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experimental subjects do not know 
what we think they know
Jared M. field1,2,3 & Michael B. Bonsall  2*

Many biological, psychological and economic experiments have been designed where an organism 
or individual must choose between two options that have the same expected reward but differ in the 
variance of reward received. In this way, designed empirical approaches have been developed for 
evaluating risk preferences. Here, however, we show that if the experimental subject is inferring the 
reward distribution (to optimize some process), they will rarely agree in finite time that the expected 
rewards are equal. In turn, we argue that this makes discussions of risk preferences, and indeed 
the motivations of behaviour, not so simple or straightforward to interpret. We use this particular 
experiment to highlight the serious need to consider the frame of reference of the experimental subject 
in studies of behaviour.

While in physics it is standard, in biology we do not often think about frames of reference. Suppose, for exam-
ple, an experiment is set-up such that an organism (or person) must choose between two options with the same 
expected reward but different variance in reward. Further, suppose that the organism consistently chooses the 
safe bet (lower variance). In this case, we may be tempted to label that organism as risk-averse. This makes sense 
from our point of view or frame of reference. However, are we sure that the organism agrees on the experimental 
set-up? Perhaps, from the frame of reference of the organism, the expected rewards are not even perceived to 
be the same. If this is the case, we ought to be careful with the conclusions we draw about why the organism is 
behaving a certain way. Though this particular experiment was picked to make a point, hundreds of variations on 
it have been carried out across several disciplines (see reviews1–3 and references therein).

Most theoretical attempts to understand behaviour start by assuming some sort of quantity to be optimized4. 
In finance, classically it is return on investments under a certain risk constraint5. In economics, it is (broadly 
defined) utility6. In biology, utility is usually replaced with reproductive values and assumptions of rationality 
with natural selection7. However, energy budgets and threshold reserves have also proved fruitful in understand-
ing risky behaviour8. Here, however, we divorce ourselves of any such quantities. Instead, we shift attention to 
the information available in order to make decisions. This way the focus is put on potential differences in beliefs 
between experimenters and those on whom they are experimenting. We are interested not in predicting traits or 
behaviours in experiments but in the conclusions we can and cannot draw from them.

In this paper, as is standard in statistical decision theory, we assume that the organism or person being studied 
is sampling their environment and updating their beliefs9–12. In particular, in the experiment described above 
(and below, in more detail), we suppose that for each of the options the organism is inferring the probability of 
receiving a reward at any instance. Our analyses show that, given infinite time, the organism can indeed infer 
correctly this probability. In other words, the organism will agree with the experimenter on the experimental 
set-up (which is to say, agree that the expected rewards of each option are equal). However, we then go on to show 
that in finite time such agreement will rarely be reached. This is clearly important as all experiments, by nature, 
have a fixed end-point. In light of this, we point out that it is not so simple to infer risk preferences, as is often 
done, from these types of experiments. The problem, as we point out, arises from the experimenter and experi-
mental subject having different frames of reference. It is worthwhile noting that the problem of finite sampling 
and its effect on belief dynamics has been considered in the economics literature13–15. There, however, the focus 
is on understanding the consequences of having an incorrect model of the world such as the fallacy of the Law 
of Small Numbers. A further difference is that we study not only the absolute belief dynamics of an agent but the 
deviation from a point of reference i.e. the beliefs of the experimenter. This is crucial to understand motivations 
of behaviour properly.
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The rest of the paper is organized as follows: in the next section we go into more detail on the broad class of 
experiments we are using to demonstrate our point. Following this we introduce the inference problem and prove 
convergence to the true probability of receiving a given reward given infinite time. Next, noting that real exper-
iments are finite, we show that such a convergence does not occur in this case. Further, we show that the ramifi-
cation of this is that the experimenter and experimental subject do not agree in finite time on the parameters of 
the experiments. Otherwise put, for any finite number of trials the organism (or person) being experimented on 
will seldom believe that the expected rewards of each option are equal. Next, we consider a case study and pro-
vide some practical insights for experimentalists. Finally, we summarise our findings and consider their broader 
implications.

experimental problem
To motivate our problem, we consider an experimental design where an organism is presented with two choices. 
One choice (called an arm) leads always (i.e. with probability =p̂ 11 ) to a fixed reward of c. The other choice (the 
other arm) leads with probability p̂2 to a reward of a and − p̂(1 )2  to a reward of b. The experiment is designed 
such that the expected reward is the same on both arms. This leads to,

= + − .ˆ ˆc p a p b(1 ) (1)2 2

In this way, from the point of view of the experimenter, if only expected values are used then the organism 
should be indifferent to each arm. In light of this, in order to make decisions the organism ought to consider the 
variances in rewards. For an excellent (and extensive) review of these types of experiments see1. However, as we 
show below, from the point of view of the organism, the expected rewards are not always equal.

Inference Problem
Suppose an organism is attempting to infer the distribution of two possible pay-offs on an experimental arm of 
the type described above. In particular, by sampling the past pay-offs they are attempting to infer, in a Bayesian 
manner, the probability p of receiving g and the probability 1 − p of receiving h. In order to do this, both a prior 
distribution and likelihood function will be needed to form a posterior distribution for p. To this end, suppose 
s successes and f failures (with regards to receiving g) are observed. In this case, the likelihood that p = x will be 
given by

| = = + − .( )Pr s f p x s f
s

x x( , ) (1 )
(2)

s f

To encode any previous knowledge we choose the conjugate prior of the binomial distribution, the Beta dis-
tribution, which is given by:

α β
= =

−α β− −
Pr p x x x

B
( ) (1 )

( , )
,

(3)

1 1

where B(α, β) is the Beta function with β > 0 and α > 0. The benefit of using this prior is two-fold. First, being the 
conjugate prior of (2), it makes possible the calculation of a closed-form posterior distribution. Second, the hyper 
parameters α and β allow for the encoding of an incredibly wide range of prior beliefs (for example α = β = 1/2 
leads to the Jefferys prior whereas α = β = 1 leads to the uniform prior). Finally, by a straightforward application 
of Bayes rule, the posterior distribution is found to be given by

α β
= | =

−
+ +

α β+ − + −
Pr p x s f x x
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( , )
,

(4)
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which is also a Beta distribution. In this way, as the experimenter provides the organism with additional pay-offs 
(one way or the other) the organism can infer a distribution about p, the probability of receiving g. Note that the 
mean of (4) is given by

=
+

+ +

α

α β
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1
,

(5)
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where n = s + f is the total number of trials thus far. In this way, if the true value of p is p̂, then by giving the cor-
rection ratio of s/n the organism can indeed infer the true value as n gets large. Otherwise put

=
+

+ +

α

α β∞ →∞
p lim

1
,

(6)n
n

s
n

n n

= .p̂ (7)

Observe that the prior information contained in α and β is washed out (those terms go to zero), so if the 
experiment is carried out correctly and for long enough ( → ∞n ), the prior beliefs of the organism do not 
matter.
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finite experiments
In the previous section we showed that if the experiment is carried out ad infinitum then the organism can make 
the correct inference. With fixed rewards, they will therefore agree that the expected rewards of each arm are 
equal. However, experiments are necessarily finite. We now consider the implications of this.

Recall that in the experiments we are considering on one arm, from the point of view of the experimenter, a 
pay-off of c is guaranteed. In other words =p̂ 11 . On the other arm, with probability p̂2 a reward of a is given and 
probability − p̂(1 )2  a reward of b. The experiment is designed such that

= + −ˆ ˆc p a p b(1 ) , (8)2 2

so that, with perfect knowledge (the frame of reference of the experimenter), there should be no preference for 
either arm if decisions are based solely on averages.

However, from the point of view of the organism, at trial n the estimated p1 (setting s = n in (5)) will be given 
by

=
+

+ +
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,
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whereas p2 will be estimated by
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assuming the same initial prior for both arms. Hence, for the organism to believe that the average pay-off on each 
arm is the same the following equality must hold:

= + −  cp p a p b(1 ) , (11)1 2 2

which, using (9), (10) and simplifying is equivalent to

α
α

β
α

=




+
+



 +





+ −
+



 .c s

n
a n s

n
b

(12)

Using (8) on the left-hand side this is in turn equivalent to
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The above statement can be satisfied in two ways. First, as a and b are, by design, greater than zero the above 
statement is true if both cofactors are equal to zero. In particular, it must be that

α
α

=
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+
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n

,
(14)2

and
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n (15)2

Note that both (14) and (15) can hold in only two ways. First, both may be true if β = 0. However, in this case 
the prior (3) is not a true distribution. When β → 0 we can, in fact, interpret (3) as a Dirac delta function at x = 1. 
Though in this case the entire problem is trivial as we no longer have any uncertainty. Second, n may get arbitrar-
ily large. However, in this section we are interested in precisely when this does not happen i.e. when n remains 
finite. Alternatively, (13) may hold (solving for p̂2) precisely when

α β α
α

=
+ + − −

+ −
.p̂ a s b s b

n a b
( ) ( )

( )( ) (16)2

However, in this case the problem now lies with the variances in reward amount. In particular, there is now no 
guarantee that either variance will be perceived to always be smaller or larger than the other. This can be seen by 
noting that the variance in reward on each arm can be written as σ = − p p c(1 )1

2
1 1

2 and σ = − − p p a b(1 )( )2
2

2 2
2, 

respectively and recalling constraint (12). Intuitively, as the inference process progresses the relative sizes of these 
variances may differ depending from which direction (above or below) p1 and p2 approach their true values p̂1 and 
p̂2, respectively as well as the relative sizes of a and b. In other words, in finite experiments (11) will rarely hold. In 
the one instance that it does, there is then potential disagreement in variances and perceived variances. The ram-
ification of this is that even though the experimenter designs the experiment so that average pay-offs are equal, an 
organism that is performing these inferences will seldom agree in finite time. In this way, discussions of 
risk-preference to explain these broad group of experiments may be misleading.
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case Study
In the seminal work of Caraco et al.16, the effect of ambient temperatures on risk-sensitivity is studied in 
yellow-eyed juncos. Here, juncos were given the option (coded by colours) between a constant number of seeds 
and a variable number with mean equal to the constant reward. The first 16 trials of every experiment were forced 
so that the birds learnt the distribution associated with each colour, before any decisions were permitted. The var-
iable arm always gave each reward with equal probability (hence in this case s = 8). If we assume a given bird starts 
with a uniform prior (α = β = 1) so that there is no initial bias, the perceived expected rewards on the variable 
arm (right-hand side of (11)) can be calculated to be

µ =
+

.
a b9 9

18 (17)2

Similarly, the perceived expected rewards on the constant arm (left-hand side of (11)) will be given by

µ =
c17

18
, (18)1

so that the discrepancy of the two at the sixteenth trial will be given by

µ µ| − | =
| − − |

.
c a b17 9 9

18 (19)1 2

Clearly, for most values of rewards a, b and c (which in fact change for each bird in this study) the total 
expected rewards are not perceived to be equal. Importantly, however, note that the experimentalist can reduce 
this discrepancy not only by increasing n (the intuitive option), but also through a careful choice of a, b and c.

Discussion
Hundreds of experiments have been designed such that given two choices the expected reward, but not the vari-
ance in reward, is equal on each choice1–3,17,18. This way experimenters attempt to infer risk preferences for organ-
isms under a range of circumstances. If an organism consistently chooses the option that has less variance in 
reward they are deemed risk-averse. Conversely, if the organism chooses the option that has more variance they 
are deemed risk-prone. While risk-averseness occurs most frequently, risk-proneness has also been observed1. 
Here, however, we have shown that these labels may be misleading. More importantly still, we have highlighted 
the importance of frames of reference in biology. In particular, we have stressed the potential pitfalls of study-
ing behaviour without consideration of the point of view of the experimental subject. It makes, unfortunately, 
little sense to say that an organism will not make decisions based on expected rewards simply because we have 
programmed the experiment so that expected rewards are equal; there is no guarantee that the organism per-
ceives the rewards to be equal. Note that this arises for reasons entirely separate to those attributable to the 
Weber-Fechner law. As the Weber-Fechner law concerns the change in intensity of some stimulus required in 
order to notice a difference in the stimulus, it applies even in the absence of risk defined as variance (for a discus-
sion of the economics/psychology split see19). In other words, Weber-Fechner applies to a much broader class of 
problems. Moreover, the problem studied here would arise even in the absence of imperfect perception (i.e. if the 
change in intensity required to notice a difference in some stimulus were able to get infinitesimally small). Our 
issue is akin to the problems encountered in anthropomorphising animal behaviour whereby our own beliefs or 
motivations are projected onto non-human animals20,21. However, in studies of humans, where we do (and indeed 
are able to) inform participants of probabilities, this study may have less relevance.

Bayesian approaches to understanding animal behaviour and in particular the use of statistical decision theory 
is of course nothing new7,9,22. Most studies, rightly so, have focused on predicting decisions or phenotypes. More 
recently, others have considered the biological value of information itself10,11,23. Here, however, we focus instead 
on the limits of what a Bayesian organism can know before making decisions in the above experimental context. 
It is important to note that, unlike other studies, our work is divorced of any quantities to be optimised in order 
to make decisions such as utilities, reproductive values or energy budgets6,8,12,24,25. In this way, our work is about 
conflicting perceptions of the experimenter and the organism and therefore any inferences the experimenter can 
make about the organism, no matter what currency is optimised.

In this paper, we have assumed that the organism in question is performing a Bayesian inference on the 
probability of receiving a certain reward. Starting with a general prior distribution, and sampling past rewards, 
we explicitly calculated a closed-form posterior distribution. A valid criticism, of course, is that organisms may 
not be behaving in a strictly Bayesian way. Indeed, much work has been done on this very question26–28. However, 
as the Bayesian solutions are the optimal ones, we should expect natural selection to have moulded organisms 
that at least approximate Bayesian behaviour via so-called Rules of Thumb7,9,29. A further criticism, which per-
vades all of Bayesian analysis, is our choice of prior. Again we reiterate that it makes possible the calculation of a 
closed-form posterior. More importantly, however, we emphasise the versatility of the Beta distribution afforded 
by its hyperparameters α and β which can control its concavity, skewness, symmetry and more. Further, for the 
particular values of α = β = 1/2 and α = β = 1 the Beta distribution reduces to the Jefferys and standard uniform 
distributions, respectively. We believe these two noninformative distributions are particularly important for this 
study as, from the beginning of the experiment, there is no reason to suspect the organism has bias towards any 
initial value of p. For an extensive discussion of Bayesian prior choice, and in particular the use of noninformative 
priors, see Berger30.

With this set-up we found that while from the frame of reference of the experimenter the two choices have the 
same expected reward, any Bayesian organism will seldom agree in finite time. In light of this, we perhaps cannot 
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appeal to differences in variance of reward to explain behaviour in these experiments. We are not implying then 
that organisms are only using averages to make decisions as in the elegant early work of Charnov31,32. Instead, we 
are pointing out that for these broad class of experiments we may not be able to appeal to variances so strongly 
as an explanatory variable. Worse still, even if the expected rewards are perceived to be equal, there is no guar-
antee the variances will be perceived to be as designed. For this reason, we advocate for the inference of potential 
beliefs (both expected rewards and variances) of the experimental subject before motivations of behaviour are 
concluded. From a practical standpoint, by considering the seminal work of Caraco and colleagues16, we have 
also shown that the experimentalist can (and should) influence the inferred beliefs of the experimental subject 
not only through the number of trials but also through careful choice of the reward sizes. It is important to note 
that the modelling of this particular study has been carried out before. In their impressive review, Kacelnik and 
Bateson1 attempt to ascertain how many trials must be carried out before the proportion p can be estimated with 
a given certainty. This frequentist analysis however relies on the normal approximation of the binomial, which in 
turn relies on the central limit theorem. This approximation is well known to be particularly poor if either the true 
value of p is close to zero or unity or if sample sizes are small (which, of course, in these experiments they are: in 
the Caraco study training was restricted to 16 trials).

Though we have focussed on one class of experiments, our work points to the largely overlooked problem of 
frames of reference in studies of behaviour. If there is a mismatch between the beliefs of the experimenter and 
experimental subject, then we must be cautious to not draw conclusions based solely on our frame of reference. 
The first step, as taken here, is being conscious that such differences exist in the first place. For future work, it 
will be important to quantify just how divergent beliefs are and link this with existing work (such as in-built 
cognitive biases and preferences) on how organisms may in practice deal with these errors29,33. In turn, this may 
have considerable interesting overlap with the economics literature where behaviour under incorrect models 
is studied13–15. For the particular experiments focused on here, it will be fruitful to consider explicit decision 
rules and currencies in order to generate in silico data. Once done, it will be interesting to see if decisions based 
on expected rewards, variances or a combination of both most closely resembles the wealth of existing experi-
mental data. Further, to gain a more complete understanding of risk motivations, it will be important to extend 
this type of analysis to the large class of risk in delay experiments (as opposed to simply risk in reward amount 
experiments)18.
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