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the Japanese herbal medicine 
Hangeshashinto enhances oral 
keratinocyte migration to facilitate 
healing of chemotherapy-induced 
oral ulcerative mucositis
Kanako Miyano1, Moeko eto1,2, Suzuro Hitomi3, takashi Matsumoto  4, Seiya Hasegawa1,5, 
Ayane Hirano1,5, Kaori nagabuchi1,5, noriho Asai1,5, Miaki Uzu1, Miki nonaka1, Yuji omiya4, 
Atsushi Kaneko4, Kentaro ono3, Hideaki fujii5, Yoshikazu Higami2,6, toru Kono7 & 
Yasuhito Uezono1,8,9*

chemotherapy often induces oral ulcerative mucositis (oUM) in patients with cancer, characterized 
by severe painful inflammation. Mouth-washing with the Japanese herbal medicine hangeshashinto 
(HST) ameliorates chemotherapy-induced OUM in patients with colorectal cancer. Previously, we 
demonstrated that HST decreased interleukin 1β-induced prostaglandin E2 production in human oral 
keratinocytes (HOKs) and OUM-induced mechanical or spontaneous pain in rats. However, HST effects 
on tissue repair functions in HOKs remain unclear. Here, we examined the effects of HST on scratch-
induced wound healing in vitro and in vivo. In vitro, HSt enhanced wound healing mainly through 
scratch-induced HOK migration. Screening of the seven constituent medicinal herbs and their major 
components revealed that Scutellaria root, processed ginger, and Glycyrrhiza components mainly 
induced the scratch-induced HOK migration. Pharmacokinetic analyses indicated that the active 
ingredient concentrations in rat plasma following oral HST administration were below the effective 
doses for HOK migration, suggesting direct effects of HST in OUM. Mitogen-activated protein kinase 
and C-X-C chemokine receptor 4 inhibitors significantly suppressed HST-induced HOK migration. 
Moreover, HST enhanced tissue repair in our OUM rat model. Thus, HST likely enhanced OUM tissue 
repair through oral keratinocyte migration upon MAPK and CXCR4 activation and may be useful in 
patients with cancer-associated OUM.

Patients with cancer receiving chemotherapy, radiotherapy, hematopoietic stem cell transplant, and terminal care 
often present with severe oral ulcerative mucositis (OUM), which evokes painful inflammation and limits funda-
mental life behaviours such as ‘eating, drinking, and talking’1–15. In addition, OUM increases the risk of systemic 
infection via opportunistic microorganisms, which may lead to the extension of hospitalization5,15–19. OUM also 
often induces patients with cancer to discontinue/modify their therapy regimen, which adversely affects patient 
prognosis13,15,16,20. Therefore, the effective management of OUM is indispensable for improving both the quality 
of life and prognosis for the patient15.
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Hangeshashinto (HST), a traditional Japanese medicine (Kampo medicine), contains the extracted ingredients 
of seven medicinal herbs and has been approved by Japan’s Ministry of Health, Labour and Welfare as a prescribed 
medicine15,21. From the 16th century to the present, HST has been used in Japan to treat inflammatory diar-
rhoea, gastritis, and oral mucositis. Recently, double-blind, placebo-controlled, randomized studies have reported 
that repetitive mouth-washing with HST was effective for the improvement of chemotherapy-induced OUM in 
patients with colorectal or gastric cancer22. Several in vitro studies also reported that HST induced antibacterial 
and antioxidant effects, suggesting that these effects were involved in the mechanisms of HST with respect to the 
improvement of OUM23–25. Moreover, our previous studies in vitro and in vivo revealed additional mechanisms 
of HST in OUM, including both anti-inflammatory and analgesic effects26–28. Nevertheless, an important process 
during the restoration of ulcer sites is rapid repair of the ulcer site by migration and covering of the epithelium 
cells. However, the effects of HST on the wound-induced migration of oral keratinocytes or OUM healing (tissue 
repair) remain unclear.

In the present study, we therefore examined the effects of HST on wound healing using both in vitro and vivo 
experiments. First, we analysed the effects of HST on scratch-induced wound healing using human oral kerati-
nocytes (HOKs) and identified the active medicinal herbs in HST and their ingredients by screening the seven 
constituents and their major components. Second, to reveal the actions of these active ingredients via the blood, 
we evaluated their pharmacokinetics rat plasma along with the effects of several inhibitors, such as against intra-
cellular signalling molecules, on HST-mediated scratch-induced wound healing. Finally, we examined the effects 
of HST on OUM healing using an OUM rat model.

Results
HSt enhances scratch-induced wound healing mainly by facilitating HoK migration in vitro.  
We first examined the effects of HST on scratch-induced wound healing using HOKs in vitro. Compared with the 
vehicle, HOKs treated with HST (100 µg/mL) covered the wound area in a time-dependent manner (Fig. 1a and 
Supplementary Movie S1). The extent of the wound healing area was then calculated as the percentage of conflu-
ence of HOKs in the wound area (Fig. 1b). HST significantly promoted scratch-induced wound healing in a time 
and a dose-dependent manner (Fig. 1b). Treatment with 10 and 100 µg/mL HST for 72 h significantly enhanced 
the scratch-induced wound healing (Fig. 1c), with the effect of 100 µg/mL HST being approximately 4-fold higher 
than that of the vehicle [Fig. 1c; vehicle vs. 100 µg/mL HST (mean ± S.E.M.); 1.0 ± 0.06 vs. 3.89 ± 0.20].

In addition, we investigated the effects of HST on cell growth in HOKs. HST at a concentration of 100 µg/mL 
but not 10 µg/mL significantly increased the cell growth (Fig. 1d), with this effect being approximately 1.5-fold 
higher than that of the vehicle [Fig. 1d; vehicle vs. 100 µg/mL HST (mean ± S.E.M.): 1.0 ± 0.10 vs. 1.65 ± 0.09], 
whose growth action was relatively smaller than action of wound healing. In addition, animations of the scratched 
area in HOKs treated with vehicle or 100 µg/mL HST also revealed that HOKs treated with HST covered the 
wound area via HOK migration (Supplementary Fig. S1). Taken together, these data suggested that HST enhanced 
the scratch-induced wound healing mainly by facilitating the migration of HOKs.

components of scutellaria root, processed ginger, and Glycyrrhiza enhance scratch-induced 
HoK migration in vitro. HST contains seven medicinal herbs in the ratio Pinellia tuber (5):Scutellaria 
root (2.5):processed ginger (2.5):Glycyrrhiza (2.5):jujube (2.5):ginseng (2.5):Coptis rhizome (1). Thus, even 
Pinellia tuber constitutes at most 30% of HST. We therefore analysed the effects of 1, 10, or 30 µg/mL of the seven 
individual medicinal herbs on scratch-induced HOK migration to reveal which medicinal herbs in HST were 
involved in facilitating scratch-induced wound healing. As shown in Fig. 2, Scutellaria root, processed ginger, 
and Glycyrrhiza markedly facilitated the scratch-induced HOK migration in a dose-dependent manner. Pinellia 
tuber and jujube also significantly induced HOK migration, although to a lesser degree. Neither ginseng nor 
Coptis rhizome affected the scratch-induced migration (Fig. 2). Therefore, Scutellaria root, processed ginger, and 
Glycyrrhiza were used in subsequent analyses.

To clarify which components in the three identified active herbs enhanced the scratch-induced HOK migra-
tion, we screened their ingredients using a wound healing assay. Among the ingredients of Scutellaria root (bai-
calin, baicalein, and wogonin), only baicalein at 10 µM significantly enhanced scratch-induced HOK migration, 
whereas all components of processed ginger ([6]-shogaol, [8]-shogaol, [10]-shogaol, [6]-gingerol, [8]-gingerol, 
and [10]-gingerol) showed a significant effect (Table 1). In comparison, among Glycyrrhiza components (glycyr-
rhizin, glycyrrhetinic acid, liquiritin, isoliquiritin, liquiritin apioside, and isoliquiritigenin), only glycyrrhetinic 
acid (10 µM) significantly enhanced scratch-induced HOK migration (Table 1).

plasma concentrations of compounds derived from Scutellaria root, processed ginger, and 
Glycyrrhiza in rats. To clarify the actions of HST on scratch-induced HOK migration via the blood, we first 
examined plasma concentrations of the HST medicinal herb components identified as showing activity in vitro. 
Among the 12 compounds analysed in this study (Table 2), 8 were detected in the plasma following oral admin-
istration of HST (Fig. 3). The maximum concentration of glycyrrhetinic acid was highest with 607.6 nM, fol-
lowed by baicalin (374.1 nM) and baicalein (351.2 nM). The plasma concentration-time curves of several detected 
compounds reached a peak at approximately 8 h following HST administration. The plasma concentrations of 
[6]-shogaol, [8]-shogaol, [8]-gingerol, and [10]-gingerol were below the limit of quantification.

HSt enhances scratch-induced migration in HoKs via mitogen-activated protein kinases 
(MAPKs) and C-X-C chemokine receptor 4 (CXCR4). Numerous reports have shown that MAPK 
and CXCR play important roles for cell migration29–42. To reveal the intracellular signalling mechanism of 
HST during scratch-induced HOK migration, we investigated the effects of inhibitors of MAPKs (extracellular 
signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38) and of CXCR4, which constitutes a 
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crucial mediator of cell migration, on scratch-induced HOK migration. As shown Fig. 4a, the ERK inhibitor 
U0126 (10 µM) significantly decreased the HST-induced HOK migration at 24, 48, and 72 h. In addition, the p38 
inhibitor SB202190 (10 µM) and the CXCR4 inhibitor BDPA-Zn (3 µM) completely suppressed the HST-induced 
HOK migration at 48 and 72 h (Fig. 4c, d). In contrast, the JNK inhibitor II (1 µM) partially suppressed the 
HST-induced HOK migration only at 72 h (Fig. 4b). These data suggested that MAPKs and CXCR4 are involved 
in HST-induced HOK migration.

HST mitigates the severity of OUM development. No difference in body weight was observed between 
the control and HST-administered rats prior to and following 5-fluorouracil administration (before acetic acid 

Figure 1. Effects of HST on the scratch-induced migration and cell viability of HOKs. Scratch-induced 
migration was measured using the IncuCyte ZOOM system. (a) Images showing the scratched area in HOKs 
treated with vehicle or HST (10, 100 µg/mL) for 0, 24, 48, and 72 h. (b) Effect of HST (1, 10, 100 µg/mL) on 
the scratch-induced migration of HOKs over time. (c) Extent of the scratch-induced migration of HOKs 
treated with HST (1, 10, 100 µg/mL) for 72 h calculated as the ratio of vehicle [confluence of HOKs (%) in 
wound area treated with HST/that treated with vehicle]. (d) Cell viability in HOKs treated with vehicle or HST 
(1, 10, 100 µg/mL) for 72 h. Data are expressed as the ratio of vehicle at 72 h. **p < 0.01, ***p < 0.001, and 
****p < 0.0001, compared with vehicle; Tukey’s multiple comparisons test following one- (c) or two-way  
(b) ANOVA.
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treatment) (HST, 250.9 ± 9.3 g; control, 246.1 ± 5.3 g, n = 7 in each group). On day 6 after acetic acid treatment, 
the body weight was significantly increased in HST rats compared with that in control rats (HST, 274.3 ± 7.7 g; 
control, 260.7 ± 6.7 g). Ulcerations developed on day 2 after acetic acid treatment in both control and HST rats. 
The OUM score of HST-administered rats was significantly lower than that of control rats on day 6 and 7 follow-
ing acetic acid treatment (Fig. 5).

Figure 2. Among the seven medicinal herbs in HST, Scutellaria root, processed ginger, and Glycyrrhiza 
exhibited marked HOK migration effects. HOKs were treated with 1, 10, or 30 µg/mL of Pinellia tuber (a), 
Scutellaria root (b), processed ginger (c), Glycyrrhiza (d), jujube (e), ginseng (f), or Coptis rhizome (g). Data 
are expressed as the ratio of vehicle at 72 h. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, compared 
with vehicle; Tukey’s multiple comparisons test following two-way ANOVA.
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HSt does not enhance the cell growth or scratch-induced migration of cancer cells in vitro. To 
determine whether the stimulatory effects of HST were specific to normal (i.e., HOK) cells, we examined the 
effects of HST on cancer cell growth using cell lines derived from human squamous cell carcinoma of the tongue 
(HSC-4, SCC-25), colorectal cancer (DLD-1), and human gastric cancer (MKN-45). As shown in Fig. 6a and b, 
HST (1, 10, and 100 µg/mL) did not significantly enhance the cell viability of HSC-4 or SCC-25 cells, compared 
with the effects of vehicle treatment. In contrast, HST significantly decreased the cell growth of DLD-1 and MKN-
45 cell lines (Fig. 6c, d).

In addition, we investigated the effects of HST on scratch-induced wound healing using HSC-4 and SCC-25 
cell lines in vitro. Compared with the effects of vehicle treatment, HST (1, 10, and 100 µg/mL) did not significantly 
enhance the scratch-induced cell migration of these cell lines (Fig. 6e, f).

Discussion
Our present study, for the first time, revealed that HST enhances scratch-induced wound healing. Although HST 
also enhanced the growth of HOKs, this effect was smaller than the wound healing effect (Fig. 1). In addition, 
the Supplementary Movie. S1 showed that the scratch-induced wound healing was induced by HOK migration. 
Taken together, these findings suggested that the effect of HST on scratch-induced wound healing might be 
due to migration rather than growth of HOKs. Moreover, we identified Scutellaria root, processed ginger, and 
Glycyrrhiza as active constituents among the seven medicinal herbs comprising HST (Fig. 2). We also found 
that the active ingredients of these herbs consisted of baicalein in Scutellaria root; [6]-shogaol, [8]-shogaol, 

Medicinal herb Ingredients

Confluence (ratio of vehicle)

0.1 μM 1 μM 10 μM

Scutellaria root

baicalin − 1.71 ± 0.14 2.51 ± 0.53

baicalein − 1.70 ± 0.27 3.02 ± 0.76**

wogonin − 1.62 ± 0.21 0.98 ± 0.15

Processed ginger

[6]-shogaol 2.76 ± 0.46* 3.49 ± 0.55*** 0.99 ± 0.26

[8]-shogaol 2.33 ± 0.44 2.84 ± 0.43** 3.77 ± 0.48****

[10]-shogaol 1.91 ± 0.31 3.24 ± 0.41*** 3.48 ± 0.37****

[6]-gingerol − 2.12 ± 0.20 3.48 ± 0.30****

[8]-gingerol − 2.02 ± 0.21 2.95 ± 0.47**

[10]-gingerol 2.20 ± 0.30 3.02 ± 0.38** 2.21 ± 0.21

Glycyrrhiza

Glycyrrhizin − 1.05 ± 0.14 1.58 ± 0.33

Glycyrrhetinic acid − 1.20 ± 0.11 3.31 ± 0.85****

Liquiritin − 1.50 ± 0.08 1.69 ± 0.13

Isoliquiritin − 1.34 ± 0.12 1.51 ± 0.20

Liquiritin apioside − 1.27 ± 0.20 1.53 ± 0.33

Liquiritigenin − 1.34 ± 0.21 1.53 ± 0.08

Isoliquiritigenin − 1.75 ± 0.16 1.55 ± 0.16

Table 1. Effects of components of Scutellaria root, processed ginger, and Glycyrrhiza on the scratch-induced 
migration of HOKs. HOKs were treated with various ingredients of Scutellaria root (baicalin, baicalein, 
and wogonin), processed ginger ([6]-shogaol, [8]-shogaol, [10]-shogaol, [6]-gingerol, [8]-gingerol, and 
[10]-gingerol), and Gglycyrrhiza (glycyrrhizin, liquiritin, isoliquiritin, liquiritin apioside, and isoliquiritigenin) 
for 72 h. Data are expressed as the ratio of vehicle at 72 hr. *p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001, compared with vehicle; Tukey’s multiple comparisons test following one-way ANOVA.

Medicinal herb Ingredients

Scutellaria root

baicalin

baicalein (glucuronide of baicalein)

wogonin

wogonoside (glucuronide of wogonin)

Processed ginger

[6]-shogaol

[8]-shogaol

[10]-shogaol

[6]-gingerol

[8]-gingerol

[10]-gingerol

Glycyrrhiza
Glycyrrhetinic acid

Isoliquiritigenin

Table 2. List of HST components analysed in the pharmacokinetic study.
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[10]-shogaol, [6]-gingerol, [8]-gingerol, and [10]-gingerol in processed ginger, and glycyrrhetinic acid in 
Glycyrrhiza (Table 1). These results suggested that these ingredients could cooperatively enhance scratch-induced 
HOK migration.

In addition, we also confirmed that orally administered HST reduced the severity of OUM in vivo using a 
chemotherapy-administered OUM rat model. Consistent with this effect, topical HST (100 mg/mL) application 
significantly enhanced the healing of cutaneous wounds on day 14 following wound surgery (Supplementary 
Fig. S1). Notably, although oral HST administration increased body weight at day 6, at which time heal-
ing of OUM was enhanced (Fig. 5), the healing action of HST toward the cutaneous tissues was considered 
to be independent of body weight because of the equal effects of control (0 µg/mL) and HST (1, 10, 100 µg/
mL)-administrated rats (Supplementary Fig. S1). These data suggested that the HST-evoked weight gain in the 
chemotherapy-administered OUM model might have been induced by an increase in food intake consequent to 
reduced OUM severity/OUM healing, which reduced the OUM-induced pain.

For the treatment of patients with cancer presenting with OUM, an important consideration would be to 
ensure that HST enhances neither the cell growth nor the migration of cancer cells. We found that, at the con-
centrations tested, HST did not increase and in some cases decreased the viability of various cancer cell lines 
including two derived from human squamous cell carcinoma of the tongue (HSC-4, SCC-25) human colorectal 
cancer (Fig. 6), nor did it increase HSC-4 and SCC-25 scratch-induced migration (Fig. 6). In addition, Miyashita 
T et al. have reported that HST reduced the incidence of reflux-induced esophageal cancer and the infiltration 

Figure 3. Plasma concentration of ingredients following oral administration of HST. Plasma samples 
were collected at 0 (pre-administration), 0.25, 0.5, 1, 2, 4, 8, 24, 32, and 48 h following HST administration. 
Measurement for ingredient concentration was performed via liquid chromatography-tandem mass 
spectrometry.
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of macrophages in a surgical rat model43. Taken together, these findings indicated that HST does not promote 
the cancer itself, suggesting that HST may be useful for patients with cancer suffering from OUM. HST might 
not only ameliorate oral mucositis but also suppress growth of cancer cells, although further study is absolutely 
required.

In clinical practice for OUM treatment, HST was dissolved in hot water and administered by mouth- 
washing22,44. Therefore, HST may have two modes of action: directly affecting OUM, or affecting OUM following 
absorption in the blood. As shown in our plasma pharmacokinetic study, the doses of compounds derived from 
Scutellaria root, processed ginger, and Glycyrrhiza shown to be effective in the HST-induced HOK migration 
assay were higher than those found in the plasma (Fig. 3 and Table 1). In addition, our previous study has shown 
that the doses of components of the HST solution administered in clinical practice were 1–100 µM26. In com-
parison, the dose of baicalein required for HST-induced HOK migration was 10 µM and that of the ingredients 
of processed ginger was 0.1–10 µM (Table 1). Therefore, the doses in the HST-induced HOK migration were the 
same or lower than that of HST solution in clinical practice. Taken together, these finding suggested that the 
wound healing function afforded by HST is evoked by the direct action of HST on OUM.

Numerous groups have reported that MAPKs and CXCR4 play important roles in cell migration29–42. In our 
present study, HST enhanced the scratch-induced migration of HOK via MAPKs and CXCR4 (Fig. 4). Chao et 
al.32 and Su et al.42 have shown that baicalein activates JNK and/or p38. In addition, [6]-shogaol and [10]-gingerol 
activated ERK, JNK and p3837,39,40. These reports suggest that baicalein, [6]-shogaol and [10]-gingerol phospho-
rylate MAPKs and induce migration of HOKs. However, further study is needed to elucidate which ingredients 
activate MAPKs.

In addition, several reports have demonstrated relationships between MAPKs and CXCR4 in cell migration, 
which have been classified into two pathways: 1) MAPK activation increases the expression of CXCR4 and/or its 
ligands such as CXCL11 and CXCL12, and 2) MAPKs are involved in the cell migration induced by activation of 
CXCR4. With regard to the former, it has been reported that CXCR4 expression is induce d by ERK activation, 
with expression of CXCL-11 and CXCL-12, both of which are ligands for CXCR4, also being increased through 
activation of ERK and p3831,33–35. For the latter, some reports have shown that CXCL12 evokes T-cell migration 
through ERK activation, with the CXCR4-activated cell migration being associated with activation of ERK and/
or p3829,30,36,41. It has also been reported that cell migration induced by the CXCL12/CXCR4 axis is due to the 
activation of JNK and p3838. To clarify the pathways underlying the beneficial effects of HST, studies investigating 

Figure 4. Effects of inhibitors of MAPKs or CXCR4 on the HST-induced enhancement of migration in HOKs. 
HOKs were co-treated with HST (100 µg/mL) and an ERK inhibitor U0126 (10 µM, a), JNK inhibitor II (1 µM, 
b), p38 inhibitor SB202190 (10 µM, c), or a CXCR4 inhibitor BDPA-Zn (3 µM, d). Data are expressed as the 
ratio of vehicle at 24 h. **p < 0.01, and ****p < 0.0001, compared with vehicle; #p < 0.05, ##p < 0.01, and 
####p < 0.0001, compared with HST: Tukey’s multiple comparisons test following two-way ANOVA.
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the role of HST and its constituents on the mRNA expression of CXCR4, CXCL11, and CXCL12 in HOK are now 
on-going in our laboratory.

Although chemotherapy-induced OUM is associated with the use of various anti-cancer drugs, there are not 
so many effective prevention methods or therapeutic modalities. HST thus constitutes a promising therapy, the 
efficacy of which has been demonstrated via a clinical study with a high evidence level22,44. Basic research findings 
have indicated that HST enhances OUM healing through multiple pharmacological actions (e.g., anti-oxidant, 
anti-inflammatory, anti-bacterial, and analgesic activities)23–25. With regard to anti-inflammatory effects, we have 
shown that various ingredients in HST decrease the interleukin 1β-induced prostaglandin E2 (PGE2) production 

Figure 5. Effects of HST on oral ulcerative mucositis (OUM) healing. HST, rats administered a powder diet 
containing HST at a concentration of 1%; Ctrl, rats administered a normal powder diet. (a) Representative 
photographs of the ulcerative region in Ctrl and HST rats on days 2 and 6 following acetic acid treatment. 
(b) Daily changes of OUM scores following acetic acid treatment in Ctrl and HST rats (n = 7 in each group). 
*p < 0.05 and **p < 0.01, compared with Ctrl rats; Sidak’s multiple comparisons test following two-way 
ANOVA.
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in HOKs with multi-targeting effects, such as dual suppression of cyclooxygenase-2 expression and PGE2 meta-
bolic activity26. For analgesic effects, the swab application of HST on an OUM rat model suppressed spontaneous 
and mechanical pain through Na+ channel blockage, which was mediated by several ingredients in HST27,28. We 
now add a new pharmacological action by demonstrating that HST exhibits wound healing activity, with its phar-
macological actions being regulated by different the constituent medicinal herbs (Supplementary Table 1). Taken 
together, these data suggested that the seven medicinal herbs comprising HST exert different pharmacological 
actions in the treatment of cancer therapy-induced OUM.

Figure 6. Effects of HST on the growth or scratch-induced migration of cancer cells in vitro. HSC-4 (a), SCC-
25 (b), DLD-1 (c), and MKN-45 (d) cell lines were treated with HST for 72 h, then cell growth was measured 
using Cell Counting Kit-8. HSC-4 (e) and SCC-25 (f) cells were treated with HST (1, 10, and 100 µg/mL) 
for 72 h, then the area occupied by cancer cells on the scratched area was quantified using IncyCyte scratch 
wound cell migration software (ESSEN BioScience). Data are expressed as the ratio of vehicle at 72 h. *, **, 
***, and **** indicate p < 0.05, 0.01, 0.001, and 0.0001, respectively, compared with vehicle; Tukey’s multiple 
comparisons test following one-way ANOVA.
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Irinotecan, an anti-cancer drug, exerts an inhibitory effect on nucleic acid synthesis by inhibition of topoi-
somerase I45. One of the dose-limiting toxicities is diarrhea (beginning more than 24 h after infusion) that 
leads to dehydration and electrolyte imbalance, making it a life-threatening condition46. The mechanism of 
irinotecan-induced diarrhea is direct damage to the intestinal mucosa induced by SN-38, which is a metabolite 
and an active form of irinotecan47. In an animal experiment, HST exhibited protective effects against intestinal 
toxicity caused by irinotecan48. In addition, a randomized controlled trial had revealed that the grade of diarrhea 
significantly improved after treatment with HST in patients with non-small cell lung cancer treated with cisplatin 
and irinotecan49. HST significantly reduced the frequency of severe diarrhea (grade 3 or 4). Although further 
studies is needed, one of the mechanism of HST on the improvement of irinotecan-induced diarrhea could be 
HST-induced migration of intestinal epithelial cells.

In conclusion, the findings of the present study suggested that HST, specifically the active ingredients in 
its constituents Scutellaria root, Processed ginger, and Glycyrrhiza, has direct beneficial effects on OUM and 
enhances tissue repair through oral keratinocyte migration as likely induced by activation of MAPKs and CXCR4. 
This study provides scientific evidence supporting the use of HST in patients with chemotherapy-induced OUM. 
Further studies should be performed on the efficacy, safety and mechanisms of this promising agent for the man-
agement of mucositis in cancer patients treated with other treatment modalities.

Methods
Chemicals and reagents. The following reagents were used: foetal bovine serum (FBS) and Keratinocyte-
SFM (1 × ) (Gibco, Carlsbad, CA, USA); trypsin and trypsin neutralizing solution (TNS) (Lonza, Basel, 
Switzerland); penicillin/streptomycin, dimethyl sulphoxide (DMSO), U0126 (Nacalai Tesque, Kyoto, Japan); 
poly-L-lysine (PLL), SB202190, 5-fluorouracil and glycyrrhetinic acid (Sigma-Aldrich, St. Louis, MO, USA); 
Cellmatrix I-P (Nitta Gelatin Inc., Osaka, Japan); phosphate buffered saline (–) (PBS); (Nissui Pharmaceutical 
Co., Osaka, Japan); Dulbecco’s modified Eagle medium (DMEM) Low Glucose, RPMI-1640, baicalin, wogonin, 
berberine chloride, rutin, and BDPA-Zn (Fujifilm Wako Pure Chemical, Osaka, Japan); JNK inhibitor II 
(Calbiochem, San Diego, CA, USA); medetomidine (zenoaq, Fukushima, Japan), midazolam (Sandoz, Yamagata, 
Japan); butorphanol (Meiji Seika Pharma, Tokyo, Japan); and thalifendine chloride and demethyleneberberine 
chrolide (Cheminstock, Shanghai, China).

HST extract powder (Lot No. 2100014010), the base powder of HST without excipients, was obtained from 
Tsumura & Co. (Ibaraki, Japan), manufactured as an aqueous extract mixture of seven medicinal herbs (per-
centage): Pinellia tuber (27.0), Scutellaria root (13.5), processed ginger (13.5), Glycyrrhiza (13.5), jujube (13.5), 
ginseng (13.5), and Coptis rhizome (5.5). The dried powdered extract form of HST and its crude drugs were sus-
pended in DMSO at 100 mg/mL, diluted 100 fold with culture medium, and filtered through a 0.45 μm membrane 
(ADVANTEC, Tokyo, Japan), then applied to cells at 1, 10, 30, or 100 μg/mL (final concentration).

Among HST ingredients, baicalein, wogonoside, [6]-shogaol, [8]-shogaol, [10]-shogaol, [6]-gingerol, 
[8]-gingerol, [10]-gingerol, coptisine, berberrubine, jatrorrhizine, isoliquiritigenin, ginsenoside Rb1, 
6-C-xylopyranosyl-8-C-galactopyranosylapigenin (XGA), and 6-C-galactopyranosyl-8-C-xylopyranosylapigenin 
(GXA), with purities sufficiently high for evaluation in biological tests, were used (Tsumura & Co.) All other rea-
gents were of the highest purity available from commercial sources.

Cell culture. Primary human oral keratinocytes (HOKs, Lot No. 5854, ScienCell Research Laboratories, 
Carlsbad, CA, USA) were cultured on PLL-coated dishes in Keratinocyte-SFM (1×) supplemented with 10% 
FBS, penicillin (100 U/mL).

In cancer cells, human squamous cell carcinoma cells of the tongue (HSC-4, SCC-25), colorectal cancer cells 
(DLD-1), and human gastric cancer cells (MKN-45) were used in this study. HSC-4 and SCC-25 cells were cul-
tured in DMEM Low Glucose supplemented with 10% FBS, penicillin (100 U/mL), and streptomycin (100 mg/mL). 
DLD-1 and MKN-45 cells were cultured in RPMI-1640 supplemented with 10% FBS, penicillin (100 U/mL), and 
streptomycin (100 mg/mL). All cells were incubated at 37 °C in a humidified atmosphere of 95% air and 5% CO2.

Scratch-induced migration assay. HST effects on scratch-induced migration of HOK or cancer cells were 
evaluated using the IncuCyte ZOOM system (ESSEN BioScience, Ann Arbor, MI, USA), which enables real-time 
and quantitative live-cell analysis. These cells were seeded at 3.0 × 104 (HOK), 2.5 × 104 (HSC-4) or 1.5 × 104 (SCC-
25) cells/well in 96 well ImageLock microplates (ESSEN BioScience) coated with 300 µg/mL collagen (Cellmatrix® 
I-P), respectively. The next day, cells were scratched using a 96 well WoundMaker (ESSEN BioScience) and the 
culture medium was changed to assay medium [Keratinocyte-SFM (1×) containing 2% FBS (HOK), DMEM Low 
Glucose (HSC-4 and SCC-25) or RPMI-1640 (DLD-1 and MKN-45)]. Cells were treated with HST, medicinal 
herbs, or various ingredients and visually monitored every 2 h for up to 72 h. The area occupied by cells on the 
scratched area was quantified using IncuCyte scratch wound cell migration software (ESSEN BioScience).

Cell viability assay. Cell viability assay was performed using Cell Counting Kit-8 according to manufac-
turer instruction (Dojindo Laboratories, Kumamoto, Japan). Briefly, cells were seeded at 1.5 × 104 cells/well 
(HOK), 3 × 104 cells/well (HSC-4) or 7 × 104 cells/well (DLD-1, MKN-25, and SCC-25) in 96-well microplates 
(Corning, Armonk, NY, USA) and incubated overnight. The culture medium was changed to assay medium 
[Keratinocyte-SFM (1×) containing 2% FBS (HOK), DMEM Low Glucose (cancer cells)] and the cells were 
treated with HST. After incubation at 37 °C for 72 h, Cell Counting Kit-8 reagents were applied and the absorb-
ance measured at 450 nm.

Experimental animals for plasma pharmacokinetic analysis of HST-derived ingredients. Male 
Sprague-Dawley rats aged 6 weeks (Japan SLC, Shizuoka, Japan) were used after one-week habituation. The 
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animals were allowed free access to water and standard laboratory food, and housed at 20–26 °C, 30–70% relative 
humidity, and 12 h light:12 h dark cycle (07:00 to 19:00 lights on). All experimental procedures were performed 
according to the Tsumura & Co. ‘Guidelines for the Core and Use of Laboratory Animals’ and approved by the 
Tsumura & Co. Laboratory Animal Committee for the ethical and experimental procedures.

Drug administration and plasma collection. HST extract powder (0.9–1.1 g/kg) dissolved in 10 mL 
distilled water was orally administered to 16 h fasted rats. Animals (n = 3/each point) were sacrificed at 0 
(pre-administration), 0.25, 0.5, 1, 2, 4, 8, 24, 32, and 48 h following administration by exsanguination from the 
abdominal postcava. Plasma samples were collected from the blood by centrifugation (1,700 g, 15 min, 4 °C) and 
stored at −80 °C until analysis.

Plasma pharmacokinetic analysis of HST-derived ingredients. For pharmacokinetic analysis, we 
focused on the main ingredients in each crude HST component and their metabolites (Table 2). To quantify 
the compounds, the plasma samples were analysed using liquid chromatography-tandem mass spectrometry 
(LC-MS/MS) following pretreatment as described below. The LC-MS/MS system consisted of an API4000 triple 
quadrupole mass spectrometer (SCIEX, Framingham, MA, USA) equipped with an Agilent 1100 system (Santa 
Clara, CA, USA).

For glycyrrhetinic acid and isoliquiritigenin quantification, 200 µL plasma was mixed with 25 µL acetonitrile, 
an equal volume of niflumic acid (100 ng/mL) as an internal standard, and 750 µL methanol. To prepare the cali-
bration curve, the same volumes of various concentrations of working solution were used instead of the acetoni-
trile. The mixture was centrifuged (3,000 g, 4 °C, 15 min), then 750 µL supernatant was dried under a stream of 
nitrogen gas and dissolved in 50 µL of a solvent such as the initial mobile phase used for the LC-MS/MS systems.

For baicalin, baicalein wogonin, wogonoside, [6]-shogaol, [8]-shogaol, [10]-shogaol, [6]-gingerol, 
[8]-gingerol, and [10]-gingerol quantification, 200 µL plasma was mixed with 25 µL acetonitrile or various con-
centrations of working solution, an equal volume of niflumic acid (100 ng/mL), and 150 µL water. The mixture 
was centrifuged (1,700 g, 4 °C, 2 min), then the total supernatant volume was loaded onto a preconditioned 
(1 mL methanol and 1 mL water) Oasis HLB cartridge (Waters, Milford, MA, USA). The cartridge was washed 
with water, then analytes were eluted with 400 µL methanol and/or 400 µL acetonitrile, dried under nitrogen 
gas, and dissolved in 50 µL of a solvent as described above. LC-MS/MS analytical conditions are summarized in 
Supplementary Tables 2 and 3.

Experimental animals for the OUM model. Male Wistar rats aged 8 weeks (Kyudo, Saga, Japan, n = 14) 
were housed in pairs in clear cages with wood chips under specific-pathogen-free conditions, and maintained on 
a 12:12 h light-dark cycle in a temperature- and humidity-controlled room (21–23 °C and 40–60%, respectively) 
with food pellets and water provided ad libitum, except during the experimental period. All in vivo experiments 
were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory 
Animals and approved by the Animal Experiment Committee of Kyushu Dental University (approval nos. 18–014 
and 18–025). Rats were randomly selected for each experiment. Evaluation of OUM severity and cutaneous 
wound healing was performed in a manner blind to the experimental conditions.

Generation of chemotherapy-administered OUM. According to our previous study50, the represent-
ative chemotherapy drug 5-fluorouracil (40 mg/kg/day in saline) was intraperitoneally administered 3 times at 
2-day intervals in rats. Two days after the final administration, the labial fornix region of the inferior incisors was 
treated with a filter paper (3 mm × 3 mm, Whatman, Maidstone, UK) soaked in 50% acetic acid soaked for 30 s 
under anaesthesia (mixture of medetomidine (0.375 mg/kg), midazolam (2 mg/kg), and butorphanol (2.5 mg/kg) 
by intraperitoneal administration.

HST application and OUM healing analysis. For acclimation, rats were fed a powder diet instead of pel-
lets from 1 week prior to the OUM healing experiments. From the day of acetic acid treatment, rats were fed the 
powder diet containing 1% HST or normal powder diet (control) until the end of the experiment.

To evaluate OUM severity, we used the following visual oral mucositis score, modified from that for a 
radiation-induced OUM model50,51: 0, normal; 0.5, possible presence of redness; 1, slight but definite redness; 2, 
severe redness; 3, focal pseudomembrane, without a break in the epithelium; 4, broad pseudomembrane, with a 
break in the epithelium within the acetic acid-treated mucosal area; 5, virtual loss of epithelial and keratinized 
layers over the acetic acid-treated mucosal area; and 6, severe swelling of the lower lip with OUM at a score of 5. 
The evaluation was performed every day under 2% isoflurane anaesthesia.

Statistical analysis. The data are presented as the means ± S.E.M. Statistical analysis was performed 
using one- or two-way analysis of variance (ANOVA) followed by Tukey’s or Sidak’s multiple comparisons tests 
(GraphPad Prism 6, San Diego, CA, USA). p < 0.05 was considered statistically significant.

Received: 16 July 2019; Accepted: 19 December 2019;
Published: xx xx xxxx

References
 1. McGuire, D. B. et al. Patterns of mucositis and pain in patients receiving preparative chemotherapy and bone marrow 

transplantation. Oncology nursing forum 20, 1493–1502 (1993).
 2. Sonis, S. T. Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced stomatotoxicity. Oral 

oncology 34, 39–43 (1998).

https://doi.org/10.1038/s41598-019-57192-2


1 2Scientific RepoRtS |          (2020) 10:625  | https://doi.org/10.1038/s41598-019-57192-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 3. Dodd, M. J. et al. Randomized clinical trial of the effectiveness of 3 commonly used mouthwashes to treat chemotherapy-induced 
mucositis. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 90, 39–47, https://doi.org/10.1067/
moe.2000.105713 (2000).

 4. Dorr, W., Hamilton, C. S., Boyd, T., Reed, B. & Denham, J. W. Radiation-induced changes in cellularity and proliferation in human 
oral mucosa. International journal of radiation oncology, biology, physics 52, 911–917 (2002).

 5. Sonis, S. T. Pathobiology of mucositis. Seminars in oncology nursing 20, 11–15 (2004).
 6. Duncan, G. G. et al. Quality of life, mucositis, and xerostomia from radiotherapy for head and neck cancers: a report from the NCIC 

CTG HN2 randomized trial of an antimicrobial lozenge to prevent mucositis. Head & neck 27, 421–428, https://doi.org/10.1002/
hed.20162 (2005).

 7. Jones, J. A. et al. Epidemiology of treatment-associated mucosal injury after treatment with newer regimens for lymphoma, breast, 
lung, or colorectal cancer. Supportive care in cancer: official journal of the Multinational Association of Supportive Care in Cancer 14, 
505–515, https://doi.org/10.1007/s00520-006-0055-4 (2006).

 8. Vera-Llonch, M., Oster, G., Hagiwara, M. & Sonis, S. Oral mucositis in patients undergoing radiation treatment for head and neck 
carcinoma. Cancer 106, 329–336, https://doi.org/10.1002/cncr.21622 (2006).

 9. Barber, C., Powell, R., Ellis, A. & Hewett, J. Comparing pain control and ability to eat and drink with standard therapy vs Gelclair: a 
preliminary, double centre, randomised controlled trial on patients with radiotherapy-induced oral mucositis. Supportive care in 
cancer: official journal of the Multinational Association of Supportive Care in Cancer 15, 427–440, https://doi.org/10.1007/s00520-
006-0171-1 (2007).

 10. El-Housseiny, A. A., Saleh, S. M., El-Masry, A. A. & Allam, A. A. The effectiveness of vitamin “E” in the treatment of oral mucositis 
in children receiving chemotherapy. The Journal of clinical pediatric dentistry 31, 167–170 (2007).

 11. Vera-Llonch, M., Oster, G., Ford, C. M., Lu, J. & Sonis, S. Oral mucositis and outcomes of autologous hematopoietic stem-cell 
transplantation following high-dose melphalan conditioning for multiple myeloma. The journal of supportive oncology 5, 231–235 
(2007).

 12. Bensinger, W. et al. NCCN Task Force Report. prevention and management of mucositis in cancer care. Journal of the National 
Comprehensive Cancer Network: JNCCN 6 Suppl 1, S1–21; quiz S22–24 (2008).

 13. Sonis, S. T. Efficacy of palifermin (keratinocyte growth factor-1) in the amelioration of oral mucositis. Core evidence 4, 199–205 
(2010).

 14. Sonis, S. T. New thoughts on the initiation of mucositis. Oral diseases 16, 597–600, https://doi.org/10.1111/j.1601-0825.2010.01681.x 
(2010).

 15. Miyano, K., Ueno, T., Yatsuoka, W. & Uezono, Y. Treatment for Cancer Patients with Oral Mucositis: Assessment Based on the 
Mucositis Study Group of the Multinational Association of Supportive Care in Cancer in International Society of Oral Oncology 
(MASCC/ISOO) in 2013 and Proposal of Possible Novel Treatment with a Japanese Herbal Medicine. Current pharmaceutical design 
22, 2270–2278 (2016).

 16. Elting, L. S. et al. The burdens of cancer therapy. Clinical and economic outcomes of chemotherapy-induced mucositis. Cancer 98, 
1531–1539, https://doi.org/10.1002/cncr.11671 (2003).

 17. Elting, L. S., Cooksley, C. D., Chambers, M. S. & Garden, A. S. Risk, outcomes, and costs of radiation-induced oral mucositis among 
patients with head-and-neck malignancies. International journal of radiation oncology, biology, physics 68, 1110–1120, https://doi.
org/10.1016/j.ijrobp.2007.01.053 (2007).

 18. Yeoh, A. S. et al. A novel animal model to investigate fractionated radiotherapy-induced alimentary mucositis: the role of apoptosis, 
p53, nuclear factor-kappaB, COX-1, and COX-2. Molecular cancer therapeutics 6, 2319–2327, https://doi.org/10.1158/1535-7163.
Mct-07-0113 (2007).

 19. Lalla, R. V. et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 
120, 1453–1461, https://doi.org/10.1002/cncr.28592 (2014).

 20. Trotti, A. et al. Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy 
with or without chemotherapy: a systematic literature review. Radiotherapy and oncology: journal of the European Society for 
Therapeutic Radiology and Oncology 66, 253–262 (2003).

 21. Uezono, Y. et al. A review of traditional Japanese medicines and their potential mechanism of action. Current pharmaceutical design 
18, 4839–4853 (2012).

 22. Matsuda, C. et al. Double-blind, placebo-controlled, randomized phase II study of TJ-14 (Hangeshashinto) for infusional 
fluorinated-pyrimidine-based colorectal cancer chemotherapy-induced oral mucositis. Cancer chemotherapy and pharmacology 76, 
97–103, https://doi.org/10.1007/s00280-015-2767-y (2015).

 23. Fukamachi, H. et al. Effects of Hangeshashinto on Growth of Oral Microorganisms. Evidence-based complementary and alternative 
medicine: eCAM 2015, 512947, https://doi.org/10.1155/2015/512947 (2015).

 24. Matsumoto, C. et al. Analysis of the antioxidative function of the radioprotective Japanese traditional (Kampo) medicine, 
hangeshashinto, in an aqueous phase. Journal of radiation research 56, 669–677, https://doi.org/10.1093/jrr/rrv023 (2015).

 25. Hiroshima, Y. et al. Effect of Hangeshashinto on calprotectin expression in human oral epithelial cells. Odontology 104, 152–162, 
https://doi.org/10.1007/s10266-015-0196-3 (2016).

 26. Kono, T. et al. Multitargeted Effects of Hangeshashinto for Treatment of Chemotherapy-Induced Oral Mucositis on Inducible 
Prostaglandin E2 Production in Human Oral Keratinocytes. Integrative Cancer Therapies 13, 435–445, https://doi.
org/10.1177/1534735413520035 (2014).

 27. Hitomi, S. et al. The traditional Japanese medicine hangeshashinto alleviates oral ulcer-induced pain in a rat model. Archives of oral 
biology 66, 30–37, https://doi.org/10.1016/j.archoralbio.2016.02.002 (2016).

 28. Hitomi, S. et al. [6]-gingerol and [6]-shogaol, active ingredients of the traditional Japanese medicine hangeshashinto, relief oral 
ulcerative mucositis-induced pain via action on Na(+) channels. Pharmacological research 117, 288–302, https://doi.org/10.1016/j.
phrs.2016.12.026 (2017).

 29. Yonezawa, A., Hori, T., Sakaida, H. & Uchiyama, T. SDF-1 has costimulatory effects on human T cells: possible involvement of 
MAPK (ERK2) activation. Microbiology and immunology 44, 135–141 (2000).

 30. Sun, Y., Cheng, Z., Ma, L. & Pei, G. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its 
enhancement of p38 MAPK activation. The Journal of biological chemistry 277, 49212–49219, https://doi.org/10.1074/jbc.
M207294200 (2002).

 31. Kukreja, P., Abdel-Mageed, A. B., Mondal, D., Liu, K. & Agrawal, K. C. Up-regulation of CXCR4 expression in PC-3 cells by stromal-
derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling 
pathway-dependent NF-kappaB activation. Cancer research 65, 9891–9898, https://doi.org/10.1158/0008-5472.Can-05-1293 (2005).

 32. Chao, J. I., Su, W. C. & Liu, H. F. Baicalein induces cancer cell death and proliferation retardation by the inhibition of CDC2 kinase 
and survivin associated with opposite role of p38 mitogen-activated protein kinase and AKT. Molecular cancer therapeutics 6, 
3039–3048, https://doi.org/10.1158/1535-7163.Mct-07-0281 (2007).

 33. Kanda, N., Shimizu, T., Tada, Y. & Watanabe, S. IL-18 enhances IFN-gamma-induced production of CXCL9, CXCL10, and CXCL11 
in human keratinocytes. European journal of immunology 37, 338–350, https://doi.org/10.1002/eji.200636420 (2007).

 34. Kanda, N. & Watanabe, S. Prolactin enhances interferon-gamma-induced production of CXC ligand 9 (CXCL9), CXCL10, and 
CXCL11 in human keratinocytes. Endocrinology 148, 2317–2325, https://doi.org/10.1210/en.2006-1639 (2007).

https://doi.org/10.1038/s41598-019-57192-2
https://doi.org/10.1067/moe.2000.105713
https://doi.org/10.1067/moe.2000.105713
https://doi.org/10.1002/hed.20162
https://doi.org/10.1002/hed.20162
https://doi.org/10.1007/s00520-006-0055-4
https://doi.org/10.1002/cncr.21622
https://doi.org/10.1007/s00520-006-0171-1
https://doi.org/10.1007/s00520-006-0171-1
https://doi.org/10.1111/j.1601-0825.2010.01681.x
https://doi.org/10.1002/cncr.11671
https://doi.org/10.1016/j.ijrobp.2007.01.053
https://doi.org/10.1016/j.ijrobp.2007.01.053
https://doi.org/10.1158/1535-7163.Mct-07-0113
https://doi.org/10.1158/1535-7163.Mct-07-0113
https://doi.org/10.1002/cncr.28592
https://doi.org/10.1007/s00280-015-2767-y
https://doi.org/10.1155/2015/512947
https://doi.org/10.1093/jrr/rrv023
https://doi.org/10.1007/s10266-015-0196-3
https://doi.org/10.1177/1534735413520035
https://doi.org/10.1177/1534735413520035
https://doi.org/10.1016/j.archoralbio.2016.02.002
https://doi.org/10.1016/j.phrs.2016.12.026
https://doi.org/10.1016/j.phrs.2016.12.026
https://doi.org/10.1074/jbc.M207294200
https://doi.org/10.1074/jbc.M207294200
https://doi.org/10.1158/0008-5472.Can-05-1293
https://doi.org/10.1158/1535-7163.Mct-07-0281
https://doi.org/10.1002/eji.200636420
https://doi.org/10.1210/en.2006-1639


13Scientific RepoRtS |          (2020) 10:625  | https://doi.org/10.1038/s41598-019-57192-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 35. Gaundar, S. S., Bradstock, K. F. & Bendall, L. J. p38MAPK inhibitors attenuate cytokine production by bone marrow stromal cells 
and reduce stroma-mediated proliferation of acute lymphoblastic leukemia cells. Cell cycle (Georgetown, Tex.) 8, 2975–2983 (2009).

 36. Huang, C. Y. et al. Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and 
NF-kappaB-dependent pathways. Journal of cellular physiology 221, 204–212, https://doi.org/10.1002/jcp.21846 (2009).

 37. Kim, J. H. et al. [6]-Gingerol suppresses interleukin-1 beta-induced MUC5AC gene expression in human airway epithelial cells. 
American journal of rhinology & allergy 23, 385–391, https://doi.org/10.2500/ajra.2009.23.3337 (2009).

 38. Yuan, L., Sakamoto, N., Song, G. & Sato, M. Low-level shear stress induces human mesenchymal stem cell migration through the 
SDF-1/CXCR4 axis via MAPK signaling pathways. Stem cells and development 22, 2384–2393, https://doi.org/10.1089/scd.2012.0717 
(2013).

 39. Kim, S. M. et al. 6-Shogaol exerts anti-proliferative and pro-apoptotic effects through the modulation of STAT3 and MAPKs 
signaling pathways. Molecular carcinogenesis 54, 1132–1146, https://doi.org/10.1002/mc.22184 (2015).

 40. Ryu, M. J. & Chung, H. S. [10]-Gingerol induces mitochondrial apoptosis through activation of MAPK pathway in HCT116 human 
colon cancer cells. In vitro cellular & developmental biology. Animal 51, 92–101, https://doi.org/10.1007/s11626-014-9806-6 (2015).

 41. Cui, C. et al. Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicas promotes the SDF-1alpha/CXCR4 axis-
induced NSC migration via the PI3K/Akt/FOXO3a, ERK/MAPK, and NF-kappaB signaling pathways. Neuroscience letters 616, 
57–64, https://doi.org/10.1016/j.neulet.2016.01.041 (2016).

 42. Su, M. Q. et al. Baicalein induces the apoptosis of HCT116 human colon cancer cells via the upregulation of DEPP/Gadd45a and 
activation of MAPKs. International journal of oncology 53, 750–760, https://doi.org/10.3892/ijo.2018.4402 (2018).

 43. Miyashita, T. et al. Preventive effect of oral hangeshashinto (TJ-14) on the development of reflux-induced esophageal cancer. 
Surgery, https://doi.org/10.1016/j.surg.2018.02.003 (2018).

 44. Kono, T. et al. Topical Application of Hangeshashinto (TJ-14) in the Treatment of Chemotherapy-Induced Oral Mucositis. World 
journal of oncology 1, 232–235, https://doi.org/10.4021/wjon263w (2010).

 45. Rosen, L. S. Irinotecan in lymphoma, leukemia, and breast, pancreatic, ovarian, and small-cell lung cancers. Oncology (Williston 
Park, N.Y.) 12, 103–109 (1998).

 46. Abigerges, D. et al. Phase I and pharmacologic studies of the camptothecin analog irinotecan administered every 3 weeks in cancer 
patients. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 13, 210–221, https://doi.org/10.1200/
jco.1995.13.1.210 (1995).

 47. Hecht, J. R. Gastrointestinal toxicity or irinotecan. Oncology (Williston Park, N.Y.) 12, 72–78 (1998).
 48. Takasuna, K. et al. Protective effects of kampo medicines and baicalin against intestinal toxicity of a new anticancer camptothecin 

derivative, irinotecan hydrochloride (CPT-11), in rats. Japanese journal of cancer research: Gann 86, 978–984, https://doi.
org/10.1111/j.1349-7006.1995.tb03010.x (1995).

 49. Mori, K., Kondo, T., Kamiyama, Y., Kano, Y. & Tominaga, K. Preventive effect of Kampo medicine (Hangeshashin-to) against 
irinotecan-induced diarrhea in advanced non-small-cell lung cancer. Cancer chemotherapy and pharmacology 51, 403–406, https://
doi.org/10.1007/s00280-003-0585-0 (2003).

 50. Yamaguchi, K. et al. Distinct TRPV1- and TRPA1-based mechanisms underlying enhancement of oral ulcerative mucositis-induced 
pain by 5-fluorouracil. Pain 157, 1004–1020, https://doi.org/10.1097/j.pain.0000000000000498 (2016).

 51. Parkins, C. S., Fowler, J. F. & Yu, S. A murine model of lip epidermal/mucosal reactions to X-irradiation. Radiotherapy and oncology: 
journal of the European Society for Therapeutic Radiology and Oncology 1, 159–165 (1983).

Acknowledgements
This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 
JP17lk0310037h0001, and by a grant from Tsumura & Co. We would like to thank Editage (www.editage.com) for 
English language editing.

Author contributions
K.M. conceived and conducted the experiments, collected and analysed the data, and prepared the manuscript. 
M.E., Su.H. and T.M. collected and analysed the data. Se.H., A.H., K.N., N.A., M.U., and M.N. helped to collect 
the data. Y.O., A.K., K.O., H.F., Y.H., and T.K. helped to design the study. Y.U. helped to design the study and 
prepare the manuscript. All authors reviewed the manuscript.

competing interests
Y.U. and K.M. received grant support from the Japan Agency for Medical Research and Development (AMED). 
K.O., T.K. and Y.U. received grant support from Tsumura & Co. T.M., Y.O. and A.K. are employees of Tsumura 
& Co. Other authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-57192-2.
Correspondence and requests for materials should be addressed to Y.U.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-019-57192-2
https://doi.org/10.1002/jcp.21846
https://doi.org/10.2500/ajra.2009.23.3337
https://doi.org/10.1089/scd.2012.0717
https://doi.org/10.1002/mc.22184
https://doi.org/10.1007/s11626-014-9806-6
https://doi.org/10.1016/j.neulet.2016.01.041
https://doi.org/10.3892/ijo.2018.4402
https://doi.org/10.1016/j.surg.2018.02.003
https://doi.org/10.4021/wjon263w
https://doi.org/10.1200/jco.1995.13.1.210
https://doi.org/10.1200/jco.1995.13.1.210
https://doi.org/10.1111/j.1349-7006.1995.tb03010.x
https://doi.org/10.1111/j.1349-7006.1995.tb03010.x
https://doi.org/10.1007/s00280-003-0585-0
https://doi.org/10.1007/s00280-003-0585-0
https://doi.org/10.1097/j.pain.0000000000000498
http://www.editage.com
https://doi.org/10.1038/s41598-019-57192-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The Japanese herbal medicine Hangeshashinto enhances oral keratinocyte migration to facilitate healing of chemotherapy-indu ...
	Results
	HST enhances scratch-induced wound healing mainly by facilitating HOK migration in vitro. 
	Components of scutellaria root, processed ginger, and Glycyrrhiza enhance scratch-induced HOK migration in vitro. 
	Plasma concentrations of compounds derived from Scutellaria root, processed ginger, and Glycyrrhiza in rats. 
	HST enhances scratch-induced migration in HOKs via mitogen-activated protein kinases (MAPKs) and C-X-C chemokine receptor 4 ...
	HST mitigates the severity of OUM development. 
	HST does not enhance the cell growth or scratch-induced migration of cancer cells in vitro. 

	Discussion
	Methods
	Chemicals and reagents. 
	Cell culture. 
	Scratch-induced migration assay. 
	Cell viability assay. 
	Experimental animals for plasma pharmacokinetic analysis of HST-derived ingredients. 
	Drug administration and plasma collection. 
	Plasma pharmacokinetic analysis of HST-derived ingredients. 
	Experimental animals for the OUM model. 
	Generation of chemotherapy-administered OUM. 
	HST application and OUM healing analysis. 
	Statistical analysis. 

	Acknowledgements
	Figure 1 Effects of HST on the scratch-induced migration and cell viability of HOKs.
	Figure 2 Among the seven medicinal herbs in HST, Scutellaria root, processed ginger, and Glycyrrhiza exhibited marked HOK migration effects.
	Figure 3 Plasma concentration of ingredients following oral administration of HST.
	Figure 4 Effects of inhibitors of MAPKs or CXCR4 on the HST-induced enhancement of migration in HOKs.
	Figure 5 Effects of HST on oral ulcerative mucositis (OUM) healing.
	Figure 6 Effects of HST on the growth or scratch-induced migration of cancer cells in vitro.
	Table 1 Effects of components of Scutellaria root, processed ginger, and Glycyrrhiza on the scratch-induced migration of HOKs.
	Table 2 List of HST components analysed in the pharmacokinetic study.




