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new Approaches for Quantitative 
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In the event of a nuclear attack or large-scale radiation event, there would be an urgent need for 
assessing the dose to which hundreds or thousands of individuals were exposed. Biodosimetry 
approaches are being developed to address this need, including transcriptomics. Studies have identified 
many genes with potential for biodosimetry, but, to date most have focused on classification of samples 
by exposure levels, rather than dose reconstruction. We report here a proof-of-principle study applying 
new methods to select radiation-responsive genes to generate quantitative, rather than categorical, 
radiation dose reconstructions based on a blood sample. We used a new normalization method to 
reduce effects of variability of signal intensity in unirradiated samples across studies; developed a 
quantitative dose-reconstruction method that is generally under-utilized compared to categorical 
methods; and combined these to determine a gene set as a reconstructor. Our dose-reconstruction 
biomarker was trained using two data sets and tested on two independent ones. It was able to 
reconstruct dose up to 4.5 Gy with root mean squared error (RMSE) of ± 0.35 Gy on a test dataset using 
the same platform, and up to 6.0 Gy with RMSE of ± 1.74 Gy on a test set using a different platform.

In the event of a nuclear attack or large-scale radiation event, there would be an urgent need for assessing the dose 
to which hundreds or thousands of individuals were exposed1–4. Many approaches are currently being tested for 
radiation biodosimetry, including well-known methods based on chromosomal damage, that may take days to 
complete in a high-throughput manner4; to methods such as gene expression that can have a time-to-result of sev-
eral hours. Gene expression can be easily quantified from very small blood samples. The assays can be subjected 
to multiplexing and modified for high-throughput or developed for integrated point-of-care approaches5–8. As 
an added advantage gene expression has the potential to be used as an indicator or predictor of specific injury on 
an individualized basis.

Our group has conducted multiple transcriptomic studies of different radiation exposure conditions, leading 
to the identification of many radiation responsive genes that have the potential to be useful for dose reconstruc-
tion and exposure characterization. Many other studies have also used transcriptomics to identify candidates for 
biodosimetry. These are summarized in the review by Lacombe et al.9, in which a systematic review of available 
datasets identified genes that could be used for classifying samples by doses above or below 2 Gy. Other studies 
that have used a comparative approach to identify genes that can reconstruct dose are by Lu et al.10 and Macaeva 
et al.11.

Most human radiation biodosimetry studies have used ex-vivo irradiation of blood and have focused on the 
simplest type of human exposure; a total body photon (x-ray or gamma-ray) exposure at an acute dose rate 
(~1 Gy/min), with mRNA levels measured at 24 h after the exposure. Once a basic dose-reconstruction signa-
ture is established to estimate dose in a quantitative manner, increasingly complex scenarios can also be con-
sidered. Gene expression holds promise for distinguishing other relevant characteristics of exposure; including 
dose rate12,13 such as from exposure to fallout14; partial shielding; and the presence of neutrons15,16, which would 
be relevant to the blast from an improvised nuclear device17. Genes for discrimination of such dose modifying 
factors could be tested and added to future biodosimetric signatures.

The goal of the study presented here was to apply a rigorous statistical approach to existing transcriptomic 
data to develop a signature for dose reconstruction of total body photon exposures. To our knowledge, this 
is the first report of a continuous (non-discreet) dose reconstruction gene signature with stringent testing on 
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independent datasets for radiation biodosimetry. Our approach has several novel aspects. First, we developed a 
new customized normalization procedure to reduce the effects of variability of gene intensities in unirradiated 
control samples across different studies. Second, we performed quantitative dose reconstructions rather than the 
more commonly used categorical approach. Finally, by combining these two design methods and applying them 
to independent datasets we obtained a robust gene expression signature that can reconstruct radiation dose, and 
which is more accurate than other gene expression tests that have been reported in the literature.

Materials and Methods
Microarray data pre-processing and meta-analysis. In this study, we focused our analyses on human 
blood irradiated ex vivo to generate a human gene signature for dose reconstruction. We used datasets that had 
been generated in our group12,15,18 in independent studies performed at different times and using similar acute 
dose-rate exposures to gamma rays or x-rays as well as a study from Lucas et al.19, which used a similar gamma-ray 
dose range. First, we downloaded the datasets from the NCBI GEO database20, details as in Table 1. We collated 
each Agilent dataset using BRB-ArrayTools21 and our standard import parameters described previously12,18.

For the Lucas et al. dataset (which used an Affymetrix platform, [HG-U133A_2] Affymetrix Human 
Genome U133A 2.0 Array); the default importer in BRB-ArrayTools was used to collate the data from.cel files. 
BRB-ArrayTools was then used to normalize the data by median array across common platforms and filter the 
data to remove genes with more than 20% missing values. The resulting gene sets were then exported from 
BRB-ArrayTools for further analysis.

Computational methods to determine and test the continuous dose reconstruction signa-
ture. Data analysis outline. Two independent ex vivo photon-irradiated human blood data sets were used for 
radiation-responsive signature generation (training), and two independent data sets (obtained at different times 
and from different donors) were used for signature testing/validation, as shown in Table 1. These data sets, which 
contain log2 transformed gene signal intensities, were imported into R 3.5.1 software22, where all data analysis 
steps were performed. These steps were as follows:

 (a) Using the first training data set, identify genes strongly correlated with radiation dose, which we called 
“signature” genes.

 (b) Using the second training data set, identify “normalizer” genes that can reduce the effects of variability in 
signature gene signal intensities in unirradiated samples across different data sets.

 (c) Test the combined signature and normalizer gene set on each testing data set by generating continuous 
dose reconstructions and comparing them with true dose values.

Each step of this approach is described in more detail below.

Identification of radiation-responsive signature genes. Using the first training data set (Paul et al. 
GSE891718, dose range 0 to 8 Gy); we generated a list of genes with positive Spearman’s correlations with radiation 
dose, with p-values ≤ 0.05 (with Bonferroni correction) for the Spearman’s correlation coefficient. This analysis 
was performed using the cor and cor.test commands in R on each gene in the data set22. As an additional test for 
robustness to the Bonferroni correction of p-values, synthetic noise variables were added to each data set to serve 
as benchmarks of reconstructor performance23,24. We added 40,000 synthetic noise variables per data set that were 
drawn from the normal distribution, and 20,000 per data set from the uniform distribution, using the same mean 
and SD as all real genes combined. The ratio of noise variables to real genes was approximately 3:1. The rationale 
for this noise injection into the data set is that only those reconstructors (genes in this case) that outperform all 
noise variables can be regarded as the strongest ones. Therefore, we retained only those genes for further analysis 
that: (a) had Bonferroni corrected p-values ≤ 0.05 for the Spearman’s correlation coefficient with dose, and (2) 
had Spearman’s correlation coefficient with dose values larger than those for any of the synthetic noise variables.

Because samples exposed to different doses came from the same blood donor, we fitted linear mixed-effects 
models for each of these significantly radiation-responsive “signature” genes to account for correlations of gene 
signal intensities by blood donor. The model structure contained a common dose response slope for all donors 
(fixed effect), but intercepts were allowed to vary by donor (random effect). In other words, the dose response 
was assumed to be in common for a given gene in all blood donors, but the baseline gene value in unirradiated 
samples was allowed to vary by donor. More complicated models with random components; for both intercepts 
and slopes, did

Datasets for gene signature
NCBI-GEO 
dataset GSE# Dose range PMID/Citation

1st Training set 8917 0.5 to 8.0 Gy 18572087 / Paul et al.18

2nd training set (normalizer genes) 90909 0.1 to 4.0 Gy 28140791 / Broustas et al.15

1st test set 65292 0.56 to 4.45 Gy 25963628 / Ghandhi et al.12

2nd test set 58613 1.5 to 6.0 Gy 25255453 / Lucas et al.19

Table 1. Ex vivo irradiated Human blood gene expression datasets used in this analysis.
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not converge in many cases on this data set, so they were not used. We retained only those genes with 
p-values ≤ 0.05 (with Bonferroni correction) for the dose-response slope parameter.

To further validate the robustness of the identified radiation-responsive gene signature list, we performed 
repeated k-means clustering on the same data set using the kmeans function in R22. There were 50 repeats, with 
different initial random number seeds. The goal was to identify which genes most frequently appear in the 
top-scoring cluster (the one with the largest Spearman’s correlation coefficient with radiation dose) out of 50 
clustering repeats with different initial random number seeds, and to compare these frequencies with those for 
synthetic noise variables. We varied the average cluster size from 30 genes per cluster to other values (e.g. 10, 50) 
to assess the sensitivity of the results to this parameter.

We combined the k-means clustering analysis with: (1) randomization of the outcome variable (radiation 
dose) by random permutation of the sample labels (doses), and (2) a scenario replacing the dose values with a 
linear function of a manually selected reconstruction gene- signature (a synthetic noise variable). The goal of 
these procedures was to assess the false positive rate (i.e. when a gene or set of genes is found to be significantly 
associated with the randomized dose values in scenario 1) and the sensitivity of the analysis (i.e. what effect size 
is required to detect the true reconstructor in scenario 2 above).

To assess the correlations between the identified radiation-responsive genes, we calculated the Spearman’s 
correlation matrix of the genes with each other using the commands cor and e in R22. The matrix showed that, 
although the magnitudes of gene signal intensities varied, very strong Spearman’s correlations (≥0.73 for any 
gene pair) were found, suggesting that the dose response shapes for all of these genes are very similar (Fig. 1). 
Consequently, treating each gene as a separate reconstructor of dose would result in severe multi-collinearity. 
To avoid this problem and group the genes together into one robust reconstructor, we calculated median signal 
values for all of these signature genes. In other words, the reconstructor value in each sample (i.e. at each dose for 
each blood donor) was the median value of all the radiation-responsive signature genes identified in the analyses 
described above (Table 2 and details in Supplementary File 1, signature genes).

We repeated all the same procedures of gene identification and robustness testing on the same training data 
set, but looking for genes with negative Spearman’s correlations with radiation dose. However, the correlation 
coefficient values and subsequent dose reconstruction results for downregulated genes turned out to be much 
weaker than those for upregulated genes were; so genes with negative Spearman’s correlations with radiation dose 
were not included in the final analysis (Supplementary File 1, negatively correlated genes).

Figure 1. Matrix of Spearman’s correlation coefficients (pairwise, without correction for multiple testing) 
between 10 selected genes with the strongest positive Spearman’s correlations with dose in training data set 1 
(GSE8917). A color-coded correlation scale is provided on the right of the plot. Based on the scale, blue ellipses 
represent positive correlations of a given gene pair, and red ones represent negative correlations. Crossed out 
boxes represent meaningless correlations of a given variable with itself. Darker color tones and narrower ellipses 
represent larger correlation coefficient magnitudes. Red star symbols indicate statistical significance levels: 
***indicates p < 0.001, **indicates p < 0.01, *indicates p < 0.05, no stars indicates p > 0.05. These p-values 
here are intended only for visualization: due to multiple comparisons, only 3-star significance levels are likely 
to indicate strong associations. Among these 10 genes, which were all strongly positively correlated with dose 
and strongly positively correlated with each other, there were no negative correlations among gene pairs, so only 
blue ellipses with 3 star symbols are shown.
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Identification of normalizer genes. In our analyses involving independent datasets, performed at dif-
ferent times and from different donors, we have found that baseline expression of genes in unirradiated sample 
is an issue that can confound the method for dose reconstruction. Although we did not observe any systematic 
variability in baseline levels of genes, random variability appeared to be considerable (2–4 fold between sig-
nals). To reduce the effect of these fluctuations on subsequent dose reconstructions, we developed a method that 
allowed us to compare gene expression between two independent datasets or platforms using normalizer genes 
(Supplementary File 1, normalizer genes).

In our analyses, the definition of normalizer gene is one that satisfies the following criteria:

 (1) The sum of squared differences between a potential normalizer gene’s signal and median signal of the 
signature gene group has to be as small as possible in unirradiated control samples across ≥2 training data 
sets.

 (2) The Spearman’s correlation coefficient for a potential normalizer gene’s signal values with radiation dose 
across ≥2 training data sets had to be as close to zero as possible.

These criteria were set to identify genes that co-vary with radiation responsive signature genes in unirradiated 
samples, but do not have radiation responses themselves. We imported the second training data set (Broustas 
et al. GSE9090915, 0 to 4 Gy dose range) into R and searched for normalizer genes using both training data sets 
combined. Two different normalizer gene groups were found, separately for signature genes with positive and 
negative correlations with radiation dose. We performed normalization across both training data sets by subtract-
ing median signal values for all normalizer genes from median signal values for all signature genes. The retained 
number of normalizer genes in each group (positive and negative correlations with dose) was selected to be close 
to the number of signature genes (Supplementary File 1, normalizer genes).

Testing the combination of signature + normalizer genes on independent data sets. To create 
a “standard curve” for relating normalized median gene signals to radiation dose, we fitted a polynomial model 
(or a robust version that down-weights outliers using the rlm function in R22 on data from the two training data 
sets combined, using dose as the dependent variable and normalized median gene signals as reconstructors (the 
independent variables). These models had the following structure, where k0, k1 and k2 are adjustable parameters, 
and S is the normalized median gene signal in each sample:

= + × + ×Dose k k S k S (1)0 1 2
4

This structure was selected from several alternatives (e.g. different powers of S and different numbers of 
adjustable parameters) using the Akaike information criterion with sample size correction (AICc).

We tested the ability of these fits to reconstruct radiation dose on two independent testing data sets gener-
ated using either the same microarray platform (Ghandhi et al.12 with dose range 0 to 4.45 Gy, using acute dose 
samples only) or a different platform (Lucas et al.19, with dose range 0 to 6 Gy). This was done in each data set by 
calculating the normalized median gene signal values (S) for the signature and normalizer gene groups for each 
sample. These values were then used as input for the polynomial or robust polynomial models (with original 
parameter values k0, k1 and k2 derived from fitting training data) to produce dose reconstructions from the test-
ing data. Model performance was evaluated by calculating the coefficient of determination (R2) and root mean 
squared error (RMSE), comparing true and estimated doses.

pathway and network analysis and comparisons. We performed gene ontology analysis using DAVID 
Functional Annotation Tool, ver 6.825. We uploaded the human signature gene list to the program and performed 
functional annotation using biological processes 5, which are ontology-tree child terms. We also uploaded the lists of 
human signature genes to Ingenuity Pathway Analysis® Software (IPA from Ingenuity®: http://www.ingenuity.com)  

Gene symbol

ANKRA2 DRAM1 RPS27L

ANXA4 GADD45A SESN1

ARHGEF3 GDF15 SLC4A11

ASCC3 IL21R SLC7A6

ASTN2 LIG1 TNFRSF10B

BBC3 MAMDC4 TRIAP1

HIST1H2BD MAP4K4 UROD

CDKN1A PCNA VWCE

DDB2 PHPT1 WIG1

EI24 PLK3 XPC

FBXO22 PPM1D ZNF337

FDXR PTP4A1 ZNF541

REV3L

Table 2. Signature genes for continuous dose reconstruction.

https://doi.org/10.1038/s41598-019-54967-5
http://www.ingenuity.com


5Scientific RepoRtS |         (2019) 9:18441  | https://doi.org/10.1038/s41598-019-54967-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

and performed prediction analysis for upstream regulators. This method identifies potential upstream regulators 
and ranks them by statistical significance and provides information about the direction of activation of that reg-
ulatory protein based on the downstream gene targets from the gene list. The program provides a z score derived 
from the number of target genes, their relative expression, and the type of relationship between the regulator and 
target genes (either activation or inhibition) from the published literature. We compared gene lists using Venny26.

Ethics, approval, and consent to participate. No animal or human experiments were performed as 
part of this study.

Results
Gene expression results. Published datasets of whole genome gene expression 24 h after ex vivo expo-
sure of peripheral blood from healthy human donors to x-rays or γ-rays (Table 1) were used for this analysis. 
Genes with more than 20% missing values within a dataset were filtered out and excluded from further analysis. 
Replicate probes and gene symbols were averaged, which reduced the number of genes in the datasets by ~10% 
and yielded an average of ~20,000 genes for further analysis from each dataset.

Radiation responsive gene signature identification and normalization. In the first training data 
set, we identified 37 genes (Supplementary File 1, signature genes) with strong positive Spearman’s correlations 
with dose, which withstood our tests for significance and robustness, described in Materials and Methods. Three 
genes with strong negative correlations with dose were also identified (Supplementary File 1, negatively correlated 
genes). The genes in each of these two groups were strongly correlated with each other (Fig. 1, showing positively 
correlated genes and Supplementary File 1, negatively correlated genes). In other words, although their signal 
levels varied, the dose response shapes were very similar for all genes within each group: a nonlinear (concave) 
increase with dose for the first group, and a nonlinear decrease with dose in the second. Very similar gene lists 
were generated by the repeated k-means clustering procedure (described in Materials and Methods). For example, 
the well-known radiation responsive genes FDXR and DDB2 were found in the top-scoring cluster in 40 out of 
50 repeats, whereas several other genes, such as GADD45A and PCNA were found in 9–10 out of 50 repeats. By 
comparison, synthetic noise variables were found in the top-scoring cluster in only ≤7 out of 50 repeats.

Randomization of the outcome (permutation of dose labels) did not produce any false positives: the highest 
score for any variable was 11 out of 50, and synthetic noise variables were intermingled with real genes in terms of 
scores. The alternative test of introducing an artificial dependence of the outcome (dose) on a selected noise var-
iable also performed well in identifying the true predictor in 35 out of 50 repeats. These results demonstrate the 
ability of the proposed methods to separate strong predictors from weak ones and to validate radiation-responsive 
biomarker signatures generated by previous analyses.

To reduce the effects of variations in baseline levels of signature genes on dose reconstruction, we imple-
mented a search for normalizer genes that co-varied with signature genes in unirradiated samples but did not 
have a radiation dose response. This was done by pooling two training data sets. When median signal intensities 
for normalizer genes were subtracted from the median signal intensities for signature genes, with positive cor-
relations with dose, the results showed a very strong Spearman’s correlation with dose across both training data 
sets (R2 = 0.969, Fig. 2). In contrast, the same procedure applied to genes with negative correlations with dose 

Figure 2. Microarray median normalized gene expression values of the human gene signature in both training 
data sets combined. Up-regulated genes that were identified using a biostatistics correlation approach in the 
training data sets (GSE8917 AND GSE90909) are shown in this plot, with corresponding normalizer gene 
values subtracted. Median log2-transformed signal values are plotted against dose (Gy). Each dot in the graph is 
a single sample. Spearman’s correlation coefficient with dose was 0.969.
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produced much weaker results (Spearman’s correlation with dose was −0.715), and we excluded this gene group 
from further analysis.

We fitted the polynomial model (Eq. 1 above), using the data for median-normalized signal intensities for 
signature genes with positive correlations with dose (S) as independent variables, and dose as the dependent 
variable. Best-fit parameters for the polynomial model were k0 = −0.43 (standard error = 0.23), k1 = 2.63 (0.36), 
k2 = 0.16 (0.06). For the robust polynomial model, the best-fit parameter values were k0 = −0.10 (0.08), k1 = 1.36 
(0.13), k2 = 0.45 (0.02).

Testing data set True dose (Gy)

Reconstructed dose (Gy) using  
polynomial model

Reconstructed dose (Gy) using 
robust polynomial model

mean SD mean SD

Ghandhi et al.

0.00 −0.07 0.30 0.09 0.16

0.56 1.32 0.32 0.88 0.21

2.20 2.59 0.55 1.98 0.58

4.40 4.18 0.13 3.96 0.19

Lucas et al.

0.00 1.20 0.40 0.81 0.27

1.50 4.11 0.45 3.89 0.69

3.00 5.16 0.84 5.60 1.40

6.00 5.49 0.70 6.14 1.18

Table 3. Comparison of true doses with reconstructed dose values. SD are standard deviations.

Figure 3. Comparisons of true and estimated radiation doses. Panel A Regular polynomial model on testing 
data set 1, R2 = 0.914, RMSE = 0.43 Gy. Panel B Robust polynomial model on testing data set 1, R2 = 0.952, 
RMSE = 0.35 Gy. (Panels A & B: GSE65292) Panel C Regular polynomial model on testing data set 2, R2 = 0.660, 
RMSE = 1.74 Gy. Panel D Robust polynomial model on testing data set 2, R2 = 0.677, RMSE = 1.74 Gy. (Panels C 
& D: GSE58613). Error bars represent standard deviations, and the solid line represents a theoretically perfect 
1:1 correlation of true and estimated doses.
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Testing the reconstructor gene signature. Using normalized median gene signal values in the first 
testing data set (Ghandhi et al.12) as inputs (S values) for the polynomial and robust polynomial models, we 
generated dose reconstructions. The same procedure was performed using second testing data set (Lucas et al.19). 
Comparisons of true and reconstructed dose values are shown in Table 3 and Fig. 3. The dose reconstruction 
results were very close to the true doses for the first testing data set, which was generated on the same microarray 
platform as the two training data sets. The results on the second testing data set, which came from a different 
platform, showed larger error magnitudes. However, even in this case the dose reconstructions were relatively 
accurate at the highest tested doses.

Biological functions of signature genes (networks and pathways, regulators). We examined the 
biological significance of the genes in the signature using gene ontology (GO) and pathway analyses. GO analysis 
using the DAVID database25 suggested enrichment of biological processes in DNA damage response and mitotic 
cell cycle (Supplementary File 2, worksheet DAVID GO). Apoptosis and cell cycle arrest as well as UV activation 
of cells were also significantly over-represented among these genes (Benjamini p-value < 0.05) and also in the IPA 
network core analysis and biological functions results (Supplementary File 2, worksheet IPA functions). Selecting 
the pathway category in the ontology and pathway tools, indicated similar processes being implicated, such as 
cell death, double strand break repair, mismatch repair and damage of lymphoid cells. We then used IPA to build 
networks and determine if there were common upstream regulators for this set of genes (Fig. 4). Top projected 
upstream regulators for these genes were AURKB (z score + 9.8), ATM (z score 8.7), p38MAPK (z score + 6.8), 
p53 (z score + 14.2) and p63 (z score + 9.2) (Supplementary File 2, worksheet IPA upstream regulators).

Comparison of gene response with other studies. We further visually compared our radiation dose 
signature genes and their expression across the datasets used in this study in the training/testing analysis. We also 
compared gene expression side-by-side with another dataset (GSE102971, dose range from 0 to 7 Gy) generated 
in our group, which was performed independently to test similarity of human gene expression responses to ex 
vivo irradiation with non-human primates27. The heat map in Fig. 5, displays the scale and changes of signals for 
27 of the genes from the reconstructor gene signature (some genes were trimmed for this visualization because 
of missing values in one or more dataset). GSE102971 data were from different human donors, but most of the 
genes were induced similarly as in GSE8917, which was a training set used here. Some genes such as CDKN1A 
and ASTN2 were also induced but the mean signal intensities were lower than in the training set. Some genes such 
as DDB2 and TNFRSF10B showed very similar levels of gene induction and baseline gene expression. We also 
included neutron data from GSE9090915, also from our group, as we have found similar responses after neutron 
doses in ex vivo irradiated human blood (last dataset in Fig. 5).

Figure 4. Network analysis showing interactions between the dose-reconstruction signature genes and 
potential upstream regulators The network shown here was generated in the Path Designer tool of Ingenuity 
Pathway Analysis (IPA) program. A subset of signature genes are shown here with connections (indirect, dashed 
lines; and direct, solid lines/arrows) to the top regulators reconstructed using the IPA algorithm. Nodes/entities 
are either proteins (circles) or mRNA/genes (rectangles). ATM, AURKA, p38MAPK, TP53 and TP63 were the 
top regulators (different colors to differentiate between them, with arrows/lines of the same colors connecting 
the regulator and gene) with high z scores for activation. All mRNA for signature genes (all up regulated by 
radiation) shown overlaid with signal/expression values (low to high expression, light to dark red) from training 
dataset 1 (GSE8917).
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Discussion
We have developed a robust gene expression signature, which can work effectively to estimate radiation dose in 
the simplest context. With very stringent biostatistical approaches and by asking a focused question, we have 
generated a list of target genes that can accurately reconstruct the dose to which a sample was exposed. These 
results showed that the use of radiation-responsive signature genes positively correlated with dose is robust 
against several statistical testing approaches: correlation analysis, mixed effects modeling, synthetic noise. The 
accuracy of our human gene signature was in a very good range, especially on a dataset from the same platform 
as the training data (Table 3, Fig. 3). Compared with other studies using gene expression results where error for 
dose reconstruction was within the range ± 2.2 Gy28 and with reported microarray-based mean absolute differ-
ences of 1.5 to 2.4 Gy for reconstruction of a 4 Gy dose29, our estimation of dose was preferable. Lacombe et al.9 
performed a systematic review of 24 independent studies to identify 30 dose reconstruction genes at any time 
from 2 to 48 h after exposure. They demonstrated the ability of genes from this set to discriminate between doses 
above or below 2 Gy, but did not test actual dose reconstruction on independent datasets. In contrast, our study 
focuses on the response at 24 h after exposure, which is the earliest time after a large-scale event when it is thought 
that first responders may reasonably be able to start assessing the affected population. There were 15 genes in 
common between the gene-sets reported in our study (Human sig (37 genes)) and Lacombe (31 genes), shown 
in Fig. 6. We also confirmed that most of the genes in the signature identified here were part of the consensus 
gene set (Paul (64) in Fig. 6) used to classify samples by dose in the initial analysis of the study that provided our 
first training dataset18. The genes common to all three signatures were ASCC3, BBC3, CDKN1A, DDB2, EI24, 
FBXO22, FDXR, GADD45A, PCNA, PHPT1, RPS27L, SESN1, TNFRSF10B, TRIAP1 and XPC all of which are 
known radiation-response genes30–35. There were an additional 16 genes (ANKRA2, ANXA4, ARHGEF3, ASTN2, 
GDF15, IL21R, LIG1, MAMDC4, PLK3, PPM1D, PTP4A1, SLC4A11, SLC7A6, UROD, VWCE and ZNF337) in 
common between our robust dose reconstructor and the Paul consensus gene set (64 genes). Interestingly, some 
genes (HIST1H2BD, DRAM1, MAP4K4, REV3L, WIG1 and ZNF541) were only included in the signature identi-
fied in this study; most of these are involved in the p53 and/or radiation response36–41.

The ultimate goal of radiation biodosimetry is to reconstruct the dose to people who were exposed in vivo. 
Several studies have reported that some, but not all, of the in vivo gene expression response to radiation measured 
in blood cells is recapitulated when the blood is irradiated ex vivo, and that informed selection of genes allows 
signatures based on ex vivo exposures to reconstruct dose levels of in vivo exposures19,42–44. Many of the genes 
commonly suggested for biodosimetry have also been shown to respond to the stress of blood cells being cultured 

Figure 5. Heat map of gene expression of genes from human blood ex vivo irradiated studies, including an 
independent study for comparison. Shown here are the normalized expression values for a subset of signature 
genes (except those that had missing values in some of the datasets) in the sham-irradiated samples (0 Gy) and 
irradiated samples from different datasets. Starting from the left, first, the training study GSE8917; second, an 
independent human blood ex vivo irradiation data set GSE102971; third, the first test dataset GSE65292, in 
which the same donor blood samples were split to study dose-rate effects (suffix L, low dose-rate); and finally, 
the second training dataset GSE90909 in which the same donor blood samples were split to study LET effects 
using pure neutrons. Supplementary File 3, shows the data of the gene expression values.
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outside the body43. Future implementation of a dose-reconstruction gene signature may require modification to 
account for the in vivo context. The goal of the analysis described here was to determine a core gene signature to 
reconstruct the gamma-equivalent dose in irradiated human blood in an experimental scenario that simulates 
the potential real-life exposures that may occur after a radiation accident or bomb. The set of genes selected by 
these analyses are mostly well-known radiation response genes that correlate very well with dose. We also showed 
as a proof-of-principle that our strategy of using normalizer genes to correct for variability in the signature genes 
in unirradiated control samples across datasets, could work to generate continuous dose reconstructions in a 
training/testing framework.

conclusions
We identified radiation-responsive “signature” genes with continuous dose responses and strong positive corre-
lations with dose that are consistent across several data sets. The gene group with negative correlations with dose 
was much smaller/weaker in these ex vivo blood data sets. The identified radiation-responsive “signature” genes 
are biologically relevant to the stress response, overlap with previous findings, and stood up to various tests: addi-
tion of synthetic noise, mixed effects modeling of donor effects, different forms of clustering. We have tested the 
dose reconstruction capacity of these genes across independent datasets and across more than one platform. The 
performance of dose reconstruction was best in the dataset that used the same measurement platform, having an 
acceptable level of error of ± 0.35 Gy. This gene set shows great promise for reconstruction of individual radiation 
dose and may be developed further to be informative for the more complex exposures likely to be encountered in 
a realistic radiological or nuclear event.

Data availability
Microarray datasets used for meta-analyses in this study are publicly available in the NCBI Gene Expression 
Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) under accession numbers GSE8917, GSE90909, 
GSE65292, GSE102971 and GSE58613.
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