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impact of Bayesian inference on the 
Selection of Psidium guajava
flavia Alves da Silva  1*, Alexandre pio Viana  1, caio cezar Guedes corrêa  1, 
Beatriz Murizini carvalho  1, carlos Misael Bezerra de Sousa  1, Bruno Dias Amaral  1, 
Moisés Ambrósio  1 & Leonardo Siqueira Glória  2

perennial breeding species demand substantial investment in various resources, mainly the required 
time to obtain adult and productive plants. estimating several genetic parameters in these species, in 
a more confidence way, means saving resources when selecting a new genotype. A model using the 
Bayesian approach was compared with the frequentist methodology for selecting superior genotypes. 
A population of 17 families of full-siblings of guava tree was evaluated, and the yield, fruit mass, and 
pulp mass were measured. The Bayesian methodology suggest more accurate estimates of variance 
components, as well as better results to fit of model in a cross-validation. Proper priori for Bayesian 
model is very important to convergency of chains, mainly for small datasets. Even with poor priori, 
Bayesian was better than frequentist approach.

Perennial plant species such as guava trees (Psidium guajava L.) have specific characteristics such as a long repro-
ductive cycle, a high annual variation in some traits as the yield, differences in precocity, and productive longev-
ity1. This reduces the predictive power of the models, which most often means losses on invested resources. From 
the point of view of genetic improvement and use in commercial orchards, these characteristics have the follow-
ing consequences: use of the same genetic material selected for an over number of years; the necessity of repeated 
evaluations in each individual throughout time, and the reduction in the survival rate of experiments during their 
useful life. The last one tends to generate unbalanced data that demand accuracy in selection methods2. So, using 
a method for modeling that produces more accurate results can undoubtedly save resources, and in the long time 
improve the chance of success of experiments with perennials plants.

Perennial plant breeding typically applies the procedure of Restricted Maximum Likelihood/Best Linear 
Unbiased Prediction (REML/BLUP) for the prediction of genetic values and estimation of variance components2. 
Mixed model theory has been a reference for assessing breeding programs in perennial plants, plants in general 
and animals3. Even though the frequentist methodology presents a number of useful properties, there is a limita-
tion as the REML method only provides approximate confidence intervals2.

This can be avoided by Bayesian inference using an informative prior distribution with mixed models. This 
approach in genetic breeding, is founded on knowledge of a posteriori distribution. In this process, the likelihood 
function connects the priori (previous information of the experiment) to the posterior distribution, which finally 
contemplates the previous knowledge and the additional information obtained in the experiment.

Among the various Bayesian methodologies, the Markov Chains Monte Carlo simulation method can be 
applied for generate a chain of successive iterations updating the estimates by the likelihood starting from an 
initial parameter (priori). In the subsequent joint distribution the variances can be obtained, enabling the con-
struction of more accurate confidence intervals (defined as probability intervals or credibility intervals), and also 
estimative of genetic parameters4.

The Bayesian approach have any advantages compared to the frequentist analysis. The main one is the possibil-
ity of using informative priors about parameters of the model5. In the frequentist’s approach, if you have previous 
data, you can even do a joint analysis with your current experiment, which is often hampered by the difference 
between outlines or even incomplete data. But this usually comes as a source of variation in the model and does 
not add much information beyond the possibility of identifying if the previous data are different from the current 
experiment. Another advantage is that the credibility intervals are close than the confidence intervals, if a proper 
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prior has been used. Because the likelihood function, if a poor priori is used with mixed models, the performance 
of Bayesian with mixed models is at least equal to BLUP6–8.

This work aims to compare REML/BLUP and the Bayesian approach using a non-informative and a proper 
prior. For this, a superior performance of the Bayesian models is expected, observing the deviation of this meth-
ods in relation to phenotypic mean, for the selection of superior genotypes in a perennial population of Psidium 
guajava.

Methods
Genetic material and experimental design. A total of 17 families of full siblings was selected for this 
study, all of which belong to the Genetic Breeding Program of guava tree from the Universidade Estadual do Norte 
Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil. Genotypes are derived from crosses between seven 
contrasting parents chosen by diversity genetics studies9. This population is in the final stages of the breeding 
program.

The experiment was performed in a randomized block design with two replicates. Each family was repre-
sented by 24 individuals (12 per block) with a total initially of 408 individuals. The experiment was conducted 
between 2016 and 2018. The spacing was of 3 per 1.5 m between rows and between plants, respectively. All culture 
treatments were applied according to the culture requirements10. Harvests were carried out at the individual level, 
where yield (kg.plant−1) was obtained, and generated one observation per individual because it’s a sum of produc-
tion. For fruit mass (FM g) and pulp mass (PM g) were taken five observations in different fruits. Some genotypes 
were lost during the period of the experiments, which resulted in unbalanced data.

Statistical model and analyses. First, we use the common methodology in the so-called frequentist 
breeding, and later we use the same model with the beyesian approach, using the mixed model:

= + + +y Xb Za Wc e (1)

in which y is the observation vector; b is the parametric vector of the fixed effects (families), associated with the 
vector y by the incidence matrix known X; a and c are the parametric vectors of the random effects (block and 
individual within the family, respectively), also associated with y by the incidence matrices known, Z and W, 
respectively; and e is the residual vector, assuming that a and c ~ N (0, Gg e Ga) in which G is the genotypic and 
addictive variance matrix of the random effects and e ~ N (0, R) which R is the residual variance matrix of the 
random errors.

Was employed the method of restricted maximum likelihood (REML) to obtain the best estimates of variance 
components associated with non-orthogonal and unbalanced data11. The REML/BLUP method was executed 
using the PROCMIXED procedure in the SAS software12.

The Bayesian approach was used with the same model, applying the Monte Carlo method based on Markov 
Chains (MCMC), as described by Hadfield13, employing the MCMCglmm::MCMglmm package in R software14. A 
total of one million of iterations (nitt) were determined, discarding the first one hundred thousand first (burn-in) 
and performing a 1:3 (thin) sampling, totaling an chain with three hundred thousand iterations, where was 
obtained the variance components (a posteriori distribution). The Markov Chain convergence was tested by the 
Geweke criterion in accordance with the recommendations of Cowles and Carlin15 by using the coda::geweke.diag 
package16 in R software14.

The a posteriori means, credibility intervals, and standard deviation of the MCMC sample were obtained 
according to the generalized linear mixed model:

μ= + + +Y b g e (2)lik i ik li lik

in which Ylik is the l-th = [1,…,12] phenotypic value in the i-th = [1,…,17] family within the k-th = [1,2] block; μi 
is the overall mean of the i-th family; bik is the effect of the i-th family within the k-th block; gli is the effect of the 
l-th individual within the i-th family; and elik is the residual term.

The joint data distribution (probability function) was utilized under the Bayesian approach: 
β β σ| +′ ′~Y g G R N x z g, , , ( , )ikl i ki e0 0

2 , in which β is the vector of an a priori probability of systematic effects (over-
all mean); = ⊗~g g N I G{ } (0, )kl 0  is the vector of an a priori probability of genotypic values, in which I is the 
identity matrix and G0 is the genotypic variance matrix; = ⊗~e e N I R{ } (0, )ikl 0  is the vector of a prior probabil-
ity of residual values with identical values of independent distribution, in which R0 with ′xl  and ′zl  are incidence 
vector relating systematization of the genotype effects for the corresponding phenotypic value; and σe

2 is the 
residual variance considered to be homogeneous. The prior information was based on meta-analysis or on the 
posterior distributions of the parameters from the previous cycle (2011–2015). The priori informative probability 
distribution for the fixed parameters of interest was obtained from provided by: β ~ N b V( , )i b0  in which Vb is a 
diagonal matrix of the a priori variance of β. An inverted Wishart distribution was adopted for each G0 and R0 as 
a priori for the covariance matrices: Σ−~G W n( , )g0 1

1  ande Σ−~R W n( , )e0 1
1 , in which Σg  and Σe are scale 

matrices.
The posteriori joint density of all the parameters, which are dependent on the genotypic effects of the respec-

tive matrix, but which assume a priori independence, is given by:

β β β| ∝ | | | ⊗ |Σ |Σp g G R y p y g G R p b V p g I G p G n p R n( , , , ) ( , , , ) ( , ) ( ) ( , ) ( , ) (3)b g e0 0 0 0 0 0 0 0

A non-informative priori also tested in the model, using a standard priori of the function according with 
Hadfield13. This non-informative priori assumes for fixed effects a variance matrix ( = ×V I 110, in which I is an 
identity matrix) and mean equal to zero (mu = 0). Regarding the systematics effects, a variance equal to 1 (V = 1) 
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and a parameter of degree of confidence around zero (nu = 0.002) were adopted. These distributions are equiva-
lent to inverse gamma distributions (inverted Wishart).

A cross-validation scheme was tested in the methodologies. Ten folds were used in the cross-validation, in 
each fold the dataset was divided into two subsets, the fist was composed by 90% of dataset taken at random, 
and was used for training the model. The second (10% ~200 individuals) was the phenotypic values predicted by 
model obtained on the fist. In each fold a different subset was taken, until all the individuals that were evaluated 
had their predicted phenotypes.

Results and Discussion
First, was applied the three methodologies throughout the data set, simulating one a common user, and we tried 
to observe some difference between the results obtained. Then, we plot the deviations of families mean and over-
all mean for the main yield trait (Fig. 1). Was possible to observe that the frequentist methodology presented a 
greater deviation, since in some cases the deviation reaches extreme values with errors of approximately 2.4 kg. It 
is worth mentioning that if this value is extrapolated to large areas of orchards, the difference can reach ~6 t.ha−1. 
In Bayesian approach with informative priori, it is noticed that the errors in relation to the average were constantly 
smaller.

As these estimates are part of the process in the mixed models applied to determine the variance components, 
to allow the addition of prior information improving the inference process. This analysis provides a more accurate 
description on the reliability of estimates and predictions than the REML method17, with much less simple meth-
ods18, even though the Bayesian inference has very similar goals to that of Fisher, in which the subjective element 
is removed from the choice of the a priori distribution.

After observing the deviations, was used a cross-validation to obtain model fit dispersion measures. It was 
considered as a good fit, the methodology that provided lower deviance information criterion (DIC) and also 
high values for a posterior adjustment probability of the model (Wprob) (Table 1). We verify the predictive power 
of the models through the correlation between the separate phenotypic data for validation and the prediction of 
the model obtained by training dataset, in each fold.

Bayesian with a prior showed the lowest DIC with 4287.9, 17985.8 and 6145.8 for the fruit mass, pulp mass and 
yield variables respectively, showing higher values of Wprob and correlation. With the standard deviations and 
the delta, it is possible to notice that among the folds of the cross validation, there was consistency in the fit of the 
model, with minor values for Bayesian inference with informative priori. Thus, whenever a random percentage 
of the data was used to test the model, it obtained very close results, mainly for the Bayesian approach than for 
the frequentist.

In the yield variable, where the setting with poor priori for Bayesian inference was worse than the frequentist. 
It was observed that a poor prior impaired the model as it can be observed in the DIC that although smaller than 
the frequentist had greater deviations between the folds of the cross-validation, result of the inconsistency of the 

Figure 1. Differences between the mean estimates obtained by the REML/BLUP methodology and Bayesian 
inference and the phenotypic mean values in the total production variable (yield t.ha−1) in a full-siblings 
population of guava trees.
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Fruit mass Pulp mass Yield

DIC (SD/∆) Wprob r DIC (SD/∆) Wprob r DIC (SD/∆) Wprob r

A 14400.8 (94.5/221) 1.60E-25 0.66 18311.4 (1512.3/6049) 1.20E-71 0.31 7195.6 (110.1/322) 1.10E-228 0.70

B 14288.3 (56.1/184) 4.50E-01 0.76 17986.8 (1470.2/4752) 6.20E-01 0.36 6881.1 (238.6/709) 2.10E-160 0.76

C 14287.9 (56.0/183) 5.40E-01 0.81 17985.8 (1470.5/4752) 3.70E-01 0.37 6145.8 (81.4/257) 1.00E + 00 0.82

Table 1. Quality of fit models by cross-validation (10 folds: 90% training and 10% for validation), in the same 
sample sets of data for three methodologies: frequentist (REML/BLUP) and Bayesian (with prior no informative 
and prior informative) tested in the variables fruit mass (g), pulp mass (g) and yield (kg.plant−1) in P. guajava. 
A = REML/BLUP; B = Bayesian without prior; C = Bayesian with prior; DIC = deviance information criterion; 
SD = standard deviation; ∆ (delta) = difference between the highest and lowest value of DIC; Wprob = model 
posterior probabilities; r = correlation between the Y predicted of model (training) and Y reserved for 
validation.

Figure 2. Distribution chain of mean estimates of 300k estimates for the variable yield in the sources of 
variation block, plants, and error (units) of the model using an informative priori (A) and a poor priori (B). On 
the right the density function of the distribution corresponding to the chain.
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model depending on the data. Since yield data consist of a single observation (total production), we can infer that 
Bayesian inference circumvents well the small dataset problem as long as an adequate priori is provided19.

This accuracy arises because the MCMC method still exhibited great variations in the mean chains, therefore 
the lower significance, already justified by the greater consistency of the chain when starting from informative 
priori (Fig. 2). It is clear the great difference between the chains using an proper distribution for priori and a poor 
priori. Silva, et al.20 tested three distributions for informative priori, searching for the best model for variables in 
pigs. These authors also showed the difference in the accuracy that proper priori provides. The observation of the 
chain behavior is also a quality control criterion of the adjustment of the model to the data, given that the burn-in 
itself is a preventive measure to discard the inconsistent starting of the chain21. In this work, the importance of the 
informative priori is further evident when observing the chains of blocks, plants, and error (Fig. 2A,B).

It is also important to note that the stop iteration criterion in PROCMIXED is when the difference between 
the parameters of the distribution between one iteration and another is smaller than 1E-812. In the Bayesian 
approach the chain of iterations is defined by the user (in this case 1 mi). At the onset of warming the MCMC 
method still produces estimates of averages with considerable variation, which tend to decrease with the increase 
in the chain13. When the user inserts a priori that represents the data well, providing good distribution parame-
ters, that variation between one iteration and another is even smaller, and together with the excessive size of the 
chain, it generates more precise estimates2. We believe that the poor prior caused so much disturbance in the 
chain that not even the excessive size was able to stabilize the parameters and promote good distributions posteri-
ori but it was still better than frequentist.

If was used a non-informative distribution for the parameters of the mixed model, Bayesian inference and 
BLUP should be equivalent. Thus a priori changes the posterior distribution, so that the information contained 
in it does not come only from the data (likelihood function)6. That is, it adds more information in the analysis, 
which is not based on the data. So, we proceeded with the selection of the individuals using Bayesian approach 
with proper prior to obtain the estimated means and predicted genotypic values. We believe to get more accurate 
genotypic values, because the Bayesian MCMC methods consider uncertainties in the parameters throughout the 
inference process. On the other hand the BLUP are predicted by point estimates of variance components and are 
used as true values, ignoring uncertainty in the variance parameters22.

The selection of the best families was performed to be recombined and to generate new populations. The 
objective is to increase the general population mean, and for this purpose the first nine families were selected, 
whose estimates were higher than the general average of the population (Fig. 3).

The credibility intervals for this means were generally quite accurate, with a high degree of reliability. If we 
observe the credibility intervals for Bayesian and the confidence intervals for REML/BLUP, we can see better 
results with Bayesian inference (Fig. 4 and Table 2).

Figure 3. Estimated means in a population of full-sibs of guava trees obtained by Bayesian approach for yield, 
fruit mass and pulp mass traits.
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This is because the REML method provides only approximate confidence intervals through the use of approxi-
mations and assumptions of asymptotic normality. The distribution and variance of the estimators are not known 
and, therefore questions regarding the effectiveness of the selection to be practiced cannot be answered with rigor. 
On the other hand, Bayesian analysis is based on the knowledge of the posterior distribution of the parameters, 
and allows the construction of exact confidence intervals (Bayesian probability intervals or credibility intervals)17.

Another part of the population was selected for test value of cultivation and use (VCU) (Table 3). These indi-
viduals were selected according to predicted genotypic values and gain estimates based on heritability (Table 4). 

Figure 4. Phenotypic mean of the yield trait for the 17 families of Guava trees and the confidence intervals 
obtained by the REML/BLUP methodology and the credibility intervals obtained by the Bayesian approach with 
informative priori and poor priori.

PROD MF MP

F REML/BLUP

BAYESIAN APROACH

F
REML/
BLUP

BAYESIAN 
APROACH

F
REML/
BLUP

BAYESIAN 
APROACH

poor prior proper prior
poor 
prior

proper 
prior

poor 
prior

proper 
prior

8 35098,00*** 34998,13*** 35078,59*** 10 271,80*** 250,54** 250,73*** 1 230,96*** 231,91*** 231,81***

5 34295,00*** 34493,25*** 34639,59*** 13 248,71*** 249,31** 249,24*** 10 206,89*** 190,29*** 190,21***

4 28563,00*** 28303,61** 28329,94*** 7 228,47*** 227,85** 228,04*** 13 190,12*** 187,76*** 187,59***

3 26946,00*** 26850,92** 26929,71*** 1 222,38*** 220,30** 220,37*** 7 173,08*** 173,07*** 172,92***

12 21917,00*** 21703,40** 21762,18*** 6 220,34*** 219,74** 219,86*** 6 164,68*** 164,83** 164,69***

2 18755,00*** 18674,19** 18748,46*** 9 217,96*** 218,41** 218,86*** 9 164,50*** 164,68** 164,51***

17 17018,00*** 16840,72** 16902,11*** 11 217,13*** 216,63** 216,83*** 11 164,22*** 163,99** 163,90***

13 16286,00*** 16072,40** 16129,23*** 16 216,34*** 216,09** 216,16*** 8 163,89*** 163,69*** 163,36***

10 15992,00*** 15924,00** 16023,37*** 8 216,19*** 214,21** 214,82*** 16 158,45*** 158,40** 158,20***

1 10064,00*** 11079,66** 11312,48*** 14 209,23*** 209,18** 209,18*** 14 157,37*** 157,58** 157,45***

11 9158,30** 8848,93* 8964,14*** 15 204,26*** 206,23** 205,82*** 15 154,23*** 154,40** 154,50***

7 8855,85*** 8682,72* 8756,89*** 2 194,24*** 194,14** 194,24*** 2 146,57*** 146,71** 146,57***

14 8795,13*** 6924,54* 6685,50* 17 192,38*** 192,80** 192,71*** 17 145,59*** 145,91** 145,75***

15 5922,64* 6139,26* 6314,23* 12 182,88*** 183,95** 183,75*** 12 134,58*** 134,79** 134,65***

16 5869,42* 5475,26 ns 5480,41* 5 169,18*** 169,33** 169,11*** 4 125,90*** 126,04** 126,12***

6 5395,73** 5339,30* 5428,43* 4 168,07*** 167,81** 168,14*** 5 125,67*** 125,76** 125,51***

9 5368,02** 5305,03* 5394,13* 3 167,89*** 167,79** 167,88*** 3 123,63*** 123,76** 123,65***

X 16135,24 15979,73 16051,73 208,67 207,32 207,40 160,61 159,63 159,50

Table 2. Estimates of averages obtained through the frequentist methodology by REML/BLUP and by Bayesian 
inference (with poor priori and a proper priori) for the variables yield (kg.plant−1), fruit mass (g) and pulp 
mass (g) in P. guajava. F = families (1,…, 17); ns = not significant; * = (p-value < 0,05); ** = (p- value < 0,01); 
*** = (p- value < 0,001) for the confidence intervals of averages. The first eight families were selected (from 13 
upwards) of the table indicates the individuals that were selected with mean above the general average for yield 
trait, considering the Bayesian approach and proper priori. All values in the table are in grams (g).
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Heritability estimates showed values within the expected range for the traits, considering that these are controlled 
by a large number of genes and are highly influenced by the environment2. The heritability also showed highs 
predict accuracy and standard deviation lowers. These measures are fundamental to planning the breeding pro-
gram, allowing for more realistic forecasts of the next steps. Similar heritability were observed in guava fruit10, 
and even higher for this traits, but as shown in the standard deviation values were so high that they approached 
the estimates presented.

Individuals were selected independently of the aim; industrial processes - where we consider the yield varia-
ble or in nature consumption - considering of greater interest the variables fruit mass and pulp mass looking for 
bigger and more vigorous fruits with less seeds and greater pulp mass. Since the components of variance were 
estimated through stochastic simulation (Gibbs sampling), we believe that the genetic values best represent the 
real value of the individual. The idea behind this argument is the exact analysis of finite-size samples because the 

B F PL Yield EG (kg) Fruit mass EG (g) Pulp mass EG (g)

1 2 8 0.16 44.74 20.48 9.01 0.21 5.4

1 2 11 0.11 2.65 11.98 5.06 0.21 5.27

2 3 9 0.07 14.41 62.24 29.32 0.86 21.38

1 5 7 0.09 18.65 9.4 4.05 0.13 3.38

2 5 11 0.07 14.59 18.78 9.34 0.22 5.31

1 6 3 0.06 28.32 28.01 12.2 0.33 8.16

1 6 5 0.16 26.93 32.01 14.07 0.4 10.03

1 7 8 0.02 12.44 15.97 7.32 0.14 2.9

1 7 11 0.17 30.21 39.81 18.37 0.61 14.37

1 8 1 0.16 17.64 15.04 6.48 0.11 2.77

2 8 2 0.19 46.30 16.66 8.19 0.11 2.82

1 9 1 0.05 14.47 14.86 5.88 0.16 4.11

1 10 6 0.07 3.57 30.34 13.71 0.42 10.01

1 5 2 0.1 22.42 9.55 4.14 0 0.46

2 12 1 0.05 12.63 53.15 24.96 0.5 12.24

2 12 2 0.03 19.90 4.35 2.35 0.15 3.67

2 12 11 0.11 21.88 22.37 10.68 0.39 9.6

1 13 4 0.25 44.37 13.48 5.7 0.08 2.21

2 13 10 0.11 20.88 29.98 14.29 0.37 8.91

1 17 4 0.06 1.55 45.61 20.18 0.23 5.67

2 1 4 0.08 6.85 56.1 24.6 0.12 21.75

2 4 6 0 2.66 16.81 6.61 0.3 6.97

1 11 5 0.03 12.23 4.5 3.97 0.05 1.63

2 14 2 0.11 19 47.41 22.17 0.68 16.39

1 16 2 0.08 4.57 20.29 9.68 0.41 10.06

2 2 1 0.24 23.89 3.38 2.06 0.02 0.31

1 3 5 0.23 26.54 14.41 6.2 0.21 4.56

2 3 1 0.15 51.88 8.63 4.47 0.14 3.36

1 5 1 0.13 17.37 3.21 1.19 0.08 2.06

1 8 10 0.22 42.10 12.66 5.38 0.21 5.03

Table 3. Genotypic values and estimates of gains obtained through Bayesian inference for the variables yield 
(kg), fruit mass (g) and pulp mass (g) in P. guajava. B = block; F = family of genotype; PL = id of genotype; 
EG = expected gain for individual mean based on each family mean and heritability.

Fruit mass Pulp mass Yield

h2 0.36 0.31 0.20

Standard deviation 8.20E-03 7.35E-02 9.27E-03

Predict Accuracy 1.35 0.66 1.83

Overall mean 207.40 g 159.50 g 16.05 kg

Mean of selected 227.51 g 179.87 g 24.82 kg

Expected gain 6.12 g 6.31 g 1.75 kg

Table 4. Heritability, predict accuracy and standard deviation values for the variables fruit mass (g), pulp mass 
(g) and yield (kg.plant−1) in P. guajava obtained with Bayesian inference. h2 = narrow-sense heritability.
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data are fixed in the posterior distribution, instead of assuming multivariate normal distributions. Better statisti-
cal discussions on BLUP obtained by Bayesian inference may be found in2,23–25.

Perennial plant breeding programs have a particularity compared to annual plants. This difference is that the 
production period of perennials is very long. Therefore, the amount of resources needed to improve these species 
is much larger. Thus, to avoid estimation of variance components with less precision and thus make a program 
even more difficult, the Bayesian approach can be used. Another advantageous point of this approach is the pos-
sibility of using a priori information in the model. Thus, the breeder can make better use of the information avail-
able in the literature by using them as distribution measures in his model, instead of just comparing his results.

conclusions
In general, Bayesian inference provided the best fit of the model to this dataset, considering a population of 
full-siblings of Psidium guajava. This approach has provided a more complete and reliable result, thus allowing 
the selection of the best families to give continuity to the program and the best individuals to test crop value 
according to the expectations. The use of a priori information is the main advantage, and although it is subjective 
when the prior distribution is informative, the credibility intervals are narrower than the confidence intervals, 
and this is the main contributor to the accuracy of the model and help you bypass problems of small/unbalanced 
datasets.

Bayesian inference clearly has advantages over frequentist methodology, and with the advancement of com-
putational powers this inference tends to become popular. We emphasize that we do not say that the Bayesian 
approach will be superior in all cases, but because of the advantages it can provide the investment to be tested it 
is worth it.

Data availability
The full phenotypic information, breeding values, scripts and chains generated used in this study, have been 
submitted at the Open Science Framework and was awarded the public doi identifier: https://doi.org/10.17605/
OSF.IO/VKE6A.
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