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Missing Link Prediction using 
Common Neighbor and Centrality 
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Real world complex networks are indirect representation of complex systems. They grow over time. 
These networks are fragmented and raucous in practice. An important concern about complex network 
is link prediction. Link prediction aims to determine the possibility of probable edges. The link prediction 
demand is often spotted in social networks for recommending new friends, and, in recommender systems 
for recommending new items (movies, gadgets etc) based on earlier shopping history. In this work, we 
propose a new link prediction algorithm namely “Common Neighbor and Centrality based Parameterized 
Algorithm” (CCPA) to suggest the formation of new links in complex networks. Using AUC (Area Under 
the receiver operating characteristic Curve) as evaluation criterion, we perform an extensive experimental 
evaluation of our proposed algorithm on eight real world data sets, and against eight benchmark 
algorithms. The results validate the improved performance of our proposed algorithm.

Complex networks are effective descriptions of real world networks, where real world problems can be mod-
eled in the form of complex network graphs1. Complex networks describe the interaction among the elements 
of complex systems such as computer, neural, chemical and online social networks2. In such networks, entities 
(such as computer, neurons etc.) are represented by nodes (also called vertices), whereas edges between pair of 
nodes depict interactions/associations between the nodes3. Complex networks have application in many divi-
sions of applied science4. It has been applied in health care to predict the spread of epidemic diseases5, and in the 
development of strategies to vaccinate the potential affectees to limit the spread of epidemic. Furthermore, the 
complex network analysis can be applied in legislative drives to influence maximum number of citizens6, and in 
the development of road networks to improve routes7. Considerable efforts are made to understand the network 
evolution8,9, and the fundamental topological structure of complex real world networks10.

Due to ever evolving nature of complex networks, one crucial scientific issue related to complex network 
analysis is missing link prediction11. Networks are very agile in nature; fresh vertices and edges are added over 
the passage of time12. The basic idea of link prediction is to approximate the possibility of the existence of a link 
between pair of nodes, derived from the current topological structural attributes of the nodes13. For example, in 
online connected community networks, future associations can be suggested as likely-looking friendships, which 
can assist the system in recommending new friends and thus strengthen their dependability to the service8. In 
other words, link prediction provides a measure of social propinquity between pair of nodes. The only available 
information is the topological structure of the network14.

Applications of the phenomenon include suggestion of new followers/friends on social websites such as 
Google Plus, Facebook, Foursquare, LinkedIn, and Twitter etc. In addition, it can also be used to suggest interests 
that are most likely collective. For example, recommendation of products on Amazon and Alibaba, recommenda-
tion of movies on Netflix, and ads display to users on Google AdWords and Facebook15.

In this work, we present a novel algorithm for link prediction using the existing topological structure of the 
network. Our proposed algorithm named Common Neighbor and Centrality based Parameterized Algorithm 
(CCPA) identifies potential future edges/connections between nodes using common neighbors and centrality. 
The proposed algorithm is parameterized, i.e., it has the flexibility to let the user/system set the importance of 
common neighbor and centrality. The proposed algorithm is evaluated against eight commonly used standard 
algorithms for link prediction on eight data sets. Experimental evaluation suggests the better predictability of our 
proposed algorithm.
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Formal Problem Setting
Assume G(V, E) to be an undirected graph, representing a complex network at a time t; V and E are building 
blocks of graph representing set of nodes and edges respectively. Loops and multiple-connections between nodes 
are not allowed15.

Let, U represents the set of all possible edges between nodes in the graph, then | | = | | | | −U V V( 1)
2

. Let, 
L = U − E be the set of missing links in the graph. Normally we are not aware which links may occur in the future, 
otherwise we do not need link prediction16. Link prediction aims to predict the possibility of link formation 
between two nodes at time t′ (t′ > t)13. The primary goal is to forecast new links among nodes that may take place 
in the near future.

The problem is clarified with a simple network of 5 persons (nodes) as shown in Fig. 1. The total number of 
possible links in a 5 node network is =− 105(5 1)

2
. For the missing links L = U − E, the prediction task is to know 

the fundamental mechanism of link formation in particular complex network and using the current topological 
structural properties to estimate the non-existing links probability. In Fig. 1, solid lines represent links in the 
network at time t, and dashed lines represent the link that may occur in the future (for the sake of clarity only two 
dotted lines are shown in Fig. 1). Maria and Adam are friends, Maria and Sophia are also friends at time t. Possibly 
Maria introduces Sophia with Adam, and they become friends as well. Similarly, Sophia and David may become 
friend at time t′. A link prediction algorithm awards a similarity score Sxy to all links lxy ∈ L based on some 
pre-defined criterion. Note that lxy represents link between nodes x and y. If Sxy is greater than or equal to a thresh-
old, then a link is predicted between nodes x and y.

Literature Review
Considerable body of literature is devoted to the study of link prediction in complex networks (see7 and the 
references therein). The problem is addressed both from graph theory, and machine learning perspective. Due 
to space limitation, we cannot elaborate on the research work in the domain of machine learning. The reader is 
referred to Nickle et al.17 and Wang et al.18. In the following, we summarize the important works based on graph 
theoretic approach.

Wang et al.19 presented a popularity based structural perturbation algorithm that made use of current pop-
ularity of node based on the assumption that an active node has more affinity to attract future nodes. The algo-
rithm is based on similarity based approach that measures the possibility of links through knowing collective 
aspects, i.e., common friends, age differences, professions, and tracing locations which the two end points have 
in common. The proposed algorithm is evaluated on six data sets and against six algorithms. However, no statis-
tical tests were performed to evaluate the significance of the proposed approach. Yang and Zhang20, introduced 
an algorithm based on the common neighbors and distance metric to predict link in a variety of real world 
networks from the available topological structure of the network. The algorithm aims to find missing link prob-
ability between nodes who do not have common neighbors. The proposed algorithm is tested on eight data sets 
against standard benchmark algorithms using Areas Under the receiver operating characteristic Curve (AUC) 
as criterion. The algorithms are executed only once, thus increasing the possibility of data snooping bias. Pan et 
al.21 critiqued the real life network to be incomplete and noisy, which makes link prediction algorithms hard to 
apply. The authors presented an algorithmic framework for missing link prediction by accounting for predefined 
Hamiltonian structures. Using AUC as evaluation criterion, the proposed framework is evaluated on seven data 
sets. However, like Wang et al.19, Yang and Zhang20, and Pan et al.21 did not employ any statistical tests to evaluate 
the significance of the results.

Liao et al.3 proposed two algorithms to address missing link prediction problem. The first algorithm is based 
on Pearson correlation coefficient. In the second algorithm, the correlation based method is integrated with 
resource allocation algorithm. The second algorithm is found to outperform the existing methods. The proposed 

Figure 1.  Graphical representation of missing link prediction; dashed lines depict possible edges.
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second scheme is a parametrized algorithm. However, the control parameter can only influence the correlation 
factor. Similarly, no statistical tests were performed. Ibrahim and Chen15 criticized the existing approaches for 
missing link predictions based on static graph representation. Authors used temporal information, community 
structure and centrality to predict the formation of new links. Using AUC as evaluating criterion, authors ana-
lyzed the performance of their proposed algorithm using real world data sets. One of the significant drawback of 
the proposed scheme is the high computational cost.

Zhou et al.2 empirically investigated missing link prediction of nine well known algorithms on six data sets. 
The results indicated that common neighbor is the best performing algorithm. The authors further proposed a 
novel algorithm based on resource allocation process, which achieved superior experimental performance than 
common neighbor algorithm. Murata and Moriyasu22 presented an algorithm based on the proximity measures 
and weights of existing links in a weighted graph to predict possible future interactions in online social networks. 
The proposed algorithm was evaluated using Yahoo! Chiebukuro. For a detailed survey of link prediction tech-
niques, the readers are referred to Lou and Zhou7.

Proposed Algorithm
Our proposed algorithm is based on two vital properties of nodes, namely the number of common neighbors and 
their centrality. Common neighbor refers to the common nodes between two nodes. Centrality refers to the pres-
tige that a node enjoys in a network. Since the seminal work of Freeman23, centrality is based on two key factors 
in an undirected graph, namely closeness and betweenness. Intuitively, closeness centrality refers to the average 
shortest distance between any given two nodes, whereas betweenness centrality is the measure of control a node 
has, to influence the flow of information/communication among the nodes of a network. A node will have high 
betweenness centrality, if the shortest path between the various nodes passes through it. In this work, we consider 
closeness centrality as parameter for missing link prediction. Formally, we define closeness centrality Cxy between 
two nodes x and y in a network with N nodes as follows;

=C N
dxy

xy

Note that dxy is the shortest distance between the nodes x and y. Using common neighbor, and closeness central-
ity, we propose a new algorithm for missing link prediction. The algorithm calculates similarity score Sxy as follows;

S x y N
d

( ( ) ( ) ) (1 )
(1)

xy
xy

∩α α= ⋅ |Γ Γ | + − ⋅

Parameter α ∈ [0, 1] is a user defined value that controls the weight/importance of common neighbor and 
centrality. Γ(x) represents the neighbors of a node x. Note that the value of associated with common neighbor and 
centrality constitutes a zero sum condition, i.e., increasing the importance of one factor will result in lowering the 
importance (weight) of other factor.

Experimental Setting
Methodology.  For investigating the performance of our proposed algorithm, we evaluate the algorithm on 
eight data sets, and against eight different algorithms. The adopted methodology is as following;

Each data set is divided into two distinct and non-overlapping graphs namely training (GT) and probe (GP) 
graphs. Training graph (GT) is obtained by randomly sampling over the original graph G. The remaining edges, 
those not included in GT, forms GP. Analogously, the set of edges included in GT are referred to as ET, and those 
included in GP are referred to as EP, i.e., E = ET + EP. Note that ET and EP are mutually exclusive. However, the 
nodes in GT and GP may overlap. For our experiments, we have included 80% of edges in ET, and the remaining 
20% in EP. Figure 2 is a graphical depiction of the process.

Graph GT (analogously ET) is the input to a link prediction algorithm, which considers the existing topological 
properties of the GT, and predicts future links in the form of new graph G′. In order to measure the performance 
of algorithm, we compute the number of true positive (TP) edges and false positive (FP) edges predicted by an 
algorithm. An edge e is said to be TP, if e ∈ G′, and e ∈ GP, i.e., the link is present both in the predicted graph and 
the probe graph. Recall that edges in training graph and probe graph are mutually exclusive, so it is not possible 
for an edge to be present simultaneously in GT and GP. FP is defined as e ∈ G′, and e ∉ G, i.e., FP refers to a wrongly 
predicted edge which should not exist.

As graph GT (and hence GP) is obtained randomly, we performed the experiments 15 times to ensure that 
results obtained are not by chance. For each run, we produced GT (and hence GP) randomly, GT was then used 
as input to the algorithm, which produced the resultant graph G′. G′ was compared with GP and G to obtain TP 
and FP. Our results are based on the average values of the 15 runs. The value of parameter α can range from 0 to 
1 (both inclusive). For our proposed algorithm we report the average results obtained for α = {0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9}.

Algorithms.  We compare the performance of our proposed algorithm with the following set of algorithms.

	 1.	 Common Neighbor and Distance (CND): The algorithm is based on two key structural properties of a 
complex network, i.e., common neighbor and distance. For any two non-connected nodes x and y, a score 
Sxy is calculated as shown in Eq. 2 to reflect the likelihood of link formation between the nodes x and y20. 
Recall that Γ(x) refers to the neighbors of node x, CNxy is the number of common nodes between node x 
and y, and dxy is the distance between and x and y.
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	 2.	 Preferential Attachment (PA): In Preferential Attachment algorithm, the score Sxy depends on the degree of 
node x and y respectively, and is calculated as show in Eq. 3 24. Note that kx represents the degree of a node 
x.

= ⋅S k k (3)xy x y

	 3.	 Adamic Adar (AA): Adamic Adar is based on the hypothesis that it is more likely that two nodes x and y 
are introduced by common neighbors who are more likely to be unpopular in the network. In other words, 
it is more likely that nodes x and y will be introduced by a node i than node j, if the degree of i is lower than 
the degree of j. The formula for Sxy is given in Eq. 4. Note that Γ(x) refers to the neighbors of node x.

∑
∩

=
∈Γ Γ

S
logK

1

(4)
xy

z x y z( ) ( )

	 4.	 Common Neighbor (CN): In Common Neighbor algorithm the score for link prediction is computed by 
finding the number of common neighbors between two distinct nodes24. The formula for Sxy calculation of 
is given in Eq. 5.

S x y( ) ( ) (5)xy ∩= |Γ Γ |

	 5.	 Sorensen Index (SI): In Sorensen algorithm, twice of common nodes is divided by the product of degrees 
of two distinct nodes for calculation of Sxy 24.

S x y
k k

2 ( ) ( )

(6)
xy

x y

∩=
|Γ Γ |

+

	 6.	 Jaccard Index (JI): Jaccard Index considers only the common neighbors between the nodes to calculate Sxy 
as following25;

S x y
x y

( ) ( )
( ) ( ) (7)xy

∩
∪

=
|Γ Γ |
|Γ Γ |

	 7.	 Resource Allocation (RA): Resource Allocation (RA) calculates Sxy on the basis of intermittent nodes con-
necting node x and y. The similarity index is defined as the amount of resource node x receives from node 
y through indirect links. Each intermediate link contributes a unit of resource. RA is symmetric, i.e., RA(x, 
y) = RA(y, x)26.

S
K
1

(8)
xy

z x y z( ) ( )
∑

∩
=

∈Γ Γ

	 8.	 Hub Promoted Index (HPI): Hub Promoted Index (HPI) is a measure defined as the ratio of common 
neighbors of nodes x and y to the minimum of degrees of the nodes27. HPI is computed as:

Figure 2.  Dividing the original graph in training and probe set.
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Data sets.  We are using real-world complex network data sets for evaluation of our proposed algorithm 
against the selected set of algorithms. Gathering a valid data set is time-consuming and labor-intensive process, as 
most of the data sets are not available publicly. We selected eight popular real-world data sets for our experiments. 
A brief description of each data set is as following;

	 1.	 Karate: Data set of Zachary Karate club network, which shows the correlation of 34 members of a universi-
ty Karate club. The data set was first studied by Wayne W. Zachary for over three years from 1970 to 1972 to 
study the clash arose between instructor and administrator28.

	 2.	 Dolphins: It is a network investigated by Lusseau et al.29. The network consists of 62 bottlenose dolphins 
who lived in Doubtful Sound of New Zealand between 1994 and 2001.

	 3.	 Polbook: Books about US politics, compiled by Valdis Krebs. Nodes represent books sold online by 
amazon.com. The edges represent frequent co-purchasing of books by the same buyer. The unpublished 
network is available online (Social network analysis software & services for organizations, communities, 
and their consultants. Retrieved from www.orgnet.com).

	 4.	 Word: This is the undirected network of common noun and adjective adjacencies for the novel “David 
Copperfield”. A node denotes either a noun or an adjective. An edge ties two words that occur in adjacent 
positions. The network is not bipartite, i.e., there are edges connecting adjectives with adjectives, nouns 
with nouns and adjectives with nouns30.

	 5.	 Circuit: Electronic circuits can be seen as system where links are wires, and nodes are electronic parts (like 
capacitors, transistors, etc.). Circuit data is retrieved from www.weizmann.ac.il/mcb/UriAlon/download/
collection-complex-networks).

	 6.	 Email: This is a network of e-mail exchanges between members of the Universitat Rovira i Virgili (Tarrag-
ona). Nodes represent users, and a link is formed between nodes if there is email communication between 
them. The data is available at http://deim.urv.cat/alexandre.arenas/data/welcome.htm.

	 7.	 USAir: The network of the US air transportation system, which contains 332 airports and 2126 airlines 
which connects the US around the globe31.

	 8.	 Neural: This data symbolizes the C. Elegans neural network. Graph is being processed in order to remove 
repeated edges. (See data set at http://wormwiring.org/).

Table 1 Summarizes key properties of the selected data sets.

Evaluation criterion.  A link prediction algorithm assigns a score Sxy to every missing link (i.e., U − ET). 
The score Sxy quantifies the likelihood of a missing link to be existent in the near future. If Sxy equals or surpasses 
a threshold value, then link is confirmed and considered to occur in the next temporal unit. AUC (Area Under 
the receiver operating characteristic Curve) is used as an evaluation criterion to judge the performance of our 
selected set of algorithms on the considered data sets. AUC value reflects the probability that a randomly chosen 
existing link is given a higher similarity score Sxy than a randomly chosen non-existent link. AUC is calculated by 
picking an existing (TP) and a non-existing (FP) link and scores are compared. Among n independent observa-
tions/comparisons, let n1 observations/comparisons resulted in a higher score for existing links, and n2 observa-
tions have resulted in same score, then AUC is calculated as following32;

=
+ .AUC n n

n
0 5

(10)
1 2

A good link prediction algorithm should have an AUC value close to 1.

Network N M <d> <k>

Karate 34 78 2.408 4.588

USAir 332 2126 2.7381 12.807

Dolphins 62 159 3.357 5.129

Polbook 105 441 3.079 8.400

Word 112 425 2.536 7.589

Neural 306 2147 2.455 14.0327

Circuit 512 819 6.858 3.199

E-mail 1133 5451 3.606 9.622

Table 1.  Illustration of properties of eight real world networks. N: number of nodes in graph (G), M: number of 
edges in G, <d>: average distance, <k>: average degree.
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Results and Discussions
Table 2 summarizes the results based on AUC value obtained for each algorithm on various data sets. Standard 
deviation of AUC is also given in the parenthesis. Recall that these results are the average values of 15 runs. Note 
that for CCPA, we consider α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and report the average AUC over all values 
of α for each data set. We observe that CCPA’s average AUC values are the highest among the set of algorithms, 
and thus outperforms all the competing algorithms. The average AUC value of CCPA is 0.77, which is 7.7% better 
than the average of AUC values of other algorithms. We found that the AUC of CND (0.76) is very close to that of 
CCPA. However, the performance of CND is not consistent. We observed that CCPA is the best performing algo-
rithm on 5 data sets (namely USAir, Dolphins, Neural, Circuit, and Email) whereas CND is the best performing 
algorithm on two data sets (Karate and Polbook) only. The worst performing algorithm is PA which achieves an 
average AUC value of 0.64, which is 16% less than that of CCPA. Figure 3, depicts the average AUC of the consid-
ered algorithms on all data sets. It is pertinent to mention that our reported AUC values are sightly different than 
those reported in the literature (for instance see Yang and Zhang20). There can be multiple reasons to describe 
the discrepancy. For instance, just like Yang and Zhang20, we sampled GT and GP randomly. This might result in 
different training and probe sets which can ultimately results in different AUC. However, the differences are not 
significant.

Next, we present the overall performance of the algorithms on the selected data sets. The objective is to iden-
tify which data sets are hard to predict in comparison to others. In order to achieve the objective, we calculated 
the average AUC of all the selected set of algorithms on each data set. Results are summarized in Fig. 4. We 
observed that the worst average AUC is achieved by the algorithms on “Circuit” (0.55) and “Word” (0.62) data 
set, whereas the highest AUC is achieved on “US Air” data set (0.823). A circuit graph represents a connection 
between various parts (such as transistors, capacitors etc). The nodes are represented by capacitors etc, whereas 
edges are represented by wires. The “Word” data set is a network of adjectives and noun from Charles Dickens 
novel “David Copperfield”. In the network, nodes represent the adjectives and nouns, whereas edges represent 
pair of words that occur in adjacent positions in the novel. The low value of AUC indicates that it is significantly 
difficult to predict natural language networks. The highest average AUC (0.823) is observed for USAir. US Air is 
a network of US air transportation, where nodes represent airports, and connection represents flights operated 
between these air ports by various airlines. As it is a human made network, where connections are not arbitrarily 
distributed, therefore, predicting the connections are comparatively easier than natural complex networks.

The effect of choosing α.  In order to find the effect of α over the obtained values of AUC, we report the 
results obtained by executing the proposed algorithm on various value of α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

Karate USAir Dolphins Polbook Word Neural Circuit Email

RA 0.651 (0.09) 0.685 (0.08) 0.713 (0.08) 0.835 (0.09) 0.638 (0.08) 0.819 (0.06) 0.534 (0.02) 0.793 (0.06)

AA 0.645 (0.07) 0.657 (0.12) 0.701 (0.07) 0.826 (0.08) 0.642 (0.04) 0.803 (0.08) 0.537 (0.03) 0.799 (0.07)

Jaccard 0.542 (0.11) 0.849 (0.08) 0.725 (0.08) 0.792 (0.05) 0.583 (0.08) 0.755 (0.05) 0.525 (0.02) 0.807 (0.09)

CN 0.647 (0.06) 0.895 (0.06) 0.731 (0.08) 0.842 (0.07) 0.639 (0.11) 0.817 (0.07) 0.536 (0.03) 0.816 (0.07)

CND 0.66 (0.11) 0.906 (0.05) 0.746 (0.05) 0.874 (0.05) 0.651 (0.08) 0.821 (0.07) 0.629 (0.09) 0.862 (0.04)

PA 0.593 (0.1) 0.789 (0.06) 0.582 (0.11) 0.606 (0.11) 0.664 (0.12) 0.704 (0.09) 0.527 (0.09) 0.717 (0.1)

SI 0.567 (0.09) 0.844 (0.07) 0.732 (0.09) 0.823 (0.07) 0.582 (0.1) 0.749 (0.08) 0.54 (0.01) 0.825 (0.06)

HPI 0.657 (0.12) 0.88 (0.06) 0.721 (0.06) 0.837 (0.07) 0.594 (0.07) 0.761 (0.12) 0.528 (0.04) 0.797 (0.09)

CCPA 0.646 (0.09) 0.91 (0.06) 0.753 (0.09) 0.864 (0.07) 0.657 (0.09) 0.839 (0.08) 0.631 (0.11) 0.875 (0.05)

Table 2.  Average AUC and standard deviation of the algorithms on selected data sets.

Figure 3.  Average AUC of algorithms.
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0.9}. We report the average values of AUC for a single value of α over all the data sets. Figure 5 represents a graph-
ical view of the trend observed in AUC for various values of α.

It is interesting to note that there is no significant change in the average AUC value of CCPA based on the 
change in value of α. The minimum average value (0.749) is obtained for α = 0.7, whereas the maximum value 
(0.79) is obtained for α = 0.8. The standard deviation of the averaged AUC value is 0.013 which is insignificant 
as well. Even for different data sets, we could not find a trend to identify the value of α for which the proposed 
algorithm CCPA will produce optimum results. The optimum value (the value of α producing the highest average 
AUC value) varies from data set to data set. For instance, on Karate data set the highest AUC (0.7) is obtained for 
α = 0.8, whereas for Dolphins data set the corresponding α value is 0.6. For other data sets, the resultant α values 
are summarized in Table 3. One observation that stands out is that for all data sets the highest average AUC value 
is obtained for α ≥ 0.5. For the Circuit data set the value is as high as 0.9.

In order to improve the applicability of our proposed algorithm in the real world, we attempt to find a statisti-
cal property that can identify optimal value of α. We analyse the results to find a correlation between the optimal 
value of α for a particular dataset (Table 3) and its key properties (Table 1). For instance, we investigated if there 
is any correlation between the optimal value of α and <k> (average degree). We consider various statistical prop-
erties (such as <d>, <k>, the ratio of M and N, clustering coefficient etc), but could not find any correlation that 
can hold true for all datasets. We then divided the data sets in two classes. Class 1 includes Karate, Dolphins, and 
Neural data sets, whereas the remaining 5 data sets are included in Class 2. Note that Class 1 are mainly natural 
data sets where the relationship between nodes is dependent on a natural phenomenon with little to no human 
intervention. Class 2 contains man made networks. For Class 1 data sets, we identified a correlation between <d> 
(average distance) and optimal value of α. We found that smaller values of <d> resulted in higher value of α. For 
example, Karate data set has the smallest value of <d> = 2.408 and the highest optimal value of α = 0.8. As the 

Figure 4.  Average AUC of algorithms on each data set.

Figure 5.  Average AUC of CCPA for various values of α.

Karate USAir Dolphins Polbook Word Neural Circuit Email

AUC 0.7 0.94 0.82 0.9 0.74 0.88 0.68 0.91

α 0.8 0.8 0.6 0.5 0.6 0.7 0.9 0.6

Table 3.  Best AUC values and the corresponding values of α.
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value of <d> increases, the optimal value of α decreases. Rather surprisingly, we could not establish any corre-
lation between various properties of data sets and optimal value of α for Class 2. It will be interesting to perform 
a thorough analysis of the proposed CCPA algorithm on a multitude of data sets to obtain a general inference for 
choosing the optimal value of α based on the key statistical properties of a network.

Conclusion
Motivated by the challenging nature of missing link prediction in complex networks, we present a novel algo-
rithm based on the two key properties of a network, namely common neighbor, and centrality. Unlike previous 
algorithms, the proposed algorithm is parametrized where user/system has the ability to control the importance 
of factors under consideration. We compare our proposed algorithm on eight real life data sets and against eight 
standard algorithms. Results based on AUC (Area Under the receiver operating characteristic Curve) shows the 
superior performance of our proposed algorithm. Further, the performance of algorithm is reviewed with respect 
to change in the value of α.
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