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VAS2870 and VAS3947 attenuate 
platelet activation and thrombus 
formation via a NOX-independent 
pathway downstream of PKC
Wan Jung Lu1,2,3, Jiun Yi Li4,5, Ray Jade Chen6,7, Li Ting Huang1, Tzu Yin Lee8 & 
Kuan Hung Lin2,9*

NADPH oxidase (NOX) enzymes are involved in a various physiological and pathological processes 
such as platelet activation and inflammation. Interestingly, we found that the pan-NOX inhibitors 
VAS compounds (VAS2870 and its analog VAS3947) exerted a highly potent antiplatelet effect. Unlike 
VAS compounds, concurrent inhibition of NOX1, 2, and 4 by treatment with ML171, GSK2795039, 
and GKT136901/GKT137831 did not affect thrombin and U46619-induced platelet aggregation. 
These findings suggest that VAS compounds may inhibit platelet aggregation via a NOX-independent 
manner. Thus, we aimed to investigate the detailed antiplatelet mechanisms of VAS compounds. The 
data revealed that VAS compounds blocked various agonist-induced platelet aggregation, possibly 
via blocking PKC downstream signaling, including IKKβ and p38 MAPK, eventually reducing platelet 
granule release, calcium mobilization, and GPIIbIIIa activation. In addition, VAS compounds inhibited 
mouse platelet aggregation-induced by collagen and thrombin. The in vivo study also showed that VAS 
compounds delayed thrombus formation without affecting normal hemostasis. This study is the first to 
demonstrate that, in addition to inhibiting NOX activity, VAS compounds reduced platelet activation 
and thrombus formation through a NOX-independent pathway downstream of PKC. These findings also 
indicate that VAS compounds may be safe and potentially therapeutic agents for treating patients with 
cardiovascular diseases.

Platelets play a crucial role in normal hemostasis, and also involve in pathological conditions such as inflamma-
tion, tumor metastasis, atherosclerosis, and stroke1,2. When blood vessels are injured, circulating platelets adhere 
to the injured site of the vessel, and are activated by the exposed extracellular matrix, such as collagen and von 
Willebrand factor (vWF), that can be partly mediated through the interaction of collagen-glycoprotein VI (GPVI) 
and vWF-GPIb-V-IX. Activated platelets can further recruit more circulating platelets and initiate a coagulation 
cascade to produce thrombin and fibrin. These processes can lead to a firm platelet plug formation at the injury 
site to achieve hemostasis1,2. However, uncontrolled platelet activation and aggregation under pathological condi-
tions may result in thrombus formation and subsequent vessel occlusion. Thus, appropriate regulation of platelet 
function is necessary to prevent thrombus formation during these thrombosis-prone conditions.

NADPH oxidase (NOX) enzymes are the major sources of reactive oxygen species (ROS), and they are 
involved in various physiological and pathological processes such as immunity, inflammation, atherosclerosis, 
diabetic nephropathy, and cancer3,4. The NOX family consists of seven members: NOX1–5 and two dual oxidases 
(Duox), namely Duox1 and Duox2. Although NOX1, 2, 4, and 5 have been implicated in vascular diseases5, only 
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NOX1 and 2, but not NOX4 and 5, are present in human platelets6. These findings suggest that NOX1 and 2 play 
more crucial roles in regulating platelet function. A study reported that NOX-derived ROS enhanced platelet 
aggregation and platelet-dependent thrombosis7. NOX-derived O2

− may promote platelet activation through 
phospholipase A2-dependent arachidonic acid formation. NOX-derived O2

− can also be rapidly converted into 
H2O2 by superoxide dismutase, which in turn activates platelets through calcium mobilization. Furthermore, 
NOX-derived ROS can inactivate nitric oxide7. These effects of NOX-derived ROS lead to the amplification of 
platelet activation. Moreover, experimental and clinical studies have reported that NOX1 and 2 are involved in 
platelet activation and thrombus formation6–11. Delaney et al.9 reported that NOX1 plays a selective role in G 
protein-coupled receptor (GPCR)-induced platelet aggregation and secretion, whereas NOX2 plays crucial roles 
in both GPCR- and GPVI-dependent platelet aggregation and secretion. By contrast, Walsh et al.11 demonstrated 
that gene deletion of NOX2 did not affect GPVI-dependent platelet aggregation and secretion induced by the 
collagen-related peptide (CRP, a specific agonist of GPVI). Furthermore, Walsh et al.11 and Vara et al.6 have 
reported that NOX1, but not NOX2, regulates GPVI-mediated platelet activation. Although mechanisms through 
which NOX1 and NOX2 regulate platelet activation remain controversial, both NOX1 and NOX2 play crucial 
roles in platelet activation. Therefore, targeting NOX may be a potential therapeutic strategy for treating patients 
with cardiovascular diseases.

To discover drugs or compounds that may be applied in clinical settings, several NOX inhibitors were used in 
the present study. We found that a small-molecule, specific, and nonselective inhibitor of NOX, VAS2870, or its 
analog, VAS3947, exert a potent antiplatelet effect. Although a previous study has reported that VAS2870 prevent 
thrombin- and CRP-induced platelet aggregation12, its detailed mechanism remains unclear. However, intrigu-
ingly, our preliminary results revealed that the pan-NOX inhibitors VAS compounds (VAS2870 and its analog 
VAS3947) exerted a highly potent antiplatelet effect. Unlike VAS compounds, concurrent inhibition of NOX1, 
2, and 4 by treatment with ML171, GSK2795039, and GKT136901/GKT137831 did not affect thrombin and 
U46619-induced platelet aggregation. These findings suggest that, in addition to serving as NOX inhibitors, VAS 
compounds may inhibit platelet aggregation via a NOX-independent manner. Therefore, we further determined 
the detailed mechanisms underlying the antiplatelet effect of VAS2870 and VAS3947.

Results
VAS compounds inhibits platelet aggregation induced by various platelet agonists.  As shown 
in Fig. 1A, the pan-NOX inhibitor VAS2870 (VAS1) completely inhibited collagen-induced platelet aggregation 
at the concentration of 5 μM. Moreover, VAS1 at a concentration of 10 μM completely abolished platelet aggre-
gation induced by convulxin, thrombin, or U46619, indicating that VAS1 effectively inhibits platelet activation 
(Fig. 1B–D). Furthermore, VAS3947 (VAS2), an analog of VAS1, exert effects similar to those exerted by VAS1 on 
platelet aggregation (Figs. 2A–D; S1A). These results suggest that VAS compounds can inhibit GPCR- and GPVI-
mediated platelet activation.

In this study, we also used the selective NOX1 inhibitor ML171. Similar to the finding of a previous study6, we 
found that ML171 (0.5 μM) markedly inhibited collagen-induced platelet aggregation (Fig. 2E). However, ML171, 
even at high concentrations of 10 and 100 μM, did not exert an inhibitory effect on platelet aggregation induced 
by convulxin, thrombin, or U46619 (Figs. 2F–H; S1B–E), indicating that ML171 is sensitive to the inhibition of 
collagen-mediated platelet activation. We also used the NOX1/4 inhibitors GKT136901 and GKT137831. Results 
showed that GKT136901 (20 μM), but not GKT137831 (20 μM), could inhibit collagen-induced platelet aggre-
gation (Fig. 3A,B), and both the compounds, even at a high concentration of 100 μM, did not affect convulxin- 
and thrombin-induced platelet aggregation (Fig. S2A,B). Although, GKT136901 (100 μM), but not GKT137831 
(100 μM), completely blocked U46619-induced platelet aggregation (Fig. S2C,D), it is 10-fold less potent than 
VAS compounds. Moreover, unlike VAS compounds, GKT136901 (100 μM) also did not affect convulxin- and 
thrombin-induced platelet aggregation. On the other hand, our data also revealed that the selective NOX2 inhibi-
tor GSK2795039 (20 μM) effectively inhibited collagen-induced platelet aggregation (Fig. 3C) but not convulxin-, 
thrombin-, or U46619-induced platelet aggregation even at a high concentration of 100 μM (Fig. S3). Moreover, 
concurrent inhibition of NOX1, 2, and 4 by treatment with ML171, GSK2795039, and GKT136901/GKT137831 
did not affect thrombin and U46619-induced platelet aggregation (Fig. 3D,E). These findings suggest that, in addi-
tion to serving as NOX inhibitors, VAS compounds may inhibit platelet aggregation via a NOX-independent man-
ner. In addition, the nonspecific NOX inhibitors diphenyleneiodonium (DPI) and apocynin (APO) were used. As 
shown in Fig. S4, DPI (100 μM) and APO (500 μM) effectively reduced collagen- and convulxin- induced platelet 
aggregation, but not thrombin- and U46619-induced platelet aggregation. Therefore, we further investigated the 
detailed mechanisms underlying the antiplatelet effect of VAS compounds in the subsequent experiments.

VAS compounds block platelet activation through the inhibition of protein kinase C down-
stream signaling pathway.  VAS compounds inhibited GPVI and GPCR-induced platelet aggregation, 
indicating that VAS compounds may inhibit a common pathway of platelet activation. The protein kinase C (PKC) 
pathway is a well-known common pathway involved in platelet activation. Thus, we first determined whether VAS 
compounds affect PKC signaling. As shown in Fig. 4A,B, VAS compounds (5–10 μM) and the PKC inhibitor Ro 
31-8220 effectively reduced platelet aggregation induced by the PKC activator phorbol 12,13-dibutyrate (PDBu), 
suggesting that VAS compounds may inhibit PKC or its downstream signaling. In addition, ML171, GKT com-
pounds, GSK2795039, DPI, and APO were also performed, and the data revealed that these inhibitors did not 
affect PDBu-induced platelet aggregation (Fig. S5). To confirm whether VAS compounds inhibit PKC activation, 
the phosphorylation of p47 protein (pleckstrin), a major PKC substrate (~47 kD) that is widely used to deter-
mine PKC activity, was detected through Western blotting. As shown in Fig. 4C, Ro 31-8220, but not VAS1 and 
VAS2, markedly prevented PDBu-induced p47 phosphorylation, indicating that VAS compounds do not directly 
inhibit PKC activity but may inhibit PKC downstream signaling. Thus, we also determine the phosphorylation of 
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IKKβ and p38 MAPK, which have been reported to conduct PKC-mediated granule release and thromboxane A2 
secretion, respectively13–15. The data showed that VAS compounds as well as Ro 31-8220 significantly inhibit the 
phosphorylation of IKKβ and p38 MAPK. These findings also suggest that VAS compounds attenuated platelet 

Figure 1.  VAS1 mediated the inhibition of platelet aggregation in human platelets stimulated by various 
agonists. Washed platelets (3.6 × 108 cells/ml) were preincubated with DMSO (solvent control) or VAS1 
(VAS2870, 1–10 μM) following the stimulation with (A) collagen (1 μg/ml), (B) convulxin (10 ng/ml), (C) 
thrombin (0.02 U/ml) and (D) U46619 (1 μM) to trigger platelet aggregation. Left panels indicate the tracing 
curve of platelet aggregation, and right panels indicate the statistical bar graphs of platelet aggregation (%). 
Data (A–D) are presented as means ± SEM (n = 3). *p < 0.05, **p < 0.01, and ***p < 0.001, compared with the 
DMSO (solvent control) group. Comparisons were made by ANOVA.
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activation, at least in part, through the inhibition of PKC downstream signaling pathway, including IKKβ and 
p38 MAPK.

VAS compounds attenuate PDBu-induced granule release, calcium mobilization, and glyco-
protein IIbIIIa activation.  In the present study, several indicators of platelet activation induced by PDBu 

Figure 2.  Effects of VAS2 and ML171 on platelet aggregation induced by various agonists. Washed platelets 
(3.6 × 108 cells/ml) were pre-incubated with DMSO (solvent control), (A–D) VAS2 (VAS3947, 1–10 μM), or 
(E–H) ML171 (ML, 0.5–10 μM) following the stimulation of collagen (1 μg/ml), convulxin (10 ng/ml), thrombin 
(0.02 U/ml) and U46619 (1 μM) to trigger platelet aggregation. Profiles (A–H) are representative examples of 
three similar experiments.
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were determined. As shown in Fig. 4D,E, VAS1 (5–10 μM) significantly inhibited PDBu-induced ATP release and 
P-selectin secretion, suggesting that VAS1 reduced PKC-mediated platelet granule release. VAS1 (5–10 μM) also 
blocked PDBu-induced calcium mobilization and GPIIbIIIa activation (Fig. 5A,B). Likely, VAS2 also have inhibi-
tory effects similar to those exerted by VAS1 on platelet activation (Fig. S6A–D). These findings support that VAS 
compounds prevent platelet activation through the PKC downstream signaling pathway.

We considered that VAS compounds may directly block GPIIbIIIa, the final step of platelet aggregation, 
thereby inhibiting various agonists-stimulated platelet aggregation. Therefore, we further determined whether 
VAS compounds interfere with GPIIbIIIa. We found that VAS1 and VAS2 did not affect the binding of triflavin, a 
GPIIbIIIa antagonist16, to GPIIbIIIa (Fig. 5C), indicating that VAS compounds do not block GPIIbIIIa. In addi-
tion, the result of lactate dehydrogenase (LDH) assay revealed that VAS compounds (10–100 μM) did not exhibit 
cytotoxicity in human platelets (Fig. 5D), suggesting that the potent antiplatelet activity of VAS compounds is not 
caused by damaging platelets.

VAS compounds prevent platelet aggregation in vitro and thrombus formation in vivo in mice.  
We further determined the effect of VAS compounds on platelet activation and thrombus formation in mice. We 
observed that VAS compounds (10–20 μM) reduced platelet aggregation induced by collagen and thrombin in 
mouse platelets (Fig. 6A,B).

Figure 3.  Effects of selective and nonspecific NOX inhibitors on platelet aggregation. Washed platelets 
(3.6 × 108 cells/ml) were pre-incubated with DMSO (solvent control), (A) GKT136901 (GKT1, 20 μM), (B) 
GKT137831 (GKT2, 20 μM), (C) GSK2795039 (GSK, 20 μM), or (D,E) combination of ML171 (ML, 0.5 μM), 
GSK (20 μM), and GKT1 or GKT2 (20 μM) following stimulation with collagen (1 μg/ml), convulxin (10 ng/
ml), thrombin (0.02 U/ml) and U46619 (1 μM) to trigger platelet aggregation. Profiles (A–E) are representative 
examples of three similar experiments.
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Figure 4.  Effects of VAS compounds on the PKC/NOX downstream signaling pathway. (A) Washed platelets 
(3.6 × 108 cells/ml) were pre-incubated with DMSO (solvent control), VAS compounds (2–10 μM), or Ro 
31-8220 (2 μM) following stimulation with PDBu (150 nM) to trigger platelet aggregation. (B) The statistical 
analysis in (A). (C) After the reaction, platelet lysates were directly collected, and then subjected to Western 
blotting. Specific antibodies were used to detect PKC, IKKβ, and p38 MAPK. (D,E) Luciferase/luciferin 
and FITC-P-selectin antibody were used to detect ATP release and P-selectin using a microplate reader and 
flow cytometry, respectively. Data (B,D) are presented as means ± S.E.M. (n = 3). *p < 0.05, **p < 0.01, and 
***p < 0.001, compared with the DMSO (solvent control) group. Data (C,E) are presented as means ± SEM (C, 
n = 4; E, n = 3). ***p < 0.001, compared with the resting group. ##p < 0.01 and ###p < 0.001, compared with the 
PDBu-treated (positive control) group. Comparisons were made by ANOVA.
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In the in vivo model, fluorescein sodium was used to evaluate platelet thrombus formation in mesenteric 
microvessels; this model was exposed to UV irradiation, which damaged the endothelium and subsequently 
caused vascular occlusion. The occlusion time was recorded using a real-time monitor. As shown in Fig. 6C, the 
dimethyl sulfoxide (DMSO) group had an occlusion time of approximately 127.8 s. Compared with the DMSO 
treatment, VAS1 (3.7 mg/kg) and VAS2 (4.5 mg/kg) treatments prolonged the occlusion time by 50.0 and 69.3 s 
(both p < 0.01, n = 8), respectively. Moreover, VAS compounds did not affect normal hemostasis, as evidenced 
from the assay of tail-bleeding time (Fig. 6D). These findings indicate that VAS compounds exerted antithrom-
botic effects without side effect of bleeding.

Figure 5.  Effects of VAS compounds on calcium mobilization and GPIIbIIIa activation. (A,B) Washed platelets 
were pre-incubated with DMSO (solvent control) and VAS1 (2–10 μM) before the addition of PDBu to trigger 
platelet activation. Fura-2 and FITC-PAC1 antibodies were used to detect calcium mobilization and GPIIbIIIa 
activation by a microplate reader and flow cytometry, respectively. (C) FITC-triflavin was used to observe the 
binding capacity of VAS compounds (10 μM) on the GPIIbIIIa receptor through flow cytometry. (D) LDH 
assay kits were used to determine the cytotoxicity of VAS compounds (10–100 μM) on platelets. The Triton-
treated group as maximum toxicity (100%). Data (A) are presented as means ± SEM (n = 3). *p < 0.05 and 
***p < 0.001, compared with the DMSO (solvent control) group. Data (B) are presented as means ± S.E.M. 
(n = 3). ***p < 0.001, compared with the resting group. #p < 0.05 and ##p < 0.01, compared with the PDBu-
treated (positive control) group. Comparisons were made by ANOVA. Profiles (C) are representative examples 
of three similar experiments.
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Discussion
To the best of our knowledge, in addition to inhibiting NOX activity, the present study demonstrated that 
VAS2870 and its analog VAS3947 inhibited platelet aggregation, granule release, calcium mobilization, and 
GPIIbIIIa activation, at least in part, through a NOX-independent pathway downstream of PKC, including IKKβ 
and p38 MAPK (Fig. 7). In addition, VAS compounds prevented thrombus formation in vivo, without affecting 
normal hemostasis (Fig. 7).

VAS compounds, VAS2870 and VAS3947, are considered as pan-NOX inhibitors and are widely used to inves-
tigate the role of NOX in various cell types17. VAS2870 specifically inhibits all forms of NOX17 and does not inter-
act with ROS in an antioxidant manner or interfere with xanthine oxidase and eNOS18. VAS3947, a derivative of 
VAS2870, shows improved solubility but does not differ in its inhibition profile5. Moreover, VAS2870 attenuates 

Figure 6.  Effects of VAS compounds on platelet aggregation, thrombus formation, and hemostasis in mice. 
Washed mouse platelets (1 × 108 cells/ml) were preincubated with DMSO (solvent control) or VAS compounds 
(10–20 μM) following stimulation with 1 μg/ml collagen (A) and 0.02 U/ml thrombin (B) to trigger platelet 
aggregation. (C) Mice received an intravenous bolus of DMSO, VAS1 (3.7 mg/kg) or VAS2 (4.5 mg/kg), and 
their mesenteric venules were irradiated to induce microthrombus formation. The arrow indicates occlusion 
of the mesenteric venule. The scale bar indicates 30 μm. (D) Bleeding was induced by severing the tail at 3 mm 
from the tail tip, and the bleeding tail stump was immersed in saline. Subsequently, the bleeding time was 
continually recorded until no sign of bleeding was observed for at least 10 s. Each point in the scatter plots graph 
represents a mouse (n = 6). Profiles (A,B) are representative examples of three similar experiments. Data (C) are 
presented as the mean ± SEM (n = 6). *p < 0.05, compared with the DMSO group. Comparisons were made by 
ANOVA.
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platelet-derived growth factor (PDGF)-dependent smooth muscle cell chemotaxis19 and reduces oxLDL-induced 
ROS formation and provasculogenic effects of PDGF-BB on endothelial cells20,21 in a NOX-dependent manner. 
These results indicate that NOX inhibition may be beneficial in cardiovascular diseases. Experimental and clini-
cal evidence has revealed that NOX1 and 2 are involved in platelet activation and thrombus formation6–11. Thus, 
targeting NOX has been suggested to be a potential therapeutic strategy for treating patients with cardiovascular 
diseases7.

However, in the present study, several NOX inhibitors (VAS compounds, ML171, GKT compounds, 
GSK2795039, DPI and apocynin) were used. We found that, unlike other NOX inhibitors, the VAS compounds 
VAS2870 and VAS3947 at a concentration of 10 μM markedly abolished platelet aggregation induced by various 
agonists, including collagen, convulxin, thrombin, and U46619. Moreover, concurrent inhibition of NOX1/2/4 
did not inhibit thrombin- or U46619- induced platelet aggregation. These observations suggest that, in addition 
to serving as NOX inhibitors, VAS compounds may also inhibit platelet aggregation via a NOX-independent 
manner that may be involved in a convergent point in the platelet activation pathway. Indeed, our data showed 
that the inhibitory effect of VAS compounds is in association with PKC pathway, a well-known common pathway 
involved in platelet activation. VAS compounds, but not other NOX inhibitors used in this study, could par-
tially inhibit PDBu-induced platelet aggregation, granule release, calcium mobilization, and GPIIbIIIa activation, 
but VAS compounds did not reduce PDBu-induced the phosphorylation of PKC substrate, suggesting that VAS 
compounds act on the PKC downstream signaling pathway. PKC has been reported to regulate platelet granule 
release, cell spreading, TxA2 formation, GP IIbIIIa activation, and finally platelet aggregation22. IKKβ has been 
suggested to conduct PKC-mediated phosphorylation of SNAP-23 that is important for SNARE complex for-
mation and membrane fusion, thereby controlling platelet granule release13,14. Moreover, PKC inhibitors could 

Figure 7.  Schematic illustration of VAS compounds-mediated inhibition of platelet activation and thrombus 
formation.
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prevent IKKβ activation, but IKK inhibitors did not affect PKC activation14, suggesting IKKβ may be the down-
stream of PKC. In addition, PKC signaling was reported to be required for the secretion of TxA2, via MEK/ERK 
and p38 MAPK pathways15. In the present study, we found that PKC-mediated phosphorylation of IKKβ and 
p38 MAPK was inhibited by VAS compounds as well as Ro 31-8220 in human platelets. These findings suggest 
that VAS compounds diminish platelet activation, in part, through the inhibition of PKC downstream signaling, 
including IKKβ and p38 MAPK, which are responsible for granule release and TxA2 secretion, respectively. In 
addition, we did not exclude the possibility that VAS compounds may exert their antiplatelet effects through NOX 
inhibition. In the present study, we found that PKC activation could induce ROS formation, which could be pre-
vented by the pan-NOX inhibitors VAS compounds (Fig. S6E). Moreover, PKC has been reported to activate NOX 
in various cells23. These observations suggest that VAS compounds may block PKC-mediated ROS formation, in 
part, through NOX inhibition. However, whether NOX is the downstream of PKC in platelets needs to be further 
confirmed in the future work. On the other hand, ROS production in activated platelets has been reported to play 
an important role in regulating platelet activation and formation24. However, our data revealed that the inhibition 
pattern of VAS compounds on platelet aggregation was extremely different from that of other NOX inhibitors. 
Thus, NOX inhibition may account for one of antiplatelet and antithrombotic effects of VAS compounds.

We also demonstrated that VAS compounds blocked mouse platelet activation induced by collagen and 
thrombin in vitro and significantly prevented thrombosis in the mesenteric microvessels of mice without affecting 
normal hemostasis. These findings support antiplatelet and antithrombotic effects of VAS compounds, possibly 
due to their multiple biological activities, including the inhibition of NOXs and PKC downstream pathway.

Although we did not deeply investigate the role of NOXs in platelet activation, several interesting or contro-
versial results were observed in the experiments of platelet aggregation assay of this study. Previously, Delaney 
et al.9 reported that NOX1 and NOX2 have differential roles in platelet activation. They reported that NOX1−/Y 
platelets exhibited selective defects in thrombin- or U46619 (GPCR)-mediated platelet aggregation but no defects 
in CRP (GPVI)-mediated platelet aggregation9. Similar to NOX1−/Y platelets, mouse and human platelets treated 
with ML171, a NOX1 inhibitor, did not exhibit inhibition of CRP-induced platelet aggregation11. Our present 
data also indicated that ML171 did not affect convulxin (a specific GPVI agonist)-induced human platelet aggre-
gation. However, previous studies and our study revealed that ML171 could inhibit collagen-induced platelet 
aggregation in mice and humans6,11. This discrepancy may be due to the essential role of ROS for platelet activa-
tion and aggregation induced by collagen, but not CRP or convulxin11. Furthermore, studies have suggested that 
collagen-induced platelet aggregation is associated with a burst of ROS production25,26. These findings indicate 
that ROS production may be essential in collagen-mediated platelet activation. In addition, NOX2−/− platelets 
have been found to show a potent inhibition of CRP (0.5 μg/ml)-mediated platelet aggregation but only a par-
tial inhibition of thrombin-mediated platelet aggregation9. However, these results appear to be different from 
that reported by Walsh et al.11. In their study, NOX2−/− platelets did not exhibit a significant inhibition of CRP 
(0.25 and 1 μg/ml)-mediated platelet aggregation. Moreover, Walsh et al.11 reported that NOX2−/− platelets did 
not exhibit a significant inhibition of collagen-mediated platelet aggregation. Our present study also found that 
GSK2795039, a NOX2 inhibitor, did not prevent collagen-induced platelet aggregation in mice (data not shown), 
but it could inhibit such aggregation in humans (Fig. 3C). Thus, the differential role of NOX2 in human and 
mouse platelets should be further clarified. These findings also suggest that the properties of NOX are different in 
human and mouse platelets. That needs to be further investigated in the future.

In conclusion, the most important findings of this study revealed that, in addition to inhibiting NOXs, 
VAS compounds inhibited platelet aggregation-induced by various agonists, partly through the inhibition of a 
NOX-independent pathway downstream of PKC (Fig. 7). In addition, VAS compounds also markedly inhibited 
thrombus formation and exerted no significant influence of normal hemostasis in mice. These findings also sug-
gest that, with multiple biological activities, VAS compounds may serve as lead compounds for the development 
of new effective and safe antiplatelet or antithrombotic drugs for treating patients with cardiovascular diseases. If 
VAS compounds are to be used to develop new antithrombotic drugs, several factors that have been suggested as 
critical in drug development27, including their solubility, membrane permeation, metabolic stability, and efflux 
reduction, must be evaluated.

Materials and Methods
Materials.  VAS2870 was purchased from Enzo Life Sciences (Farmingdale, NY, USA). VAS3947 and 
GKT136901 were purchased from Merck (Darmstadt, Germany) GSK2795039 was purchased from Med Chem 
Express (Danvers, MA, USA). DPI, apocynin, and GKT137831 were purchased from Cayman Chemical (Ann 
Arbor, MI, USA). ML171 and L-012 sodium salt were purchased from Tocris Bioscience (Bristol, UK). Thrombin, 
collagen, U46619, and convulxin were purchased from Chrono-Log (Havertown, PA, USA). PDBu, luciferase/
luciferin, and fluorescein sodium were purchased from Sigma (St. Louis, MO, USA). Fura 2-AM was purchased 
from Molecular Probe (Eugene, OR, USA). Fluorescein isothiocyanate (FITC)-conjugated anti-P-selectin and 
PAC-1 antibodies were purchased from Biolegend (San Diego, CA, USA). The anti-phospho-(ser) PKC substrate 
and anti-phospho-p38 MAPK (Ser180/Tyr182) polyclonal antibodies (pAbs) and anti-IKKβ and anti-p38 MAPK 
monoclonal antibodies (mAbs) were purchased from Cell Signaling (Beverly, MA, USA). The anti-pleckstrin 
(p47) pAb was purchased from GeneTex (Irvine, CA, USA). The anti-phospho- IKKβ (Tyr188) pAb was purchased 
from Abcam (Cambridge, UK). The Hybond-P polyvinylidene difluoride (PVDF) membrane, an enhanced 
chemiluminescence (ECL), and the horseradish peroxidase (HRP)-conjugated donkey anti-rabbit and sheep anti-
mouse immunoglobulin G (IgG) were purchased from GE Healthcare Life Sciences (Buckinghamshire, UK). All 
drugs (NOX inhibitors) were dissolved in DMSO and stored at 4 °C until use.
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Preparation of washed human platelets.  This study was approved by the Taipei Medical University-Joint 
Institutional Review Board (TMU-JIRB-No. N201701045) and conformed to the principles outlined in the 
Declaration of Helsinki. All volunteers provided informed consent. Human platelet suspensions were prepared 
as previously described28. In brief, blood samples were drawn from healthy volunteers who had taken no med-
icine, such as aspirin and other NSAIDs or thienopyridines, during the preceding 2 weeks into plastic tubes 
(polypropylene) and was mixed with an acid-citrate-dextrose (ACD) solution (9:1, v/v). After centrifugation for 
10 min, the upper layer containing platelet-rich plasma (PRP) was carefully collected and then supplemented with 
prostaglandin E1 (0.5 μM) and heparin (6.4 IU/ml). After centrifugation, the platelet-poor plasma was discarded, 
platelet pellets were washed twice, and washed platelets were then suspended in Tyrode’s solution containing 
3.5 mg/ml bovine serum albumin (BSA) to obtain platelet suspension. The final concentration of Ca2+ in platelet 
suspension was 1 mM.

Platelet aggregation.  A turbidimetric method was applied to measure platelet aggregation by using a 
Lumi-Aggregometer (Payton, Scarborough, Ontario, Canada)28. In brief, platelet suspensions (3.6 × 108 cells/ml) 
were pretreated with NOX inhibitors for the indicated concentrations or 0.1% DMSO (an isovolumetric solvent 
control) for 3 min prior to agonist administration. The platelet aggregation was recorded for 6 min (collagen, 
convulxin, thrombin, and U46619) or 30 min (PDBu).

Immunoblotting study.  This method was performed as previously described29. In brief, platelet suspen-
sions (1.2 × 109 cells/ml) were pretreated with VAS compounds (10 μM), Ro 31-8220 (2 μM) or 0.1% DMSO for 
3 min prior to PDBu (150 nM) administration for 20 min to stimulate platelet activation. After the reaction, the 
platelets were immediately resuspended in 200 μl of a lysis buffer for 1 h. Samples were centrifuged at 5000 × g for 
5 min. 80 μg of extracted proteins were separated through 12% sodium dodecylsulfate-polyacrylamide gel elec-
trophoresis; The separated proteins were then electrotransferred onto PVDF membrane through semidry transfer 
(Bio-Rad, Hercules, CA, USA). Membranes were blocked with 5% BSA in TBST (10 mM Tris-base, 100 mM NaCl, 
and 0.01% Tween 20) for 1 h, and then stained with various specific primary antibodies (diluted 1:1000 in TBST). 
Membranes were incubated with HRP-conjugated anti-mouse or -rabbit IgG (diluted 1:3000 in TBST) for 1 h. 
Immunoreactive bands were developed using the ECL kit and quantified using videodensitometry (Bio-Profil; 
Biolight Windows Application V2000.01, Vilber Lourmat, France).

ATP release and calcium mobilization measured using a microplate reader.  Luciferase/lucif-
erin and Fura 2-AM were used to detect ATP release and calcium mobilization, respectively. This method was 
described previously29. In brief, platelet suspensions (3.6 × 108 cells/ml) were pretreated with luciferase/luciferin 
or 5 μM Fura 2-AM, and then with VAS compounds (2–10 μM) or 0.1% DMSO for 3 min prior to PDBu admin-
istration. The reaction was allowed to proceed for 30 min and the intensity of luminescence was recorded every 
minute using a Synergy H1 microplate reader (BioTek).

Flow cytometry.  This experiment was performed as described previously29. In brief, platelet suspen-
sions (1 × 106 platelets/ml) were pretreated with VAS compounds (2–10 μM) or 0.1% DMSO for 3 min prior to 
PDBu administration in glass cuvettes at 37 °C. After the reactions for 20 min, platelet suspensions were fixed 
and labeled with FITC–P-selectin or FITC–PAC-1 antibodies for 30 min to detect P-selectin expression and 
GPIIbIIIa activation, respectively. After centrifugation and washing, platelet pellets were resuspended with 1 ml 
of phosphate-buffered saline and then immediately analyzed in a Becton Dickinson flow cytometer (FACScan 
Syst., San Jose, CA, USA). The platelets were identified and gated by their characteristic forward and side scatter 
properties and the number of events was stopped at 10,000 counts. All of the experiments were performed at least 
three times to ensure reliability.

For the competitive binding assay of GP IIbIIIa, platelet suspensions (1 × 106 platelets/ml) were preincubated 
with VAS compounds (10 μM) or 0.1% DMSO for 3 min prior to FITC–triflavin (2 μg/ml) administration in glass 
cuvettes at 37 °C. After the reactions for 30 min, a final volume of 1 ml was used for an immediate analysis by a 
Becton Dickinson flow cytometry.

Determination of LDH.  This assay was performed according to the manufacturer’s protocol from Promega 
(Madison, WI, USA), as described previously29. In brief, LDH release was measured using a CytoTox 96 
non-radioactive cytotoxicity assay kit from Promega. Platelet suspensions (3.6 × 108 cells/ml) were pretreated 
with VAS compounds (10–100 μM) or 0.1% DMSO for 10 min at 37 °C. After centrifugation, the supernatant was 
collected to measure the LDH level by a Synergy H1 microplate reader (BioTek). The values were recorded at a 
wavelength of 490 nm. LDH activity was expressed as the percentage of total enzyme activity, which was meas-
ured in platelets lysed with 0.5% Triton X-100.

Detection of ROS formation.  Platelet suspensions (3.6 × 108 cells/mL) were incubated with VAS com-
pounds (10 μM) and Ro 31-8220 (2 μM) for 10 min before the addition of L-012 (100 μM), followed by the stim-
ulation with PDBu. Chemiluminescence was detected in a Synergy H1 microplate reader (BioTek, VT, USA).

Animals.  ICR mice (aged 5–6 weeks, weighing 20–25 g, male) were obtained from BioLasco (Taipei, 
Taiwan). All the procedures involving animals are in accordance with the Guide for the Care and Use of 
Laboratory Animals (Eighth Edition, 2011) and have been approved by the Affidavit of Approval of Animal Use 
Protocol-Taipei Medical University (LAC-2017-0193).

Preparation of washed mouse platelets.  Mice were sacrificed with CO2 and blood was collected 
immediately through cardiac puncture into a 1.5 ml tube containing 100 μl of sodium citrate and mixed gently. 
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After centrifugation at 180 × g for 5 min, PRP was obtained and mixed with ACD (9:1, v/v). The platelet pellet 
was obtained after centrifugation at 1300 × g for 15 min. Subsequently, the platelet pellet was resuspended with 
Tyrode’s solution. All the procedures for platelet preparations were conducted at room temperature.

Fluorescein sodium-induced platelet thrombus formation in mesenteric microvessels of 
mice.  The in vivo thrombus formation was measured as described previously30. In brief, mice were anesthe-
tized using a mixture containing 75% air and 3% isoflurane maintained in 25% oxygen at a flow rate of 1.5~2 l/
min, and the external jugular vein was cannulated with a polyethylene-10 tube for the administration of the dye 
and drugs. VAS1 (3.7 mg/kg) or VAS2 (4.5 mg/kg) was administered 30 min before sodium fluorescein (15 mg/kg) 
administration. A segment of the small intestine was placed onto a transparent culture dish and the mesenteric 
microvessels were observed by a microscopy. Venules (30–40 mm) were selected for irradiation at wavelengths 
<520 nm to produce a microthrombus by which the time required to occlude the microvessel (occlusion time) 
was recorded. The dose for mice was accordingly converted from the dose for humans31.

Tail bleeding time.  The bleeding time was assessed as described previously29. In brief, mice were anesthe-
tized using a mixture containing 75% air and 3% isoflurane maintained in 25% oxygen at a flow rate of 1.5~2 l/
min. Saline (control), DMSO (solvent control), VAS1 (3.7 mg/kg), or VAS2 (4.5 mg/kg) was intraperitoneally 
administrated 30 min before the induction of bleeding by severing the tail 3 mm from the tail tip. The bleeding 
tail stump was immediately immersed in saline. Subsequently, the bleeding time was continually recorded until 
no sign of bleeding was observed for at least 10 s. The dose for mice was accordingly converted from the dose for 
humans31.

Data analysis.  Data are expressed as means ± S.E.M. and accompanied by the number of observations (n). 
n represents the number of independent experiments conducted with different blood donors. All data were ana-
lyzed using analysis of variance (ANOVA) with the Newman–Keuls method as a post-hoc test. p < 0.05 was 
considered statistically significant.
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