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Unsupervised class discovery in 
pancreatic ductal adenocarcinoma 
reveals cell-intrinsic mesenchymal 
features and high concordance 
between existing classification 
systems
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Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common cancers. However, 
divergent outcomes exist between patients, suggesting distinct underlying tumor biology. Here, 
we delineated this heterogeneity, compared interconnectivity between classification systems, and 
experimentally addressed the tumor biology that drives poor outcome. RNA-sequencing of 90 resected 
specimens and unsupervised classification revealed four subgroups associated with distinct outcomes. 
The worst-prognosis subtype was characterized by mesenchymal gene signatures. Comparative 
(network) analysis showed high interconnectivity with previously identified classification schemes and 
high robustness of the mesenchymal subtype. From species-specific transcript analysis of matching 
patient-derived xenografts we constructed dedicated classifiers for experimental models. Detailed 
assessments of tumor growth in subtyped experimental models revealed that a highly invasive 
growth pattern of mesenchymal subtype tumor cells is responsible for its poor outcome. Concluding, 
by developing a classification system tailored to experimental models, we have uncovered subtype-
specific biology that should be further explored to improve treatment of a group of PDAC patients that 
currently has little therapeutic benefit from surgical treatment.
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Pancreatic ductal adenocarcinoma (PDAC) is the most lethal of all common solid tumors with reported 5-year 
survival rates below 8%1. This poor prognosis can be largely attributed to diagnosis at late disease stage, when 
surgical resection is no longer possible. In patients eligible for surgery, systemic chemotherapy, like gemcitabine 
and more recently FOLFIRINOX, only marginally prolongs survival2–4.

Clinical trials have typically failed in unselected PDAC cohorts, demonstrating that patient classification is 
essential for the efficacy of novel therapeutic approaches5. The expectation was that mutational profiling would 
better identify surgical candidates or predict favorable responses to (neo)adjuvant or palliative systemic treat-
ment6. Although this approach identified many genetic alterations in PDAC7–11, clinical applicability remains lim-
ited12. Instead, capturing the intertumor heterogeneity that underlies poor outcomes or responsiveness is arguably 
best achieved by transcriptome analysis. Transcriptomic analyses capture both the intrinsic and extrinsic factors 
that drive tumor cell growth. We speculate that the interplay between these two variables drives the response 
to treatment. For pancreatic cancer, gene expression profiling and supervised class discovery studies have been 
performed13–19. In addition, effective unsupervised RNA-based classification studies, also in PDAC, have been 
completed20–27. In spite of the proposed molecular classifications thus far, the cellular and molecular mechanisms 
that cause the observed disease outcomes or therapeutic responses remain largely unknown. We still lack critical 
information to study the underlying disease-relevant mechanisms, which will allow the development of much 
needed new treatments.

To address this need, we first performed unsupervised classification on a unique single-center single-platform 
set of histopathologically revised PDAC-only samples from patients who underwent surgery. This revealed the 
existence of subgroups of PDAC with highly divergent outcomes, which bear high similarity to previously iden-
tified molecular subtypes as revealed by network analysis comparisons. Next, using these data and matching 
patient-derived xenografts, we established a molecular classification of experimental models for PDAC by con-
structing dedicated PDX- and cell line-optimized classifiers. We were able to experimentally demonstrate that 
the worst-outcome subgroup is defined by highly invasive tumor growth and that these mesenchymal features 
are tumor cell-intrinsic. The ability to identify those patients that will likely not benefit from surgery alone will 
dramatically aid clinical decision-making. In addition, the identification of experimental models for mesenchy-
mal PDAC could be used to reveal subtype-specific vulnerabilities that could ultimately increase survival rates of 
those patients that do not benefit from resection of the tumor alone.

Results
Unsupervised class discovery in PDAC reveals four distinct subgroups. Previous classification 
studies in pancreatic cancer identified clinically relevant subtypes. However, functional assessment of the tumor 
biology that underlies subtype-specific outcomes in experimental models has lagged behind. This critical infor-
mation should lead to more effective patient stratification and development of new therapeutic targets. To address 
this, we first assembled a large, unique single-center single-platform PDAC-only set with matching model sys-
tems. We selected tumor specimens from 230 retrospectively and 115 prospectively collected samples. After 
assessing tumor cellularity and histopathological confirmation of PDAC diagnosis, 90 samples were found to be 
appropriate for RNA-Seq. Following RNA-Seq, we performed unsupervised consensus clustering and determined 
the optimal number of clusters to be four (Fig. 1a,b and Supplementary Fig. 1). We then established a 159-gene 
classifier using PAM28 (Supplementary Table 1) and classified approximately equal patient numbers to the four 
PDAC subtypes (PDACS; Fig. 1c).

Gene set analysis revealed that each of the distinct PDAC subtypes was characterized by specific biological 
features (Fig. 2 and Supplementary Fig. 2a). Based on these analyses, we named the identified subtypes secretory, 
epithelial, compound pancreatic and mesenchymal. The secretory subtype was enriched for endocrine and exo-
crine functions of the pancreas, as indicated by Moffitt’s endocrine and exocrine factors and β-cell and pancreatic 
secretion signatures (Fig. 2 and Supplementary Fig. 2). As neuroendocrine transdifferentiation has recently been 
associated with poor outcome in PDAC29, these enrichments could indicate high lineage plasticity. Epithelial sub-
type tumors were characterized by Myc signaling, high expression of mitochondrial components and ribosome 
signatures. The mesenchymal subtype was enriched for signatures for epithelial-to-mesenchymal transition, and 
stroma and TGF-β signaling. The compound pancreatic subtype featured signatures similar to the mesenchymal 
subtype but with endocrine characteristics.

PDACS groups associate with outcome. Overall, clinical parameters, including age and histologic type, 
were similar among the subtypes (Fig. 1d and Table 1). Targeted mutation analysis for common PDAC driver 
genes (TP53, SMAD4, KRAS) revealed no correlation to the PDACS groups (P = 0.52; P = 0.15; P = 0.58 respec-
tively, not shown in table). However, we found significant differences between radicality of resection (i.e. whether 
the resection margins were free of tumor) and tumor cell percentage. Epithelial subtype-patients more often 
featured radical resections (R0; Pearson χ2 test P = 0.013). Assessments of tumor purity and stromal and immune 
cell content by ESTIMATE30 revealed that the epithelial subtype (PDACS2) was relatively enriched in tumor cells 
(Fig. 1e). We confirmed this finding by histopathological assessment of tumor cellularity (Fig. 1f and Table 1). We 
also found that the mesenchymal subtype had the highest KRAS transcript levels (Fig. 1g), which is in line with 
recent work showing that mesenchymal, high grade PDAC, features genetic gains in oncogenic KRAS31.

Survival analysis with a 2-year follow-up revealed that the secretory and mesenchymal subtypes were asso-
ciated with much poorer outcomes (median overall survival (OS) 14.7 and 14.0 months, respectively; Fig. 3a), 
compared with the epithelial and compound pancreatic subtypes (median OS 31.8 and 21.5 months). Pairwise 
comparison of OS between the subtypes showed that the epithelial and the compound pancreatic subtypes dif-
fered significantly from the mesenchymal subtype (Supplementary Table 2). Kaplan-Meier survival analysis 
revealed that radicality of resection (P = 0.007), lymph node status (P = 0.003) and degree of differentiation 
(poor vs well P = 0.011; poor vs moderate P = 0.002) also associated with outcome (Supplementary Fig. 3). We 
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performed multivariate Cox proportional hazard regression analysis to test the statistical significance of the asso-
ciation of PDACS with OS, adjusting for potential confounders including sex, age at diagnosis, radicality of resec-
tion, lymph node metastasis and differentiation grade (Supplementary Table 3). The association of the secretory 
and mesenchymal subtypes with poor outcome remained significant (P = 0.018 and P = 0.036, respectively).

Of note, the correlation of PDAC subtypes with outcome was most apparent in patients with confounding 
variables associated with favorable outcomes: In the small group of patients with complete radicality of resection 
(R0), the mesenchymal subtype associated more strongly with poor outcome than any other subtype (median OS 
17.2 months, P = 0.004 pairwise comparison with secretory subtype; Fig. 3b). In patients with no evidence for 
lymph node metastasis (N0), the mesenchymal subtype was also strongly correlated with poor outcome (Fig. 3c; 
median OS 14.0 months, P = 0.010 pairwise comparison with secretory subtype).

To assess whether our PDACS classifier could identify subgroups with poor survival in other cohorts, we 
merged published expression datasets and classified samples as mesenchymal (PDACS4) or non-mesenchymal 
(PDACS1–3). Survival analysis showed that the mesenchymal subtype was also associated with poor outcome in 
this merged validation cohort (Supplementary Fig. 4a,b)20,32.

Figure 1. Unsupervised class discovery in PDAC reveals four distinct subgroups. (a) Unsupervised consensus 
clustering was performed and four clusters were identified. Cumulative distribution function (CDF) is shown 
for cluster numbers k = 2–12 (indicated with coloured lines). (b) Stability of identified cluster numbers (range 
indicated on x-axis) was assessed by GAP statistics for k = 1–8, 8050 genes with average log2 (RPKM) > 1 
and median absolute deviation > 0.5 across samples. The optimal cluster number was found to be four. (c) 
A classifier was constructed and patients were assigned to the different PDACS subgroups shown in the top 
bar. Heatmap shows the cluster analysis with 159 signature genes in rows. Bottom bars indicate posterior 
probability of the subtype indicated by corresponding colours. (d) Association of PDACS subgroups with 
clinical variables. Differentiation grade grouped in poor vs well/moderately differentiated. See also Table 1. (e) 
ESTIMATE-derived tumor purity, stromal content and immune score for the four subtypes indicated by bar 
colors. P < 0.0001 is significance for all three graphs, ANOVA-tested. (f) Pathologist-scored tumor cellularity 
shown per subtype. Significance was determined by Chi-square (scored cellularities are categorical). (g) KRAS 
transcript levels shown per PDACS group. Significance was tested by ANOVA.
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Existing classification systems are interconnected. To further validate our classifier, we compared 
it to existing classifiers by applying it to samples pooled from our samples and previous studies (Supplementary 
Table 4). We summarized the statistical significance of association between subtypes in heatmaps (Fig. 4a–c). 

Patients

N

(%)

PDACS1 PDACS2 PDACS3 PDACS4 P-
value90 N = 20 N = 19 N = 25 N = 26

Sex

male 54 (60.0) 12 9 13 20

0.17female 36 (40.0) 8 10 12 6

ratio 1.5 1.5 0.9 1.1 3.3

Age
median 66 65 62 67 70

0.44
range (44–83) (44–76) (53–83) (52–81) (48–80)

Type of resection

PPPD 79 (87.8) 17 16 22 24

0.52Whipple 8 (8.9) 2 3 1 2

Corpus/tail res. 3 (3.3) 1 2

Tumor cell percentage
median 35.0 32.5 50 35 37.5

0.007
range (10–80) (10–70) (10–70) (10–75) (10–80)

RIN
median 8.0 6.9 7.6 8.8 8

0.23
range (3.2–9.7) (3.2–9.7) (6.0–9.6) (6.2–9.4) (6.8–8.9)

Diameter of tumor 
(cm)

median 3.0 2.6 3.5 2.8 3

0.81range (0.8–8.5) (0.8–8.5) (2.0–6.5) (1.7–5.2) (1.5–4.5)

unknown 1 (1.1) 1

Histologic type

pancreaticobiliary 77 (85.5) 18 15 22 22

0.24intestinal 7 (7.8) 1 4 1 1

unknown 6 (6.7) 1 2 3

Radicality

R0 47 (52.2) 7 16 12 12

0.01R1 43 (47.8) 13 3 13 14

ratio 1.1

Differentiation grade

well 8 (8.9) 4 1 3

0.15
moderate 44 (48.9) 8 13 13 10

poor 35 (38.9) 8 4 8 15

unknown 3 (3.3) 1 1 1

Perineural growth

no 20 (22.2) 3 5 3 9

0.42yes 64 (71.1) 15 12 21 16

unknown 6 (6.7) 2 2 1 1

Vasoinvasive growth

no 50 (55.6) 11 9 13 17

0.41yes 34 (37.8) 9 7 11 7

unknown 6 (6.7) 3 1 2

IPMN component

no 64 (71.1) 12 11 22 19

0.25yes 16 (17.8) 5 4 3 4

unknown 10 (11.1) 3 4 3

PanIN component

no 37 (41.1) 8 6 10 13

0.18yes 44 (48.9) 11 9 15 9

unknown 9 (10.0) 1 4 4

Lymph node no 20 (22.2) 6 4 5 5
0.82

metastasis yes 70 (77.8) 14 15 20 21

Distant no 87 (98.9) 19 18 24 26
0.7

metastasis yes 3 (1.1) 1 1 1

Neoadjuvant therapy

none 86 (95.6) 17 19 24 26

0.15FOLFIRINOX 2 (2.2) 2 1

gem + radioth. 2 (2.2) 1

Adjuvant none 57 (63.3) 11 12 16 18
0.80

therapy gemcitabine 33 (36.7) 9 7 9 8

Status
alive 9 1 4 3 1

dead 81 19 15 22 25

OS
median (months) 17.5 15.7 29.2 21.5 14.5

0.46
range (0.5–12) (2.2–52.5) (2–114.5) (5.8–95.4) (5.5–57.0)

Table 1. Clinicopathological characteristics of the PDACS groups. Bold lettering indicates significance p < 0.05. 
Italics indicate data ranges or ratios calculated from data shown.
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This approach revealed key correlations among secretory, epithelial, and mesenchymal PDACS with published 
subtypes. For example, the secretory subtype significantly correlated with subtypes identified in two other studies 
that share the exo- and endocrine features of the pancreas. The epithelial PDACS also strongly correlated with 
subtypes from two other studies that represented classical, epithelial tumors (Figs. 4a and 2b, respectively). We 
also tested all four pancreatic cancer classifications on the pooled samples in a combined network analysis. This 
analysis showed that our PDAC subtypes and those previously published are highly interconnected and revealed 
the existence of three major clusters (Fig. 4d). Given its strong association with poor outcome and consistent 
interconnection with similar identified subtypes, we focused on the mesenchymal subtype and its comparison to 
the other (non-mesenchymal) subtypes for further experimentation and analysis.

Classification of models for PDAC reveals that mesenchymal features are tumor-cell intrinsic.  
To study the molecular mechanisms that underlie the poor outcome of the mesenchymal tumor subtype, and 
discover potential vulnerabilities, we attempted to use the PDACS classifier to identify experimental models that 
mimic this specific subtype. We found that the patient PDACS classifier did not perform well on non-patient 
samples, as PDX samples and cell lines were not consistently assigned to subtypes, and that the classifier required 
modification for use on such models. We had expected this given the extrinsic factors that affect gene expression, 
especially in PDAC where extrinsic stroma factors have a large impact on tumor biology and substantially differ 
in these models from the host.

To generate a PDX classifier, we assembled a tumor cell-specific and a stroma-specific classifier using 14 PDXs 
derived from the patient cohort: RNA-Seq reads from these PDXs were mapped to the human and mouse genome 
to allocate the expression of genes to the tumor or stromal compartment (Supplementary Fig. 5a). The fraction of 
reads mapped to either genome is shown in Fig. 5a and Supplementary Fig. 5b. Correlations of gene expression 
in unmatched tumor-PDX samples as well as matched donor-PDX pairs are shown in Supplementary Fig. 5c,d). 
As expected, genes associated with stroma were almost exclusively found in the mouse reads (Fap, Acta2; Fig. 5b), 
and tumor marker expression was found in reads mapped to the human genome. GSEA with the Moffitt et al. 
and ESTIMATE stromal gene sets30 revealed strong enrichment in expression assigned to the mouse genome 
(Fig. 5c,d), providing further support for the validity of our species-specific transcript analysis.

We then used the human reads from the PDXs, in conjunction with the consensus clustered patient data, 
to train new epithelial classifiers and identify mesenchymal PDXs versus non-mesenchymal (secretory, epi-
thelial, and compound pancreatic grouped; workflow shown in Supplementary Fig. 5a, classifier genes shown 
in Supplementary Table 5). We generated probability scores for mesenchymal subtype and a ranking of PDXs 
shown in Supplementary Fig. 5e. A heatmap comparison of PDX classification and donor subtype is shown in 
Supplementary Fig. 5f. Of note, this revealed a degree of incongruence between patient and PDX classification. 
We take this to imply high plasticity in pancreatic cancer tissue and cell states that is context dependent, and fur-
ther underscores the need to apply experimental model-specific classification methods.

For the cell lines, we used a similar strategy and assembled a classifier for previously established cell lines33. We 
classified Hs766T, Panc89, PANC-1, and PSN-1 as mesenchymal, and HPAF-II, BxPC3, AsPC-1, Capan-2, and 
Capan-1 as non-mesenchymal (probability scores shown as heatmap in Fig. 5e, see also Supplementary Fig. 6 for 
classification of all cell lines). Mesenchymal classification strongly correlated with the expression of mesenchymal 
identity markers (Vimentin) and invasive growth (CXCR4) as determined by gene expression (Fig. 5e) and flow 
cytometry (Fig. 5f). Conversely, non-mesenchymal cells highly expressed E-cadherin, EpCAM and ERBB3/HER3.

To determine the functional phenotype of mesenchymal classification, we grew classified cell lines in organo-
typic cocultures with pancreatic stellate cells34. Importantly, we observed invasive growth patterns for all mes-
enchymal cell lines (Fig. 5g). In organotypic cultures with non-mesenchymal cell lines, we observed a relatively 
well-demarcated and differentiated non-invasive epithelial layer. Moreover, tumors grown in vivo from mes-
enchymal subtype cell lines exhibited poor differentiation compared to non-mesenchymal tumors (Fig. 5h). 
Using Transwell migration assays, we verified that this invasive growth was not due to enhanced chemotactic 

Figure 2. PDACS groups associate with distinct biological programs. Gene set analysis using the MSigDB 
collections; hallmarks (collection H), gene ontology (GO; C5), and curated (C2). Significance threshold is 
indicated below heatmaps. Colours indicate gene set Z-score. Coloured bars on top indicate subtypes.
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capacity (Fig. 5i). Since we showed that invasive growth is a key feature of mesenchymal PDAC cells, our exper-
iments provide important evidence for the functional relevance of our gene expression-based classification. In 
addition, we did not find differences in the sensitivity to gemcitabine or paclitaxel between mesenchymal and 
non-mesenchymal cell lines (Fig. 5j), arguing that the invasive growth is responsible for poor outcome, rather 
than differential sensitivity to commonly used chemotherapeutics against PDAC.

Figure 3. PDACS groups associate with outcome. (a) Association of PDACS groups with overall survival was 
analyzed by Kaplan-Meier and log rank testing. Number at risk per subtype are indicated below. (b) As for panel 
a, separated by radicality of resection. (c) As for panel a, separated by lymph node metastasis status.
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Discussion
We have described gene expression analysis and unsupervised class discovery on a well annotated single-center 
PDAC-only RNA-Seq expression dataset. These analyses revealed the existence of four subgroups of PDAC that 
correlate with distinct clinical manifestations. By characterizing the associated tumor biology in silico, as well as 
in matching patient-derived models and classical cell lines in vitro and in vivo, we found that a highly invasive 
growth pattern, intrinsic to the tumor cell compartment, is associated with poor-prognosis PDAC.

Despite the known contributions of the mutational spectrum to tumor heterogeneity, we did not uncover 
enrichments for specific mutations in the PDAC subgroups. Given the large influence that the stroma exerts on 
tumor cell behavior, it is likely that tumor cell-extrinsic factors contribute significantly to gene expression-based 
analyses of PDAC outweighing the contributions of tumor cell-intrinsic mutations25. Furthermore, a recent pub-
lication describing the epigenetic determinants of PDAC subtypes suggests that a certain degree of plasticity exists 
between these molecular subgroups35. This plasticity was further supported by a limitation of our study: the dis-
cordance that we observed between PDXs and their donors at the gene expression level. We hypothesize that this 
is indeed due to the large stromal impact on tumor cell gene expression. We have previously observed that already 
within the first passage after grafting, nearly all stromal cells are of mouse origin36. The composition of this mouse 
stroma, and the influence it exerts on the grafted tumor cells, is different from the original human stroma. This 
affects the accuracy with which the gene expression profiles of tumor cells, grown in different host species, reflect 
those from patients. This is in line with a recent study showing that specific macrophage populations in the tumor 
microenvironment drive squamous subtype tumor biology37. In addition, it is possible that the subcutaneous site 
of PDX growth hampers comparison to the original site of growth in the human pancreas. Nonetheless, the use of 
species-specific transcript analysis of PDXs has allowed successful classification of experimental models of PDAC 
and revealed strong correlations of the mesenchymal subtype with invasive potential in vitro and high-grade 
tumor growth in vivo.

Additionally, the question rises why the secretory subtype is associated with poor outcome in our full cohort 
(including R1 and N1 patients). Based on previously published subtyping studies, the mesenchymal subtype 
would be expected to unequivocally predict poor outcome, but in our cohort this was only apparent when con-
sidering the R0 and N0 patients20,21,25. Network analysis revealed the secretory subtype to correlate with the 
previously described ADEX/exocrine-like subtypes and these are not known to associate with relatively poor 
prognosis. A tentative explanation is that poor outcome in our mesenchymal subtype becomes most apparent 
when clinical confounders for poor outcome are considered in depth, and that in these selected patients, the 
tumor cell-intrinsic properties of the ADEX/exocrine-like subtypes do not contribute to poor outcome. Tumors 
that grow in the tail of the pancreas have been suggested to be of mesenchymal/squamous subtype relatively 
often38. However, in the 90 samples available in our cohort, only two originated from the pancreas tail precluding 
meaningful analysis on clinical variables and associations to our molecular subtypes.

Our compound pancreatic subtype appeared to identify similar samples as did the previously published clas-
sical and ADEX/exocrine-like subtypes. However, the biology of this subtype as revealed by GSEA for KEGG and 

Figure 4. Existing classification systems are interconnected. (a–c) Expression data from the AMC cohort 
were pooled with those from previously established pancreatic cancer classifications20,21,25, and subtyped 
using the PDACS classifier (columns) and published methods (rows). Heatmaps indicate statistical 
significance of classification agreement. For the Moffit et al. classification, tumor subtypes were included. 
n = 714 samples in total. Colors correspond to published labeling. QM-PDA, quasi-mesenchymal pancreatic 
ductal adenocarcinoma; ADEX, aberrantly differentiated endocrine exocrine. (d) Network analysis of the 
interconnectivity between classification systems. Each node corresponds to a subtype and size indicates 
number of samples classified as such. Colors correspond to the published labeling as for panels a–c. Line (edge) 
thickness indicates the strength of association quantified by Jaccard similarity coefficient.
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Figure 5. Classified models for PDAC reveal subtype-intrinsic tumor biology. (a) Fraction of RNA-Seq 
reads from PDXs unambiguously mapped to the human (hg38, dark grey) and mouse genome (mm10, light 
grey). Data are shown from 14 PDXs. (b) Expression of epithelial and stromal markers in the human and 
mouse reads indicated by gene nomenclature (all uppercase, human). All comparisons were significant at the 
indicated P-value determined by t-test. Sample size as for a. (c) GSEA comparing mouse- and human-mapped 
PDX gene expression. Mouse reads are included as samples grouped left in the phenotype ranking. Human 
reads are samples to the right. Gene sets used were the Moffitt et al. activated and normal stroma, and basal-
like and classical tumor factor genes. ES, enrichment score. (d) As for panel c, using the ESTIMATE stromal 
and epithelial gene sets. (e) Heatmap representation of probability scores for commonly used cell lines. See 
Supplementary Fig. 5e for a complete overview, of note is that the human reads from the analysis shown in 
panels a-b were used to generate this epithelial cell-tailored classifier. Probabilities for the non-selected subtype 
(i.e. the probability for non-mesenchymal subtype of a mesenchymal cell line) was calculated by subtracting 
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GO signatures was decidedly shared with the mesenchymal subtype (Fig. 2 and Supplementary Fig. 2), and we 
propose that the compound subtype does not result from inappropriate classification, but rather from intratumor 
heterogeneity, where the presence of more than one PDACS subtype (one of which mesenchymal) within the 
tissue analyzed results in a subtype that is characterized by features that differentially impact on its biology and 
classification.

The parallels between the subtypes identified by our own as well as previously published classifiers, suggest 
that a unifying transcriptome-based classification for PDAC can be accomplished. Whether this classification 
should be based solely on the transcriptome of tumor cells, or also include signatures derived from cells within 
the tumor microenvironment is currently still a matter of debate. Achieving consensus on the number and the 
identity of gene expression-based subtypes will aid future clinical implementation39. Such an effort in PDAC 
could also be extended to include other periampullary tumors, and could even cover the full width of gastrointes-
tinal cancers40. This would greatly simplify the application of a molecular classifier, and with careful design, at a 
minimal cost for the detection of rare or organ-specific subtypes41.

We identified PDAC subtypes defined by distinct tumor biology and clinical manifestations. Our subtypes 
show high interconnectivity with previously published classifications. Our data indicate that the very limited 
surgical benefit for patients bearing the most aggressive tumor subtype argues against direct surgical resection of 
such tumors even if otherwise favourable clinical features are present. This poor prognosis following resection is 
caused by the infiltrative growth pattern rather than a difference in response to chemotherapy.

Methods
Clinical data, tissue collection, and ethical approval. Tumor tissue of patients who underwent 
a pancreaticoduodenectomy (PD) for a PDAC at the Amsterdam UMC, location Academic Medical Centre 
Amsterdam (AMC) between 1993 and 2015 was retrospectively collected from the fresh frozen tissue archive 
of the Department of Pathology (n = 230), and from the prospectively collected cohort of the Laboratory for 
Experimental Oncology and Radiobiology (BioPAN; n = 11536). Retrospective collection was conducted in 
accordance with ethical guidelines ‘Code for Proper Secondary Use of Human Tissue in The Netherlands’ (Dutch 
Federation of Medical Scientific Societies), approved by the Academic Medical Center’s institutional review board 
(Medisch Ethische Toetsingscommissie AMC) under METC_A1 15.0122. For prospectively collected material, 
informed consent was obtained from all patients in accordance with our hospital’s ethical guidelines (IRB code 
METC 2018_181). All specimens were snap-frozen in liquid nitrogen and stored at −80 °C. Clinicopathological 
data were obtained through the departments of Surgery and Pathology and expanded with parameters to include 
age, sex, type of surgery, chemo(radio)therapy regimen, radicality of surgery, size and differentiation grade of 
the tumor, and overall survival (Table 1). Total follow-up was over 120 months and median follow-up for living 
patients was 52 months (range 19–120), and 16 months (range 2–95) for deceased patients. For histopathological 
revision, selection, and processing of PDAC samples see Supplementary Methods.

Preparation of libraries and processing for RNA-seq. For RNA isolation, 30 sections of 20 μm were 
cut, and RNA was isolated using RNABee (Bio-Connect, Huissen, the Netherlands) and the RNeasy Mini kit 
(Qiagen, Hilden, Germany) according to manufacturer’s instructions. In most samples the RNA Integrity Number 
was 7 or higher as evaluated by BioAnalyzer (Agilent, Santa Clara, CA), median RIN = 8. Of 19 samples the RIN 
value was under 7 but this was not apparent from principle component analysis (PCA) of the gene expression 
profiles. Samples were DNAse-treated. RNA was amplified using the Total Prep RNA Amplification kit (Illumina, 
San Diego, CA). Poly-A enriched libraries were synthesized using TruSeq RNA Library Prep kit and sequenced 
in three batches (Illumina HiSeq2500). All sequencing data were quality-controlled using FastQC42 and found 
to be of high quality. RNA-Seq reads were aligned to the human reference genome (GRCh38) using Tophat2 
(V2.1.043) with default parameters, retaining only uniquely mapped reads. Gene expression levels were estimated 
using Cufflinks (V2.2.1), with default parameters and Gencode V19 for gene annotation, masking rRNAs, tRNAs 
and chromosome M. The resulting gene expression profiles, measured by RPKM (reads per kilobase of transcript 
per million mapped reads) were log2-transformed. Non-biological batch effects were inspected using PCA, and 
corrections were made using Combat44. Subsequent analyses were done on the batch-corrected dataset.

Identification of PDAC subtypes. In order to identify PDAC subtypes, genes with average log2 
(RPKM) > 1 and a median absolute deviation (MAD) > 0.5 across samples were retained and median-centered. 
Hierarchical clustering with agglomerative average linkage was used for unsupervised classification. To evaluate 

the highest ranking score from 1 to yield the inverse. (f) Flow cytometry for indicated markers was performed 
on indicated cell lines. T-test on pooled data from the mesenchymal versus non-mesenchymal cells yielded the 
P-values shown in the panels. (g) Mesenchymal (red labels) and non-mesenchymal (grey labels) cell lines grown 
in organotypic cocultures with stellate cells for 3 weeks. Histology was then assessed. Equal magnifications 
used for all images; scale bar, 200 μm. (h) Indicated cell lines were subcutaneously grafted in NSG mice. Tumors 
were harvested for histological assessment. (i) Transwell migration assay with the indicated cell lines showing 
baseline chemokinesis (i.e. movement without chemoattractant gradient). n = 3. (j) PDACS classified cell lines 
were treated with indicated concentrations of gemcitabine or paclitaxel (Selleck, Houston, TX). Viability was 
measured by MTT. Curves were fitted with non-linear regression, dose response curves. P-values (by ANOVA) 
shown for pooled mesenchymal cell lines (n = 12 independent measurements on indicated lines) versus pooled 
non-mesenchymal cell lines (n = 15). For paclitaxel treated cells, mesenchymal cell lines (n = 12) and non-
mesenchymal cell lines (n = 6).
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the stability of clustering, consensus clustering was employed45, with 1000 iterations and 95% subsampling ratio. 
A significant increase in clustering stability was observed from k = 2–4, but not for k > 4 (Supplementary Fig. 1a–
c). Gap statistics46 were calculated for k = 1–8, and a peak was found at k = 4, confirming four robust clusters 
(Supplementary Fig. 1d).

Generation of the PDACS classifier. To build the PDAC Subtype (PDACS) classifier, we applied two filtering 
steps to select the most differential and discriminative genes. First, we identified genes significantly differentially 
expressed (false discovery rate, FDR < 0.01) between each PDAC subtype and the other three using significance 
analysis of microarrays (SAM; R package ‘siggenes’, V1.44.047). Second, for each subtype we selected top 40 discrimi-
native genes based on AUC (area under receiver operating characteristics, ROC curve, R package ‘ROCR’ V1.0–7;48. 
The resulting 159 genes in total were trained by prediction analysis for microarrays (PAM;28) to build a classifier. 
The classifier was used for classification of samples in the other data sets (Bailey, PACA-AU and TCGA), where we 
regarded the subtype with the highest posterior probability as being indicative of association with that group. To 
facilitate classification of gene expression data sets generated from other platforms, we filtered gene expression data 
by taking the commonly annotated genes between the sets analyzed. For analysis of public patient data sets, cross 
comparisons between PDAC classification systems, gene set analysis see Supplementary Methods.

Cross comparisons between PDAC classification systems. The strength of pairwise associations 
between subtypes of different PDAC classification systems was statistically assessed. We first reproduced the classi-
fier used by each subtyping system based on corresponding signature genes and the discovery data set. Subsequently, 
we performed cross-classifications, i.e. to use each classifier on the discovery data sets of all reported subtyping sys-
tems. For each two classification systems, sample enrichment analysis was performed using hypergeometric tests to 
compare their corresponding classification results. Benjamini-Hochberg (BH) corrected P-values were derived from 
these tests, indicating the strength of association between the studied two classification systems.

To further systematically elucidate the interrelations between all PDAC classification systems, we employed 
a network-based meta-analysis approach that was established by us previously39. The network encodes on nodes 
the information of subtype prevalence and on edges their association calculated by Jaccard similarity coefficient, 
which is defined by the size of the intersection between two sample sets over the size of their union. To quantify 
the statistical significance of subtype associations, we performed hypergeometric tests for overrepresentation of 
samples classified to one subtype in another. The resulting P-values were adjusted for multiple hypotheses testing 
using the BH method. Using this approach, we built a network consisting of subtypes defined in all subtyping 
systems, interconnected by statistically significant (BH-corrected, P < 0.001) edges.

Statistical analysis. Clinicopathological parameters were collected and analyzed in SPSS V24 (IBM, 
Armonk, NY). Statistical testing on continuous variables (>2 groups) were done by ANOVA, and Pearson 
Chi-square (χ2) tests for categorical variables. Hypergeometric tests were used to quantify the statistical signifi-
cance of association between subtypes of different classification systems. To analyze OS, we used the Kaplan-Meier 
(KM) method, with log-rank tests for calculation of p-values. Multivariate Cox proportional hazards regression 
analysis was used to test the statistical significance of PDACS subtypes with survival, adjusting for potential 
confounders (STATA, StataCorp, College Station, TX). Statistical testing on in vitro data was performed using 
Graphpad Prism 7. Comparing mesenchymal versus non-mesenchymal groups with continuous variables were 
either tested by t-test for Gaussian distributed values or by Mann-Whitney U test for non-Gaussian distributed 
values.

PDX sequence analysis. PDX samples (n = 14, from 13 patients) were processed and sequenced as the 
patient biopsies. Sequence reads from PDX samples were mapped to the mouse (mm10) and human genomes 
(hg38) and assigned to either one using XenofilteR49. Xenograft-donor matching was confirmed by short tandem 
repeat (STR) profiling (Promega, Madison, WI) of the donor patients’ gDNA (isolated from blood) and gDNA 
isolated from the PDX. Gene set enrichment analysis on merged mouse and human sets (Fig. 4c,d) was performed 
using the software available through the Broad institute website, using 1000 permutations on the phenotype50. For 
generation of patient-derived xenografts and cell lines see Supplementary Methods.

Donor-PDX expression comparison. To be able to compare expression profiles from PDX models (which 
are a mix of expression originating from the transplanted human tumor and murine stromal infiltration from 
the host) to donor tumors we combined the expression originating from both compartments. First, using the 
‘biomaRt’ R package we mapped human genes to their best mouse homologs. Secondly, using this mapping, 
we summed reads from mouse and human origin to obtain a combined expression value per gene. Finally, 
these expression values were normalized to reads per million and log2 transformed. For the calculation of the 
donor-PDX correlation coefficients, genes were selected that showed similar expression behavior in patient tum-
ors and PDX models. For this we used a correlation of correlations approach, only selecting genes with a coeffi-
cient above 0.25 (n = 5039)39. This selection was further refined by only including sufficiently variable genes with 
a standard deviation above 1.7 in both the donor and the PDX dataset (n = 113).

Epithelial and stromal PDX classifiers. Linnekamp et al. showed that they were able to subtype PDX models 
derived from colorectal tumors using an epithelial classifier51. Using a similar approach we built an epithelial and 
stromal PDACS classifier. To identify tumor-specific genes that were expressed in the epithelial compartment, but 
not or much less in the stromal compartment (and vice versa for stroma-specific genes), we used the RNA-Seq pro-
files of our PDAC PDX models (using the human-mouse homology mapping described in the previous paragraph). 
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We calculated the minimum and maximum expression in the epithelial compartment (min.ep and max.ep) and stro-
mal compartment (min.str and max.str) across all samples for each gene and selected genes based on the following 
criteria: epithelial genes = (min.ep > 1.5 & max.str < 1.5 & min.ep - max.str > 1.25) or min.ep - max.str > 5; stromal 
genes = (min.str > 1.5 & max.ep < 1.5 & min.str - max.ep > 1.25) or min.ep - max.str > 8.

These two sets of genes were subsequently used to train an epithelial and a stromal PDACS classifier, able to 
distinguish mesenchymal samples (PDACS4) from the other subtypes (PDACS1–3) (Supplementary Table 5). 
Input for this procedure was the AMC patient dataset, excluding PDX-donor patients to avoid bias. Before clas-
sifier construction the expression was normalized using the method described in Linnekamp et al. to counteract 
the tumor and stromal dilution effects, after which a support vector machine (SVM) classifier was constructed 
with the e1071 R package using a linear kernel. The PDX models were then classified using the human and mouse 
expression components for the epithelial and stromal classifier respectively. Of note, a 4-tier classification of 
PDAC cell lines was not successful. For cell line classification, reagents, in vitro assays, flow cytometry, organo-
typic cocultures and migration assays, see Supplementary Methods.

Data availability
RNA-Seq data have been deposited at EMBL-EBI ArrayExpress (E-MTAB-6830).
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