used as potential biomarkers of can-
cer19,20. Published results on PUFA alterations in CRC are inconclusive, as previous studies documented either an 
increase or a decrease in the levels of various PUFAs in serum/plasma or cancer tissues5,7,9,21–24. To address those 
discrepancies, we determined PUFA levels in sera and CRC tissues from the same patients. Moreover, we analyzed 
the expressions of genes encoding enzymes involved in the metabolism of polyunsaturated fatty acids, to explore 
potential underlying mechanism of PUFA alterations in CRC. We found that CRC was associated with an increase 
in PUFA content in cancer tissues and a decrease in serum concentrations of these FAs. Thus, we conducted an in 
vitro study to explain this phenomenon.

Results
The analysis of FA profiles demonstrated that cancer tissue contained significantly more n-3 and n-6 PUFAs than 
normal colorectal mucosa from CRC patients (Fig. 1). While the significant differences between cancer tissue and 
normal colorectal mucosa were observed for all specific n-3 PUFAs as well, they were the most evident in the case 
of DHA and EPA contents; the levels of these two FAs in cancer tissue were approximately twofold higher than 
in normal colorectal mucosa (Table 1). The only two n-6 PUFAs the levels of which did not differ significantly 
between tumor tissues and normal mucosa were 16:2 and 18:2; the tumor content of most examined n-6 PUFAs 
were approximately twice as high as in normal colorectal mucosa (Table 1). The levels of MUFAs in cancer tissues 
were approximately 20% lower and the concentrations of SFAs ca. 10% higher than in normal mucosa (Table 1). 
Except ELOVL4, mRNA levels for all enzymes involved in the synthesis of longer and more desaturated PUFAs 

Figure 1.  n-3 and n-6 polyunsaturated fatty acid (PUFA) content (%) in normal mucosa and cancer tissue of 
colorectal cancer patients.

Cancer tissues Normal tissues p value

16:2 n-6 0.01 ± 0.005 0.012 ± 0.005 0.068

18:2 n-6 (LA) 11.08 ± 2.49 11.55 ± 2.22 0.258

20:4 n-6 (ARA) 6.4 ± 2.86 3.2 ± 1.93 <0.001

20:3 n-6 (DGLA) 1.27 ± 0.55 0.53 ± 0.26 <0.001

20:2 n-6 0.42 ± 0.15 0.26 ± 0.08 <0.001

22:5 n-6 (DPA n-6) 0.06 ± 0.03 0.03 ± 0.02 <0.001

22:4 n-6 (AdA) 0.78 ± 0.44 0.36 ± 0.14 <0.001

18:3 n-3 (ALA) 0.06 ± 0.04 0.05 ± 0.03 0.019

20:5 n-3 (EPA) 0.44 ± 0.22 0.24 ± 0.15 <0.001

20:4 n-3 (ETA) 0.05 ± 0.03 0.02 ± 0.02 <0.001

22:6 n-3 (DHA) 1.02 ± 0.39 0.52 ± 0.25 <0.001

22:5 n-3 (DPA n-3) 0.55 ± 0.2 0.31 ± 0.1 <0.001

Total MUFAs 40.19 ± 6.6 49.42 ± 6.12 <0.001

Total SFAs 37.45 ± 4.26 33.28 ± 3.54 <0.001

Table 1.  Fatty acid content (%) in cancer tissues and normal colorectal mucosa from CRC patients. Values are 
mean ± SD. ALA - alpha-linolenic acid, AdA – adrenic acid, ARA - arachidonic acid, DGLA - dihomo-gamma-
linolenic acid, DPA – docosapentaenoic acid, ETA - eicosatetraenoic acid, EPA - eicosapentaenoic acid, LA – 
linoleic acid (18:2n-6), MUFA – monounsaturated FA, SFA – saturated FA.
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(from 18:2 n-6 to 18:3 n-3) turned out to be significantly higher in cancer tissues than in normal mucosa (Fig. 2). 
Surprisingly, however, serum levels of n-3 and n-6 PUFAs in CRC patients were slightly albeit significantly lower 
than in the controls (Fig. 3). Regarding specific FAs, CRC patients presented with significantly lower serum levels 
of two n-3 PUFAs, 18:3 and 20:4, and two n-6 PUFAs, 18:2 and 20:2 (Table 2).

Hence, our study demonstrated that cancer tissues contained more PUFAs than normal colorectal mucosa, 
whereas CRC patients presented with lower serum concentrations of these FAs than healthy controls. One poten-
tial explanation for this phenomenon might be a preferential uptake of circulating PUFAs by cancer cells. To 
verify this hypothesis, we conducted an in vitro study with human colorectal cancer and normal colon cell lines. 
To determine if the CRC cells indeed preferentially absorbed PUFAs from their environment, we compared FA 
profiles of culture media incubated for 72 hours with the HT-29 and WiDr colon cancer cells to the media incu-
bated with CCD 841 CoN normal colon cells. Concentrations of PUFAs in the colon cancer cell-containing media 
turned out to be significantly lower than in media in which normal colon cells were cultured or in the acellular 
media (Fig. 4). The most evident, about two-fold differences in FA concentrations were observed in the case of 
ARA and DHA (Table 3). However, culture media with the CRC cells and with normal colon cells did not differ 
significantly in terms of their SFA and MUFA contents (Table 3). The mRNA levels of ELOVL4 and 5, as well as 
FADS2 were higher in cancer cells than in normal colon cells, but we did not detected the expression of ELOVL2 
and FADS1 in these cells (Supplementary Table 1).

Discussion
While lipid alterations have not been studied extensively in colorectal cancer, the results of few published studies 
suggest that CRC may predispose to changes in both tumor tissue and blood FA composition3,4,6,9,22,25. The most 
important finding of our present study is the observation that CRC was associated with an increase in PUFA con-
tent in the tumor tissues and a decrease in serum levels of these FAs. Only few previous studies analyzed PUFA 
content in cancer tissues, and their results are inconclusive. Zhang et al.23 reported an increase in n-6 PUFA level 
and a concomitant decrease in n-3 PUFA content in phospholipids from CRC tissues. In contrast, Yang et al.24 
observed an increase in n-3 PUFA and a decrease in n-6 PUFA levels in the tumor tissue. In our present study, 
CRC tissues contained significantly more n-3 and n-6 PUFAs than normal intestinal mucosa, which is consist-
ent with the results published by Chen et al.4. A decrease in serum levels of PUFAs in CRC patients was already 

Figure 2.  mRNA levels of fatty acid elongases (ELOVs) 2, 4, 5 and fatty acid desaturases FADS1 (Δ-5 
desaturase) and FADS2 (Δ-6 desaturase) in normal mucosa and cancer tissue of colorectal cancer patients.

Figure 3.  n-3 and n-6 polyunsaturated fatty acid (PUFA) content (%) in serum of colorectal cancer (CRC) 
patients and healthy subjects.
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reported by other authors26,27, but unlike in our study, they did not analyze polyunsaturated fatty acid levels in 
sera and tumor tissues obtained from the same patients.

Previously we showed that CRC tissues contained elevated levels of very long chain SFAs (VLCSFA; 20:0–26:0) 
and overexpressed ELOVLs 1 and 6, the enzymes involved in the synthesis of these FAs3. However, unlike in the 
case of PUFAs, CRC patients did not show a decrease in serum VLCSFA levels, and serum content of some acids 
from this group were even elevated3. A reason behind the different profiles of VLCSFA and PUFA alterations in 
sera of CRC patients might be the source of these FAs in human body. Humans can synthesize VLCSFAs from 
glucose and glutamine in a process catalyzed inter alia by FASN and ELOVLs 1, 3 and 6. In contrast, PUFAs can 
be obtained solely from exogenous sources. Although human cells show the activity of some enzymes involved 
in PUFA synthesis, such as ELOVLs 2, 4 and 5, delta-5-desaturase and delta-6-desaturase, their substrates, 18:2 
n-6 and 18:3 n-3 PUFAs, need to be delivered from exogenous sources to be converted into longer and more 
desaturated FAs2. Thus, de novo synthesized VLCSFAs are presumably partially released from cancer cells to the 
circulation, which contributes to an increase in their blood concentrations, as already observed in the case of 22:0 
and 26:0 in CRC patients3. The situation is different in the case of PUFAs as cancer cells cannot synthesize these 
FAs de novo, and thus, they need to uptake them from the blood; this refers in particular to the essential FAs, 
18:2 n-6 and 18:3 n-3. Our hereby presented findings are consistent with those observations, as CRC patients 
presented with lower serum levels of PUFAs, especially 18:2 n-6 and 18:3 n-3, than healthy controls. Noticeably, 
we did not find significant differences in 18:2 n-6 levels in the tumor and normal intestinal mucosa, and tumor 
content of 18:3 n-3 was only slightly higher than in the control tissue. However, considering strong overexpres-
sion of enzymes involved in the metabolism of these essential PUFAs, we cannot exclude that the majority of 18:2 
n-6 and 18:3 n-3 pool has already been converted into other polyunsaturated fatty acids, such as DHA, EPA, ARA 

CRC patients Healthy controls p value

16:2 n-6 0.012 ± 0.007 0.009 ± 0.004 0.050

18:2 n-6 (LA) 23.84 ± 3.4 26.24 ± 3.85 0.007

20:4 n-6 (ARA) 5.81 ± 1.4 5.61 ± 1.15 0.594

20:3 n-6 (DGLA) 1.07 ± 0.39 1.16 ± 0.23 0.263

20:2 n-6 0.13 ± 0.05 0.16 ± 0.03 <0.001

22:5 n-6 (DPA n-6) 0.04 ± 0.02 0.06 ± 0.03 <0.001

22:4 n-6 (AdA) 0.11 ± 0.1 0.1 ± 0.03 0.730

18:3 n-3 (ALA) 0.19 ± 0.09 0.34 ± 0.11 <0.001

20:5 n-3 (EPA) 0.86 ± 0.58 1.09 ± 0.72 0.012

20:4 n-3 (ETA) 0.05 ± 0.03 0.1 ± 0.03 <0.001

22:6 n-3 (DHA) 1.32 ± 0.58 1.14 ± 0.44 0.419

22:5 n-3 (DPA n-3) 0.31 ± 0.09 0.29 ± 0.05 0.529

Total MUFAs 33.34 ± 3.37 30.16 ± 3.53 <0.001

Total SFAs 32.8 ± 1.63 33.38 ± 1.84 0.141

Table 2.  Fatty acid content (%) in sera of CRC patients and healthy controls. Values are mean ± SD. ALA - alpha-
linolenic acid, AdA – adrenic acid, ARA - arachidonic acid, DGLA - dihomo-gamma-linolenic acid, DPA – 
docosapentaenoic acid, ETA - eicosatetraenoic acid, EPA - eicosapentaenoic acid, LA – linoleic acid (18:2n-6), MUFA 
– monounsaturated FA, SFA – saturated FA.

Figure 4.  n-3 and n-6 polyunsaturated fatty acid (PUFA) content (%) in control (without any cells) and CCD 
841 CoN, HT-29 and WiDr cells culture medium.
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and 20:3 n-6. The findings discussed above suggest that CRC cells may preferentially uptake circulating PUFAs. 
Another potential reason behind the decrease in serum concentration of PUFAs in CRC patients might be lower 
than in the controls intake of foods rich in these FAs. However, verification of this hypothesis would require an 
analysis of participants’ dietary records. Unfortunately, only few of our patients agreed to complete the dietary 
questionnaires. Based on these limited data, we did not find significant differences in the diets of CRC patients 
and healthy controls, but this observation might be biased due to too small sample size. Thus, we conducted an 

in vitro study to verify if CRC cells preferentially absorbed PUFAs from culture medium. To test this hypoth-
esis, we cultured human colorectal cancer and normal colon cells and analyzed changes in FA composition in 
the culture media. The study showed that after a 72-hour incubation, culture media inoculated with cancer cells 
contained significantly less PUFAs than the media in which normal colon cells were incubated. There was no sig-
nificant differences in the levels of SFAs and MUFAs in media in which these cell lines were cultured. The mRNA 
levels of ELOVL4, ELOVL5 and FADS2 were increased in cultured cancer cells comparing to normal colon cells, 
but we did not detected the expression of ELOVL2 and FADS1 in these cells. This may be a result of the loss 
of transcription activity of these genes during obtaining an established cell line. Our findings raise a question 
about the cause of preferential uptake of PUFAs by CRC cells. The most likely explanation is markedly increased 
demand of rapidly proliferating cancer cells for PUFAs, the major component of cell membrane phospholipids, 
especially considering that FA composition is an established determinant of cell membrane properties28. PUFAs 
seem to be more desirable for cancer cells than SFAs and MUFAs which can be synthesized endogenously, and 
this is the most likely explanation for our findings. Our interpretation of the results of this study is presented 
graphically in Fig. 5.

The results of previous studies analyzing a link between CRC risk and consumption of fish rich in n-3 PUFAs 
or fish oil supplementation are inconclusive. While some observational studies demonstrated that dietary pro-
vision of n-3 PUFAs from those sources was associated with a decrease in CRC risk29 and lower mortality from 
that malignancy30, others did not find enough evidence to support this link31. Available evidence suggests that 
n-3 PUFAs may produce beneficial effects, attenuating inflammation and preventing weight loss32. Moreover, 
these FAs were shown to act synergistically to some chemotherapeutic or chemopreventive agents32. However, the 
results of our present study imply that supplementation with PUFAs is not necessarily beneficial for CRC patients. 
While administration of exogenous PUFAs may prevent deficiency thereof, it might also promote faster prolifer-
ation of cancer cells providing a key substrate for the synthesis of their cell membrane phospholipids. Hence, fur-
ther research is needed to answer the question whether CRC patients should be supplemented with PUFAs or not.

In conclusion, this study showed that CRC is associated with an increase in PUFA content in the tumor tissues 
and a decrease in serum concentration of these FAs. The results of an in vitro study with human colon cancer cells 
imply that this phenomenon might be a consequence of preferential uptake of PUFAs by the cancer cells. This, in 
turn, puts into question potential benefits of PUFA supplementation in CRC patients. Our study provides new 
data on alterations of PUFA metabolism in colorectal cancer cells and explains their mechanism, that may allow 
the discovery of new therapeutic targets.

Fatty acid
Control 
medium

CCD 841 
CoN culture 
medium

HT-29 culture 
medium

WiDr culture 
medium

p value
CCD 841 
CoN vs 
control

p value
HT-29 vs 
control

p value
HT-29 vs 
CCD 841 
CoN

p value
WiDr vs 
control

p value
WiDr vs 
CCD 841 
CoN

18:2 n-6 4.60 ± 0.51 4.44 ± 0.33 3.90 ± 0.85 4.81 ± 0.11 NS NS NS NS NS

20:4 n-6 
(ARA) 10.97 ± 1.20 9.48 ± 1.00 4.94 ± 1.03 6.06 ± 6.06 0.283 <0.001 0.002 0.001 0.009

20:3 n-6 
(DGLA) 0.89 ± 0.23 1.03 ± 0.11 1.24 ± 0.35 1.16 ± 0.10 NS NS NS NS NS

22:5 n-6 0.13 ± 0.03 0.18 ± 0.02 0.13 ± 0.02 0.10 ± 0.01 0.139 0.980 0.081 0.233 0.008

22:4 n-6 0.53 ± 0.07 0.63 ± 0.04 0.26 ± 0.03 0.32 ± 0.04 0.141 <0.001 <0.001 0.002 <0.001

18:3 n-3 0.10 ± 0.03 0.06 ± 0.03 0.18 ± 0.03 0.08 ± 0.05 0.461 0.151 0.018 0.910 0.816

20:5 n-3 
(EPA) 0.27 ± 0.12 0.29 ± 0.03 0.23 ± 0.02 0.27 ± 0.04 NS NS NS NS NS

20:4 n-3 1.37 ± 0.17 1.34 ± 0.15 0.89 ± 0.17 1.12 ± 0.13 NS NS NS NS NS

22:6 n-3 
(DHA) 1.33 ± 0.23 1.40 ± 0.05 0.62 ± 0.07 0.83 ± 0.09 0.907 <0.001 <0.001 0.007 0.003

22:5 n-3 0.84 ± 0.15 0.85 ± 0.10 0.51 ± 0.08 0.55 ± 0.05 0.999 0.017 0.015 0.031 0.026

Total MUFAs 24.37 ± 1.70 22.57 ± 0.95 23.05 ± 2.53 23.85 ± 0.62 NS NS NS NS NS

Total SFAs 53.55 ± 4.04 56.90 ± 2.30 63.03 ± 4.41 59.87 ± 0.32 0.600 0.028 0.167 0.152 0.680

Table 3.  Fatty acid content (%) in cell culture medium and acellular control medium. Values are mean ± SD, 
NS – no significant difference in the ANOVA test: the differences in the mean values among the groups are not 
great enough to exclude the possibility that the difference is due to random sampling variability. P value from 
one-way ANOVA, followed by post-hoc test. Control medium was incubated without any cells. ALA - alpha-
linolenic acid, AdA – adrenic acid, ARA - arachidonic acid, DGLA - dihomo-gamma-linolenic acid, DPA – 
docosapentaenoic acid, ETA - eicosatetraenoic acid, EPA - eicosapentaenoic acid, LA – linoleic acid (18:2n-6), 
MUFA – monounsaturated FA, SFA – saturated FA.
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Materials and Methods
Patients.  The study included tissue samples from surgical specimens of stage I-IV CRC. The samples were 
obtained immediately after surgical resection from 44 patients (26 men and 18 women) with mean age of 
69.6 ± 12 years and mean BMI of 27.1 ± 4.47 kg/m2; 23 patients presented with locally advanced cancers, stage I 
(n = 11) or stage II (n = 12), 14 with regionally advanced malignancies with metastases to regional lymph nodes 
(stage III), and 7 with stage IV CRC with distant metastases. None of the patients received preoperative neoad-
juvant treatment and omega-3 FA supplementation. The tissue and serum sample collection was performed as 
we described previously3,8. The tissue samples were collected from both the tumor and normal large intestinal 
mucosa, at least 5 cm from the tumor interface. Each sample was divided in two parts: one was used for molecular 
analysis and another one for preparation of routine hematoxylin and eosin (H&E) stained microscopic slides 
for histopathological examination. The material for molecular studies was frozen in liquid nitrogen immedi-
ately after collection and stored in aliquots at −80 °C until the analysis. Moreover, 5-ml blood samples were col-
lected from all CRC patients and 38 healthy controls (18 men and 20 women, mean age 51.8 ± 10.1 years, mean 
BMI 26.6 ± 4.0 kg/m2). The control group was comprised of healthy volunteers referred for an annual medical 
check-up and having similar demographic and socioeconomic characteristics as the CRC patients. Fasting blood 
samples were collected to tubes without anticoagulant, left at room temperature for 30 minutes to allow clotting, 
and then centrifuged at 3000 × g for 15 minutes at 4 °C. After the centrifugation, the sera were stored in aliquots 
at −80 °C until the analysis. The protocol of the study was compliant with the Declaration of Helsinki of the 
World Medical Association and granted approval from the Local Bioethics Committee at the Medical University 
of Gdansk (decision no. NKBN/487/2015). Prior to the study, written informed consent was sought from all the 
subjects. Routine laboratory parameters were determined at the Central Clinical Laboratory, Medical University 
of Gdansk.

Cell cultures.  HT-29, WiDr human colorectal adenocarcinoma cells and CCD 841 CoN human normal colon 
cells were obtained from LGC Standards. The cells were cultured in McCoy’s 5 A medium (Sigma-Aldrich) supple-
mented with heat-inactivated fetal bovine serum (10%), penicillin (100 units/ml) and streptomycin (100 µg/ml).  
Due to low level of PUFAs in heat-inactivated fetal bovine serum, the medium was additionally supplemented 
with linoleic acid (Sigma-Aldrich), docosahexaenoic acid (Sigma-Aldrich) and arachidonic acid (Santa Cruz 
Biotechnology) at final concentrations of 25 µM, 5 µM and 12 µM, respectively; added at these concentrations, the 
PUFAs did not exert an effect on cell viability. The media for control samples were prepared as described above 
but did not contain any cells. The cultures were incubated for 72 hours at 37 °C, under a humidified atmosphere 
with 5% CO2. At the end of the incubation, the culture media were used for the analysis of FA profiles. The cells 
were frozen in liquid nitrogen and stored at −80 °C for mRNA analysis.

Analysis of fatty acid composition in patients’ tissues, sera and culture media.  Preparation 
of patients’ tissues, sera and culture media samples included extraction of total lipids by the Folch method33 
with 2:1 (v/v) chloroform and methanol mixture. Then, the lipid extracts were dried by evaporation under a 
stream of nitrogen and alkaline hydrolyzed with 0.5 M KOH at 90 °C for 3 hours. Next, the mixture was acidi-
fied with 6 M HCl, and 1 mL of water was added. Free fatty acids (FFAs) were extracted three times with 1 mL 
of n-hexane and evaporated under a stream of nitrogen. To obtain fatty acid methyl esters (FAMEs), 10% 
boron trifluoride-methanol solution was added to each sample which was then heated at 55 °C for 90 minutes. 
Subsequently, 1 mL of water was added to the reaction mixture, and FA derivatives were extracted three times 
with n-hexane. After evaporation of the solvent, the samples were stored at -20 °C until the GC-MS analysis. 
FAMEs were analyzed with GC–MS QP‐2010 SE (Shimadzu, Japan), using a 30-m 0.25-mm i.d. ZB-5MSi capil-
lary column (film thickness 0.25 μm). Temperature of the column was set between 60 °C and 300 °C (4 °C/min). 

Figure 5.  The role of preferential uptake of polyunsaturated fatty acid by colorectal cancer cells, as well as over-
expression of the enzymes of polyunsaturated fatty acid elongation and desaturation, in providing substrates for 
cell membrane phospholipid synthesis. ELOVS – fatty acid elongases (2,4 and 5); FADSs – fatty acid desaturases 
(Δ-5 and Δ-6).
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Helium was used as a carrier gas at the column head pressure of 100 kPa, and FAME ionization was carried out 
with 70 eV electron energy. Full‐scan mode was applied, with mass scan range m/z 45–700. 19-methyleicosanoic 
acid was used as an internal standard. FAMEs were identified by comparison with reference standards (37 FAME 
Mix, Supelco®) and NIST2011 reference library.

Real-time analysis of mRNA levels in patients’ tissues and cultured cells.  Total RNA was isolated 
from frozen tissues and cells using GenElute Mammalian Total RNA Miniprep Kit (Sigma-Aldrich, Missouri, 
US) according to the manufacturer’s instruction. After the final centrifugation, RNA was washed with 50 μL of 
elution solution. The amount and quality of RNA prior to downstream experiment were measured using Experion 
Automated Electrophoresis System (Bio-Rad, California, US). To remove genomic DNA, the samples were treated 
with DNase (ThermoFisher Scientific, Massachusetts, US) according to the manufacturer’s instructions. RNA 
was reverse-transcribed by adding 1 μg ribonucleic acid to a reaction mixture from RevertAid First Strand cDNA 
Synthesis Kit (ThermoFisher Scientific, Massachusetts, US), to a total volume of 20 μL. The reverse transcrip-
tion was carried out with T100 Thermal Cycler (Bio-Rad, California, US). cDNA for PCR was stored at -20 °C. 
Expressions of all examined genes were determined with CFX Connect Real-Time System (Bio-Rad, California, 
US). The transcript level of each gene was normalized to the transcript level of β-actin. All primer sets were pro-
vided by Genomed (Warsaw, Poland). The primer sequences are listed in Supplementary Table 2. Specificity of the 
reactions was verified based on melting curve profile analysis and agarose gel electrophoresis.

Statistical analysis.  Statistical significance of differences in the study parameters was verified with paired 
Student t-test (cancer tissue vs. normal colorectal mucosa) or two-tailed Student t-test (CRC patients vs. healthy 
controls, cancer cell culture media vs. control culture media). When comparing more than two groups, the signif-
icance of intergroup differences was verified with one-way analysis of variance (ANOVA), or ANOVA on ranks 
for non-parametric data, followed by appropriate post hoc tests. The differences were considered significant at 
p < 0.05. The results are presented as means ± standard deviations (SD). The statistical calculations were carried 
out with SigmaPlot software (Systat, San Jose, USA).
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