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flySilico: flux balance modeling 
of Drosophila larval growth and 
resource allocation
Jürgen Wilhelm Schönborn1,2,4, Lisa Jehrke1,2,4, Tabea Mettler-Altmann3 & Mathias Beller  1,2*

organisms depend on a highly connected and regulated network of biochemical reactions fueling 
life sustaining and growth promoting functions. While details of this metabolic network are well 
established, knowledge of the superordinate regulatory design principles is limited. Here, we 
investigated by iterative wet lab and modeling experiments the resource allocation process during 
the larval development of Drosophila melanogaster. We chose this system, as survival of the animals 
depends on the successful allocation of their available resources to the conflicting processes of growth 
and storage metabolite deposition. First, we generated “FlySilico”, a curated metabolic network of 
Drosophila, and performed time-resolved growth and metabolite measurements with larvae raised on 
a holidic diet. Subsequently, we performed flux balance analysis simulations and tested the predictive 
power of our model by simulating the impact of diet alterations on growth and metabolism. our 
predictions correctly identified the essential amino acids as growth limiting factor, and metabolic flux 
differences in agreement with our experimental data. Thus, we present a framework to study important 
questions of resource allocation in a multicellular organism including process priorization and optimality 
principles.

Balancing limited resources to concurrent processes is an essential task in all areas of life. Every organism, for 
example, needs to allocate its available resources – mostly in the form of diet-derived nutrients – to concurrent 
processes such as live sustaining functions, reproduction, or storage metabolite synthesis. While the metabolic 
pathways involved in these processes, as well as some regulatory signaling pathways, are well established, the 
overarching design principles governing resource allocation and prioritization are elusive1,2. This is especially 
true for multicellular heterotrophic organisms, which often have an almost unlimited amount of destinations 
for channeling their available resources. On top of a plethora of energy consuming processes available to the 
whole organism (physical movement, growth and reproduction, energy storage metabolite deposition), higher 
order multicellular organisms are composed of a multitude of organs. This results in an even higher complexity, 
given that many organs have distinct and different metabolic preferences, which is important during health and 
disease states3–5. The mammalian brain, for example, depends on sugars for energy production, whereas most 
other body cells can additionally utilize other energy liberating pathways such as fatty acid beta-oxidation. To 
this end, a bottom-up understanding of the resource allocation regulation therefore appears close-to impossible 
based on this complexity and lack of detailed information. Thus, an abstraction in the form of a top-down mode-
ling paradigm has the potential to reveal design principles, which serve as a starting point to investigate resource 
allocation principles. Yet, the various degrees of freedom available to complex organisms complicate the modeling 
procedures, as model solving usually targets the optimization (maximizing or minimizing) of a distinct objective 
function such as e.g. biomass production or growth6. Given that multicellular organisms can have multiple and 
often conflicting objective functions (e.g. reproduction, longevity), or objective functions without the aim of max-
imization or minimization (e.g. metabolic processes to sustain survival, growth in terms of sustaining healthy cell 
turnover, deposition of energy depots), the identification of a single and clear-cut objective function is difficult.

Development, however, appears to represent an exception. The development of most organisms follows a 
stereotyped program, which involves hard constraints e.g. in terms of the timing or metabolic thresholds. 
Holometabolous insects, for instance, need to deposit sufficient energy storage amounts to allow metamorphosis 

1Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany. 
2Systems Biology of Lipid Metabolism, Heinrich Heine University, Duesseldorf, Germany. 3Institute of Plant 
Biochemistry & Cluster of Excellence on Plant Sciences, Heinrich Heine University, Duesseldorf, Germany. 4These 
authors contributed equally: Jürgen Wilhelm Schönborn and Lisa Jehrke. *email: mathias.beller@hhu.de

open

https://doi.org/10.1038/s41598-019-53532-4
http://orcid.org/0000-0003-0987-0080
mailto:mathias.beller@hhu.de


2Scientific RepoRtS |         (2019) 9:17156  | https://doi.org/10.1038/s41598-019-53532-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

into an adult organism, which is often associated with a minimal weight, which is also termed critical weight in 
insects such as Drosophila melanogaster7. Given the variations many organisms face during development – based 
on e.g. fluctuation in temperature or food supply and quality – developmental programs are at the same time 
also flexible (Fig. 1A,B). The time needed to reach a certain weight or storage threshold necessary to complete 
development thus can be extended under poor nutritional conditions, for example (Fig. 1A). Besides adjust-
ing the developmental timing, organisms can also alter the relative amounts of their energy storage compounds 
(Fig. 1B). Thus, development of multicellular organisms should be accessible to modeling campaigns, as there 
is a clear-cut objective function (growth) and sufficient plasticity (timing and metabolic fine-tuning) to test 
modeling predictions. A better knowledge of the resource allocation principles potentially answers the question 
whether the developmental growth and resource allocation are in multicellular organisms also (pareto-)optimal. 
A pareto-optimality was previously reported for bacterial growth and metabolism8. Pareto-optimality was also 
proposed for certain phenotypic traits of multicellular organisms9,10, yet this is still under discussion11,12.

Here, we use the larval development of Drosophila melanogaster as a model system for the analysis of the 
resource allocation of a multicellular organism using in silico and wet lab experiments (Fig. 1C,D). This system is 
particularly well suited for this endeavor based on the following key-points: (i) Larval development of Drosophila 
involves a massive increase in size and weight coupled to the deposition of copious energy stores necessary to 
fuel metamorphosis (Fig. 1C)13. In order to allow this massive size increase, larvae are constantly eating14, which 
facilitates the estimation of energy expenditure and metabolite intake. (ii) Drosophila larval development and 
resource allocation shows an inherent plasticity. Poor nutritional conditions, for example, result in a prolonged 
developmental timing based on a lowered rate of development (Fig. 1A)15. This change of developmental timing is 

Figure 1. Plasticity of resource allocation and experimental design of the study. (A) Development involves 
growth and weight gain (in part due to the deposition of storage metabolites) over time. Altered environmental 
conditions, such as a rich (green) or poor (orange) nutrition results in an altered timing and/or (B) altered 
energy storage compound levels (compounds A–C show a different relative abundance under rich (green) 
and poor (orange) nutritional conditions). (C) Nutrients fuel conflicting processes. Drosophila larvae need to 
channel available nutrients to sustain either growth or the formation of storage metabolites. Following nutrient 
uptake in the gut (shown in grey) copious amounts of triglyceride and glycogen stores are built in the fat body 
(yellow), which largely fills the body cavity of developing larvae. (D) Our experimental design involved in silico 
and in vivo (wet lab) experiments. For the in silico studies, we first reconstructed main parts of the Drosophila 
metabolic network. For the parameter estimation, we performed metabolic profiling experiments during the 
Drosophila larval development. Subsequently, the metabolic network served the constraint-based flux balance 
modeling (FBA). With the FBA models, we predicted the consequences of alterations of the dietary composition 
and validated the modeling results using targeted experiments. High resolution versions of the metabolic 
network shown in (D) are provided in Fig. 2 as well as an interactive version of the metabolic network as 
supplemental data.
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often paralleled by an altered metabolite composition of the organism16–19. Intriguingly, also e.g. mammals adapt 
their metabolism to in utero nutritional alterations20 and the impact of the nutritional status during development 
and early life on the later stages is well described in terms of the life history theory21,22 and the process of meta-
bolic programming23–25. (iii) For the modeling procedures, we benefitted from a previously published chemically 
defined, fully synthetic minimal Drosophila food (Holidic diet; HD)26, which allowed us to clearly define the 
input of our model. On top of the general advantages of working with small animals, such as the large number of 
progeny and accessibility of the developmental stages, these characteristics clearly facilitated our investigations.

To target resource allocation in Drosophila larval development, we generated the – to the best of our knowl-
edge – to date largest curated metabolic network for fruit flies and subjected it to flux balance analyses. To val-
idate and optimize our metabolic network, we used targeted metabolite quantifications and GC-coupled mass 
spectrometry metabolomics measurements of larvae grown on the HD. We built the model capturing previously 
known requirements of Drosophila metabolism, such as sterol auxotrophy27, and tailored it to incorporate all 
prominent ingredients of the HD. Our model predictions allowed us to correctly identify the amount of essential 
amino acids as growth limiting factor. Further, the model predictions resulted in flux differences, which are in line 
with the measured metabolite alterations associated with growth of the larvae in food with elevated amounts of 
sucrose or essential amino acids. These proof-of-principle experiments provide a starting point to investigate the 
optimality principles of multicellular resource allocation.

Results
Drosophila metabolic network reconstruction. In order to model Drosophila larval growth and 
resource allocation, we first constructed a flux balance capable metabolic network covering the biochemical path-
ways necessary to metabolize the major constituents of the minimal, synthetic medium (Holidic diet; HD)26, 
which we used to grow the fruit flies during the wet lab procedures. On top of the central carbon metabolism, 
we therefore included e.g. amino acid, lipid, and carbohydrate metabolism (Fig. 2, Table S1, and Interactive 
Supplementary Fig. 1). In total, our model – termed FlySilico – covers 363 reactions and 293 metabolites. To date, 
there are surprisingly only two other Drosophila metabolic networks available. The first one focuses on the effects 
of hypoxia on ATP production28–30. The other one is a whole-genome computer generated model, which lacks 
curation (BMID000000141998; https://www.ebi.ac.uk/biomodels-main/BMID000000141998).

For our model reconstruction, we started from scratch and emphasized on avoiding biologically unfeasi-
ble reactions (dead-end, blocked, and unbalanced reactions) as well as on minimizing the number of exchange 
reactions (see methods section). Figure 3 shows a comparison between different aspects of our FlySilico and 

Figure 2. Map of the FlySilico V1.0 metabolic model of Drosophila melanogaster. On top of the central carbon 
metabolism, we included reaction complexes such as the lipid or amino acid metabolic pathways. A main 
goal was to include the pathways necessary for metabolizing the main constituents of the holidic diet and the 
pathways covering our experimentally quantified metabolites. For details, please see main text, Table S1 and 
Interactive Supplementary Fig. 1.
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a selection of previously published other FBA-models of different organisms including the whole genome 
Drosophila model. While of course still limited in size, our model has a low amount of biologically unfeasible 
reactions. The importance of this became evident when we performed simulations with the whole genome, in sil-
ico generated Drosophila metabolic network. Here, simulations resulted in a positive Biomass production (Fig. S1) 
even without any inputs entering the model; i.e. that this model allows perpetual motion. For FlySilico, we did not 
detect such an artificial and erroneous behavior (data not shown).

Development of a Drosophila biomass function based on experimental data. Given our aim to 
investigate growth and resource allocation, we established the parameters of our model by incorporating exper-
imental data. For this, we grew wildtype Oregon-R Drosophila animals on the HD. The complete larval develop-
ment (until prepupae emerge) appears quasi linear and takes on the HD about 170 hours. In order to follow the 
development and metabolite profile over time, we collected larvae at three equally spaced time points during 
development (96, 132 and 168 hours after egg laying; AEL). To determine growth progression over time, we 
measured the wet and dry weight (Fig. 4A) as well as different size parameters (Fig. S2) of the larvae at the dif-
ferent time points. Larval weight increased almost linear over time (Fig. 4A). The water content was stable with 
values between 85 and 89% (Fig. 5A) and unaffected by alterations of the food composition (data not shown). For 
all time points, we performed absolute quantifications of free protein, glycogen, glucose, triacylglycerol (TAG), 
lactate, and glycerol (Fig. 4B–G) levels according to established protocols31 (see Table S2). Further, we quantified 
various metabolites of the central carbon metabolism as well as free amino acids by GC-MS metabolomics meas-
urements and external standard curves (Figs 4H,I, S3 and Table S2). Most per animal normalized measurements 
increased over time, as expected (Fig. 4). Only lactate levels reached a plateau after 132 hours of development. 
All in all, our measurements explained on average 79% (for 96 h AEL: ~81%, for 132 h AEL: ~96% and for 168 h 
AEL: ~60%) of the total dry weight with proteins and TAGs being the major contributors (Fig. 5B). Of course, 
we can not rule out that the larval midgut contained metabolites from the HD, which we also included in our 
measurements. Yet, while none of our targeted metabolite measurements covered compounds present in the HD, 
those represented the most abundant constituents of the larval biomass. The metabolites quantified by the GC-MS 
metabolomics strategy – which covered also metabolites present in the HD as e.g. the singular amino acids – were 
only present in minute amounts. Thus, our measurements covered a large part of the body composition and 
should provide a sufficient approximation to model larval growth.

In order to perform growth rate simulations, we formulated a biomass function based on the previously 
reported yeast biomass function of the model iMM90432. Yet, from the original yeast biomass function, we only 
utilized the value for the growth associated maintenance (GAM) costs, as this measure is difficult if not impos-
sible to obtain for a multicellular organism. The other coefficients of the biomass function are based on our 
own measurements (Fig. 5C and methods section). Next, we used the HD food ingredients as constraints for 
the model solution procedure. Although we already knew the exact composition of the food, we still needed 
to approximate the amount of food consumed by a single larva over time. Given that the measurement of the 
amount of internalized solid food is difficult, we decided to follow a theoretical approach (for details see methods 
section). For this purpose, we used data available for the average number of mouth hook movements (“bites”) per 
minute of larvae. The bites per minute only show low variability across different food compositions33,34, suggest-
ing that this assumption is reasonable. Further, we approximated the volume of the mouth of the larva based on 
previous35 and own measurements (Fig. S2; approximated volume of the mouth = 0.011 mm3). Calculations based 
on both parameters resulted in an amount of 0.064 g/h food consumed per hour. We used this approximated 
food intake amount to calculate for each food ingredient the maximum amount consumed per hour. Of course, 
the calculated amount of consumed food is likely a prominent overestimation. For example, the larvae will most 
likely not fill their mouth completely with every bite. Further, not all food ingredients passage the gut barrier with 
100% efficiency and at this point, we do not know the resorption rate for the different nutrients. Thus, we sought 
to identify a correction factor to limit the nutrient influxes to a reasonable level. For this purpose, we solved the 

Figure 3. Comparison of FlySilico V1.0 to other publically available metabolic networks. Dead-end reactions 
result in the production of metabolites, which are not further utilized in the network. Blocked-reactions are 
not accessible during the solving of the network. Unbalanced reactions are violating the conservation of mass 
and/or charge. Exchange reactions represent either biologically necessary transporters (such as for the import 
of nutrients into the system, or naturally occurring transporters for the export of end products), or transport 
reactions necessary for the modeling, to e.g. eliminate metabolites which are not further processed as the 
necessary biochemical reactions were omitted from the model. The values marked by an asterisk were calculated 
using non-loopless conditions. All other values are determined using loopless computations.
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FBA-model with a wide range of diminishing correction factors (Fig. S4) and compared the resulting calculated 
growth rates with our experimentally determined growth rate of approximately 8.8% dry weight increase per hour 
(see methods section). In this way, we identified a correction factor of the calculated food and thus nutritional 
uptake of about 12.2%. So far, little data concerning the food conversion and uptake rates of insects are availa-
ble. Yet, Waldbauer et al. measured the efficiency of conversion of ingested food to body substance for various 
Lepidoptera species and found conversion rates ranging from 2 to 38%36. Our theory-derived value of 12.2% thus 
is in the range of the experimentally determined values of other insects.

Model verification. The first step in our model verification procedure was to test whether it operates in 
a reasonable manner and whether it recapitulates known behaviors of the fly system, in contrast to e.g. the 
computer-generated model mentioned above. Drosophila, for example, is sterol auxotroph27. We built our model 
to recapitulate this behavior and indeed a steep increase in the growth rate for positive, non-zero sterol uptake 
rates is visible (Fig. 6A). In contrast, the amount of the non-essential amino acid aspartic acid had no effect on the 
growth rate, as expected (Fig. 6B).

As a next step, we performed more complex simulations. First, we investigated growth in response to varying 
oxygen levels. Here, a certain minimal oxygen influx was needed to support suboptimal growth before increasing 
oxygen levels resulted in a plateau of the growth rate (Fig. 6C). As a test for the predictive power of our system, we 
decided to test next whether we could predict the impact of diet alterations on the growth and metabolism. While 
a reduction of certain nutrients would have been possible, we decided to rather test for a possible limitation of 
certain nutrients given that the growth of the larvae was on the HD much slower as compared to a complex and 
rich diet. Based on the growth properties of the animals, the HD in fact is classified as a minimal medium, which 
was designed to mirror dietary restriction characteristics26. Thus, we increased either the amount of dietary sugar 
or essential amino acids that was possible to enter the model. A doubling of the sucrose input limit had no effect 
on the calculated growth rate (Fig. 6C). However, when we doubled the amount of essential amino acids (EAA) 

Figure 4. Growth and metabolic profiling of the larval developmental of Drosophila melanogaster 96, 132, and 
168 hours after egg laying. (A) Wet weight (left plot) and dry weight (right plot) measurements of larvae at the 
indicated developmental time points. (B–G) Absolute quantification of protein, glycogen, glucose, triglyceride 
(TAG), lactate, and glycerol levels. The data represent mean values ± standard deviation normalized to the 
amount of animals per sample of at least triplicate measurements. (H,I) GC-MS metabolomics measurements 
of proteinogenic amino acids (H) and different metabolites (I) of Drosophila larval extracts from the indicated 
time points. Insets in (H,I) provide a zoom-in view on the low-abundant metabolite data. Metabolites were 
quantified using five point calibration curves (see methods, Fig. S3, and Table S2) and sorted for increasing 
abundance during the 168 hours time point.
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potentially entering the system, the predicted growth rate prominently increased (Fig. 6D). We subsequently 
tested our modeling predictions by performing corresponding experiments. Larvae reared on a HD containing 
the double amount of sucrose (“2x sucrose food”) indeed did not show an increased growth-associated weight 
gain as compared to larvae raised on the standard HD (Fig. 6E). Protein levels were even lower than the ones of 
the control animals at the middle time point (Fig. 6F). Doubling the amount of EAA (“2x EAA food”), however, 
indeed resulted in a higher growth rate (Fig. 6E) as well as higher amounts of protein (Fig. 6F). Thus, our mode-
ling data are consistent with the experimental results, which suggests a high predictive power of the model.

Modeling resource allocation. As a next step, we investigated whether the model could recapitulate 
resource allocation differences driven by the increase of sucrose or EAA in the HD. Therefore, we performed a 
flux variability analysis for our model with the given elevated maximum input limits (Table S3). Subsequently, we 
percent normalized the maximum and minimum flux values obtained for the 2x sucrose or 2x EAA food, respec-
tively, based on the flux variability values of the standard HD (Table S4). Further, we split the metabolic reactions 
into functional groups and plotted selected reactions with altered fluxes (Fig. 7). On the simulated 2x sucrose 
diet, most reactions of the central carbon metabolism (Fig. 7A) showed a prominently increased maximum flux 
rate (e.g. FBA = fructose-bisphosphate aldolase, GAPD = glyceraldehye-3-P dehydrogenase, PFK = phosphofruc-
tokinase, PGI = glucose-6-P isomerase). On the simulated 2x EAA diet, however, most maximum flux rates did 
not change, and only the lower flux rate bounds were increased, thus resulting in a more narrow range of possible 
flux variations (Fig. 7A). For few reactions, the diet alterations resulted in opposite flux changes (HEX1 = hexoki-
nase 1, LDH_L = l-lactate dehydrogenase, PPPH = diphosphate phosphohydrolase, PRPPS = ribose-phosphate 
diphosphokinase, PhnN = ribose 1,5-bisphosphate phosphokinase, R1Pk = Ribose 1-phosphokinase). The 
diphosphate phosphohydrolase (PPPH) flux showed a largely increased minimal flux on the simulated 2x EAA 
diet (Fig. 7A). Diphosphate phosphohydrolase activity takes place very early in the lipid degradation, as it acts 
as the force to activate fatty acids for the beta-oxidation37. The higher minimal flux following the elevated EAA 
input, suggested an enhanced rate of lipid activation, which potentially fuels the elevated growth. Further, the 
increased flux of the lactate dehydrogenase suggested increased lactate levels of animals reared on the diet with 
2x EAA.

As expected, fluxes of reactions involved in sucrose metabolism (AF6P = ATP:D-fructose 6-phosphotransferase, 
AGMH1 = 1,4-alpha-D-Glucan maltohydrolase AMYTRA = 1,4-alpha-D-Glucan:1,4-alpha-D-glucan 
6-alpha-D-(1,4-alpha-D-glucano)-transferase, MGH = maltose glucohydrolase SGH = sucrose glucohydrolase, 
UDPGTRA = UDP-glucose:glycogen 4-alpha-D-glucosyltransferase) increased prominently if the sucrose input was 
increased (Fig. 7B). The simulation of elevated EAA levels resulted in increased minimal fluxes of enzymes involved 
in lipid metabolism (ACS3 = acyl coenzyme A synthetase, DGA = 1,2-diacylglycerol acyltransferase, GK = glycerol 
kinase, GPPA = alpha-glycerophosphate acyltransferase), as well as situations where both the lower and upper flux 
limits were elevated (FASN = fatty-acid synthase), which suggest elevated lipid storage levels as a result (Fig. 7C).

When we performed corresponding metabolite measurements with animals raised under the different growth 
conditions, TAG levels indeed showed a modest, but significant, increase following growth on the 2x EAA diet 
(Fig. 8A). Free glycerol levels showed a larger amount of variation (Fig. 8B). Yet, the trends clearly differed in 

Figure 5. Drosophila body composition and biomass function. (A) Water content of Drosophila larvae raised 
on the HD during the three investigated time points. The black part of the stacked bar plots shows the dry mass 
of the larvae. (B) Our combined targeted and GC-MS metabolite measurements explain on average about 79% 
of the dry mass. Triglycerides and protein are the main contributors to dry mass. (C) Drosophila melanogaster 
biomass function based on our experimental data and literature. Green values indicate indices based on the 
GC-MS measurements and on the absolute biochemical metabolite quantifications, blue indices are based 
on the absolute biochemical metabolite quantifications. Red indices are based on information from the yeast 
whole-genome FBA model iMM90432.
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response to the varying diet compositions. Increased dietary sugar levels resulted in lower levels of free glycerol, 
whereas increased amounts of EAA resulted in an on average increased free glycerol levels indicative of elevated 
lipolytic and/or lipogenic activity. Intuitively, we expected an altered sugar content of the animals raised on the 2x 
sucrose diet. Yet, we did not detect any prominent differences (Fig. 8C), which seems to be in line with the mode-
ling results, which indicate a larger flux of the glycolysis reactions with a simultaneous activation of the complete 
TCA cycle or the reactions involved in oxidative phosphorylation (Fig. 7A). This increase of flux values suggest 
that the metabolism of Drosophila activates a metabolic program for an overflow metabolism perhaps associated 
with a larger burning or excretion of sugars. The 2x EAA diet, however, resulted in a significantly higher glucose 

Figure 6. Model verification, predicted growth and comparison to real life. (A–D) Modeled growth rate in 
response to different input parameter variations. Negative uptake rates correspond to an excretion. (A) A 
certain level of cholesterol is needed for optimal growth while less result in a suboptimal growth phase. The 
zoom-in represents a larger cholesterol uptake flux range. (B) Levels of the non-essential aspartic amino acid 
do not affect biomass production. The zoom-in represents a larger aspartic acid uptake flux range. (C) Oxygen 
levels need to surpass a threshold to allow biomass production. In the following, the biomass production 
increases until it reaches a plateau. Increased sucrose levels (blue color) do not alter biomass production as 
compared to the standard HD (green color). (D) A doubling of the amount of essential amino acids (EAA) 
increases the biomass production (red color) as compared to the standard HD (green color). (E,F) Experimental 
testing of our model-based predictions. Animals were either reared on HD (green), HD containing the double 
amount of sucrose (blue) or the double amount of EAA (red). The wet weight (E) and protein (F) content of 
the larvae was measured 96, 132, and 168 hours after egg laying. While the altered sugar content did not affect 
the growth rate, the addition of more EAA resulted in a higher growth rate (E). The protein measurements 
show similar results (F). Measurements in (E,F) represent the mean values of three biologically independent 
experiments. Each experiment consisted of quadruplicate samples. Whiskers represent the standard error of 
the mean (SEM). Please note that the wet weight data for the HD is identical with the one shown in Fig. 4A. 
Statistical significance was tested by an unpaired two-sample T-Test for each time point. Significance levels are: 
*p < 0.05, **p < 0.01, ***p < 0.001.
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content of the animals (Fig. 8C), which appears to be in line as the higher flux rate of diphosphate phosphohy-
drolase or fatty-acid synthase suggest a higher beta-oxidation besides an increased lipid storage predicted by the 
model. Glycogen levels were mostly unaffected by the altered nutritional conditions (Fig. 8D). Lactate showed 
under basal HD growth conditions a plateau 132 hours after egg laying (Figs 4F, 8E). If additional sucrose was 
present, lactate levels even decreased 132 hours after egg laying (Fig. 8E). The 2x EAA diet yet resulted in sta-
tistically increased lactate levels (Fig. 8E), which again is in line with our modeling results, which suggested an 
increased lactate dehydrogenase flux (Fig. 7A). Thus, we also could largely align our modeled flux values with the 
corresponding experimental data.

Discussion
Flux balance analyses (FBA) with metabolic networks of heterotrophic multicellular organisms usually appears 
complicated due to the difficulty of identifying a clear-cut objective function. Further, the various cell types of 
complex organisms, with their signature gene expression profiles and distinct metabolic and functional tasks, 
complicate modeling approaches even more. To tackle these difficulties, methods and strategies were designed38, 
as for example, to model the metabolic flow in the context of gene regulation or other advanced constraints such 
as dynamic changes. Here, we decided to use a top-down modeling approach focusing on a generalized and 
averaged simple model of the growing larva, which we identified as a suitable system for FBA given its clear-cut 
objective function. We used this simplified model given that many details of the overall organismic physiology 
are still unclear. Therefore, we rationalized that adding uncertain information might rather act detrimental as 
compared to a simplified model, which could better catch the more general schemes. A benefit from starting our 
model mostly from scratch was that we could pay special attention on avoiding dead-end and blocked-reactions 
(Fig. 3), as well as to assure the biological feasibility of the subsequent FBA modeling results. Our resulting model 
is to the best of our knowledge the currently most advanced metabolic network of Drosophila metabolism and 
we provide it together with the code to perform FBA analyses in different ready-to-use formats to the com-
munity (see methods section). Our initial rationale that a simple model might be already useful appears valid, 
given that it is already able to recapitulate basic biology (Fig. 6) and successfully predicted the impact of dietary 
alterations on the larval growth and metabolism (Figs 6–8). In the future, the refinement of the model by e.g. 
incorporating gene regulation or a dynamic modeling38, potentially further enhances the predictive power of 
the model. While these enhancements will be likely less important for the modeling of a general behavior of 
the system – and thus general resource allocation questions as there are still many uncertainties resulting in a 
high number of degrees of freedom –, they will facilitate the studying of new questions. For example, it will be 

Figure 7. Modeling Drosophila larval resource allocation. The figure shows the results of the percent 
normalized flux variability analysis results for the simulations based on the HD with 2x sucrose (blue) and HD 
with 2x EAA (red), respectively. In brief, we percent normalized the values of the minimal (open circles) and 
maximal (filled circles) fluxes on the basis of the results for the standard HD. The sign of the flux percentage 
indicates the reaction direction, where a positive sign indicates the forward reaction, a negative sign indicates 
the backwards reaction and values spanning both signs represent reversible reactions. (A) Barplot of the central 
carbon metabolism flux change of the model solutions for the comparisons HD and HD with 2x sucrose (blue) 
or HD and HD with 2x EAA (red), respectively. (B) Flux change for the sucrose metabolism (description as in 
(A)). (C) Flux change for the lipid metabolism (description as in (A)). Each reaction description can be found 
in Table S1. Flux variability analysis results are given in Table S3 and the normalized flux data are presented in 
Table S4.
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interesting to investigate the interplay between different organs, as well as to study inter-organismal metabolic 
connections such as between the host and its gut microbiome constituents or host-symbiont/host-parasite mutu-
alism. Drosophila is an exquisite model for such kind of studies given its well characterized and relatively simple 
gut microbiome39. Further, the mutualism between insects and the endosymbiont Wolbachia, which can also 
act as pathogen, is well described40,41. In Aedes aegypti, an impact of an infection with the pathogenic Wolbachia 
strain wMelPop, for example, was recently shown to affect the TAG and cholesterol metabolism of the host42. 
Further, the time-resolved analysis of metabolite amounts as well as the consequences of gene dosage and protein 
activity alterations, will be interesting avenues to follow.

Our lack of knowledge concerning the energy costs associated with growth and non-growth associated pro-
cesses (often referred to as GAM – growth associated maintenance, and NGAM – non-growth associated mainte-
nance costs) might appear as a weak spot of our approach. So far, we determined the NGAM values in an iterative 
process based on the oxygen consumption rate of Drosophila S2R+ cells43 (methods section and Fig. S5) and used 
the GAM values from a yeast model32, as an experimental estimation of the values for Drosophila is difficult. Our 
approach appears legitimate, at least at the current point of time, as simulations testing a wide array of different 
GAM and NGAM values with our model demonstrated only a limited impact on the biomass production (Fig. S6 
and Interactive Supplementary Fig. 2). The impact of GAM and NGAM uncertainties on the resource allocation 
problem might be bigger. The size of the linear programming solution space decreases with increasing GAM and/
or NGAM values, as fluxes have to compensate for the increased energy requirements as for example the rate of 
oxygen consumption. Thus, the future estimation of the real GAM and NGAM values for larvae under different 
physiological conditions is a challenging, yet valuable goal.

We parameterized our model using absolute enzyme-based biochemical quantifications as well as via GC-MS 
based metabolomics measurements (Figs 4–6 and Table S2). Overall, our measurements explained a large portion 
of the dry weight of the animals (Fig. 5B). The prominent drop of explained dry weight at 168 hours after egg lay-
ing (60% explained dry mass versus 81 or 95% (96 or 132 hours after egg laying, respectively)) is intriguing. Given 
that despite of lactate all metabolites measured by us increased over time (Figs 4 and 8), this result suggests that 
the production of another metabolite not measured by us is increasing dramatically during this growth phase. 
Candidates are, for example, nucleic acids or components of the cuticle. In support of this notion, we noted an 
elevated slope of the larval weight gain from the second to the last time point (Fig. 4A), whereas size increase on 
the HD rather stalled during this phase (Fig. S2B–D).

The use of the chemically defined HD significantly facilitated the connection of the biological data to the 
modeling both under basal (Figs 4–8) as well as dietary altered (Figs 4, 6 and 8) conditions. The presence of the 
chemically defined food is a big advantage as compared to complex and ill-defined food compositions, as uncer-
tainties in terms of the diet obfuscates defining the real inputs entering the system in the experiment as well as 
the model. An obvious point for optimization is our lack of knowledge concerning the exact amounts of food 
consumed and metabolite resorption rates. The mouth hook contraction values used by us, for example, could 

Figure 8. Metabolic profiling of the larval developmental of Drosophila melanogaster 96, 132, and 168 hours 
after egg laying. (A–E) Absolute quantification of triglyceride (TAG), glycerol, glucose, glycogen, and lactate 
levels. Measurements in (A–E) represent the mean values of three biologically independent experiments. Each 
experiment consisted of quadruplicate samples. Whiskers represent the standard error of the mean (SEM). 
Statistical significance was tested by an unpaired two-sample T-Test for each time point. Significance levels are: 
*p < 0.05, **p < 0.01, ***p < 0.001.
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in theory vary in response to different diets. Several reports, however, suggested only a limited impact of the diet 
on the mouth hook contraction frequencies33,34. Nevertheless, in the future, methods that are more sophisticated 
should be used to eliminate this shortcoming using e.g. radiolabeled tracer experiments, which will also allow the 
direct estimation of metabolite flux rates. These in turn will allow a much better comparison to the predicted flux 
rates as our endpoint measurements. Another point to consider is that the HD represents a minimal medium, 
which results in a slowed down growth. Here, we started to investigate which nutrients might act as growth lim-
iting factors and our strategy appears to be successful in predicting nutrients allowing a faster growth. For the 
investigation of resource allocation and optimality principles, the slowed-down growth appears less problematic, 
given that optimality of resource allocation is situation dependent, and thus an inadequate diet can also be uti-
lized in an optimal manner.

Investigations concerning the minimal nutritional requirements of an organism, as well as concerning the 
impact of nutritional alterations on the physiology of an organism, is an active field of research44–46. Our early 
results with the predictions of the impact of altering sucrose or EAA levels in the food are particularly promising. 
They suggest that simulations with FlySilico should facilitate the identification of suitable parameter ranges for 
experiments targeting e.g. the nutritional requirements of larvae and flies or the impact of diet alterations on the 
metabolic and/or growth phenotype. The future FlySilico-based investigations concerning the impact of varying 
amounts of essential and branched chain amino acids on growth processes, life history traits such as fecundity, 
ageing related diseases and cancer will be exciting as these aspects gained a lot of attention recently47–50.

Drosophila larval growth is marked by an impressive increase in size and mass. This expansion is necessary 
for a successful completion of metamorphosis, which involves a drastic remodeling of body structures and a food 
intake cessation. Therefore, the larval development is subject to hard biological constraints. Still, the organism 
can react to fluctuations in the quality or quantity of food by adjusting the rate of development and resource allo-
cation, e.g. by channeling less nutrients into storage forms15. Our experiments, where we raised animals on either 
standard HD or HD supplemented with additional sucrose or EAA (Figs 4, 6 and 8), demonstrate this plasticity. 
Further, our model predictions correctly identified the growth limiting nutritional parameters and revealed flux 
differences, which relate to the observed metabolic changes based on the diet alterations. The precision of the 
model predictions will increase with further improvements as outlined above. Intriguingly, the metabolic adapta-
tion to altered nutritional conditions are not limited to insects, but have also been described e.g. for mammals20. 
Thus, future investigations targeting other species are possible to test for a possible generalization of our findings.

An important aspect is that solving the flux balance model is by definition following optimality principles. 
Given that our relatively simple model already was able to result in correct predictions suggests that Drosophila 
resource allocation is operating in a quasi-optimal state. Future studies with additional parameter variations 
(e.g. cost functions for protein and DNA synthesis and distinguishing different type of organs or tissues38) and 
incorporation of additional fly genotypes and perhaps single gene mutations will help to further elucidate this 
intriguing possibility.

Materials and Methods
Drosophila fly stocks and rearing. For all our experiments, we used the wild type Oregon-R fly strain 
reared under standard culture conditions (25 °C, 12 h light-dark rhythm and 60–70% humidity).

Chemically defined fly medium. The chemically defined (holidic) medium (Holidic diet; HD) was intro-
duced in26. Animals developing on HD are viable, fertile, and have no aberrant phenotypes, although the devel-
opment is slowed-down and the HD is thus classified a minimal medium. Food was prepared according to the 
instructions of the Piper et al. publication with use of the Yeast-like amino acid composition (“Yaa”). For our 
perturbation experiments we either added the double amount of sucrose (2x sucrose) or the double amount of 
essential amino acids (2x EAA).

Larvae collection procedure. In order to minimize a possible impact of environmental effects, we kept the 
parental density constant with 15 male flies and 30 female flies per vial. These adult flies were kept on a stand-
ard complex cornmeal diet (per 100 mL: 0.5 g agar (Becton Dickinson, 214010), 7.1 g polenta (Verival, Pronurel 
Bio, 265250), 0.95 g soy flour (Bauck Hof, Amazon.de, B004RG3C0I), 1.68 g yeast (Bruggeman, lieferello.
de, 14874413), 4 g treacle (Original Grafschafer Goldsaf, lieferello.de, 10231869), 4.5 g malt extract (Demeter, 
Amazon.de, B00GU029LW), 0.45 mL propionic acid (Acros Organics, 220130010, CAS 79094) and 1.5 mL 
nipagin (Sigma-Aldrich, H3647-100G) (1:10 stock solution in 70% Ethanol; Riedel-de Haën, 16202S-1L, CAS 
64-17-5) before we transferred them to the chemically defined medium to allow oviposition. After six hours we 
discarded the parental flies to have a defined time period for the egg-laying. As the maximum time point for col-
lecting larvae we used 168 h after egg laying as afterwards the larvae start to pupariate on the HD. Based on this 
terminal point, we added two equally spaced time points earlier in development (132 h and 96 h after egg laying, 
respectively) as growth is quasi linear.

The possibility that larval growth and metabolism is showing a sexual dimorphism appeared intriguing. Pilot 
experiments using animals reared on the holidic or a standard diet, however, showed that at the latest timepoint 
used by us female and male larvae do not significantly differ in terms of the size, the triglyceride, glucose or glyco-
gen levels (data not shown). Thus, we did not consider the sex of the animals during our experimental timeframe 
a prominent factor and therefore collected unsexed larvae 96 h, 132 h and 168 h after egg laying and washed them 
in PBS with 0.1% Tween-20 (PBT) for the weight measurements and metabolic assays or in HPLC-graded water 
for the GC-MS analytics. We used quadruplicates for every condition and collected 25 larvae (96 h) or eight larvae 
(132 h, 168 h) for the GC-MS and the metabolic assays. For the dry and wet weight measurements, we collected 
100 animals from the 96 h time point and 40 animals from the 132 h and 168 h time points, respectively.
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Wet and dry weight measurements. For the determination of the wet weight, we transferred the washed 
larvae into pre-weighed 1.5 mL tubes and weighed them on an analytical scale. The animals were then snap-frozen 
in liquid nitrogen and dried in an oven at 60 °C with the tube lids open. After 24 h we measured again the weight 
( = dry weight) and calculated the water content by subtraction of the dry weight from the wet weight.

Larval size measurements. For the larval size measurements, we collected at the indicated time points 
the animals in ice cold PBS to minimize their movements and to ensure their elongation. Subsequently, we 
recorded images with a Zeiss SteREO Discovery.V8 dissection microscope, which were analyzed with the Zeiss 
Zen Software (Zen 2.3 lite – blue edition). For each larva, we measured the area, the length and its width. In total, 
we performed three biologically independent experiments and measured 20 to 30 animals per repetition.

Biochemical measurements. All targeted biochemical measurements were essentially carried out as 
described in31. We collected the larvae from three different time points and snap-froze the animals in liquid nitro-
gen before storage at −80 °C. For the homogenization, we used 1 mL 0.05% Tween 20 in water in 2 mL screw-cap 
tubes and a Fast Prep FP120 machine (Bio101 Savant). After homogenization and heat-inactivation for 5 minutes 
at 70 °C, the supernatant was transferred to 1.5 mL tubes as a reservoir for the metabolic assays, which were per-
formed in 96-well plates. We normalized each measurement to the amount of animals per sample.

Protein. The free protein content was measured using the Pierce BCA assay kit (Life Technologies) according 
to the manufacturer’s instructions. We used bovine serum albumin (BSA) as a standard to determine the protein 
content of the samples. The 0.05% Tween-20 used by us in the homogenization procedure most likely was not 
sufficient to solubilize also integral membrane proteins. Thus, the protein amounts per animal might represent an 
underestimation of the real total protein content.

Triglycerides (TAG). For the determination of the triglyceride levels in the samples, we used the Triglycerides 
Reagent (Thermo Scientific). We transferred 50 µL of the samples and a serial dilution (1:2 in 0.05% Tween 20 in 
water) of the glycerol standard (Sigma Aldrich) to a 96-well plate and added 200 µL of the Triglycerides reagent. 
The samples and the standard were incubated 45 minutes at 37 °C and the absorbance was read at 510 nm.

Glycerol. The glycerol content of the samples was determined using the Glycerol Assay Kit (Sigma-Aldrich). We 
followed the manufacturer’s instruction for fluorometric measurements.

Glucose and Glycogen. For the determination of glucose and glycogen, we used the GO Assay Reagent 
(Sigma-Aldrich) and a modified form of a protocol described in51. For both measurements, we transferred 30 µL 
of the undiluted samples and the standards to a 96-well plate. We added 100 µL GO reagent to measure free 
glucose and 100 µL GO reagent with amyloglucosidase (1 µL per 1 mL GO reagent) to measure the total glucose 
content (free glucose plus glucose liberated from the glycogen). After 60 minutes incubation by 37 °C we stopped 
the reactions by adding 100 µL 12 N H2SO4 and measured the absorbance at 540 nm. We calculated the glycogen 
content by subtraction of the free glucose from the total glucose content.

Lactate. For the quantification of lactate, we used the Lactate Assay Kit (Biovision). We transferred 50 µL of the 
pre-diluted samples (1:50) to a 96 well plate and followed then the manufacturer’s instruction for fluorometric 
measurements.

Cholesterol. Measurements were performed as described in52.

Gc-MS measurements. Metabolites were extracted using 105 µL chloroform and 245 µL methanol. After 
incubation for 1 h at −20 °C we added 560 µL HPLC grade water twice. The samples were centrifuged for two 
minutes at high speed in a table top centrifuge at 4 °C and the aqueous phases were collected for the GC-MS 
measurements (in total about 1.3 mL).

For the metabolite analysis a gas chromatography – mass spectrometry (GC-MS) system (7200 GC-QTOF 
from Agilent) was used as described in53. The data were analyzed with the Mass Hunter Software (Agilent). For 
absolute quantifications, we used five different dilutions of the standard mix (resulting in effective metabolite 
concentrations: 1 µM, 5 µM, 10 µM, 15 µM and 20 µM; Fig. S3) and calculated for each metabolite a standard curve 
which we used to determine the amount of the respective metabolite in our samples.

network reconstruction. For the in silico reconstruction of Drosophila melanogaster growth and metab-
olism we focused on core metabolic pathways required to metabolize the HD ingredients, and used the cameo 
package for the Python programming language54. The Yeast iMM904 model from the BiGG data base32 and a 
previously published Drosophila model for hypoxia investigations30 served as starting points for our network 
reconstruction. First, we incorporated major metabolic pathways of the carbohydrate metabolism (including 
glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle and pyruvate metabolism), the lipid metabolism 
(with a focus on the glycerolipid metabolism), the energy liberating metabolic reactions (e.g. oxidative phos-
phorylation) and anaplerotic reactions. Subsequently, we successively integrated metabolic reactions necessary 
to metabolize the HD ingredients, such as amino acid metabolic pathways (including e.g. glycine, threonine, 
cysteine, and phenylalanine metabolism), pathways of vitamin synthesis (e.g. folate and riboflavin) and various 
pathways needed for the transport and synthesis of cofactors. For the initial version of FlySilico we only focused 
on three different compartments (extracellular, cellular and mitochondrial) and adapted the transport reactions 
accordingly. We manually curated all reactions by cross-validation with multiple resources (BioCyc - https://
biocyc.org/ 55, BRENDA - https://www.brenda-enzymes.org/ 56, ChEBI - http://www.ebi.ac.uk/chebi/init.do 57, 
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KEGG - http://www.genome.jp/kegg/ 58, PubChem - https://pubchem.ncbi.nlm.nih.gov/ 59, BiGG - http://bigg.
ucsd.edu/ 60, and FlyBase - http://flybase.org/ 61) and paid special attention on the biochemical pathways and 
the genetics of Drosophila melanogaster. We attached to each reaction a confidence score based on evidence of 
sequence, physiological, genetic or biochemical data (as previously suggested by e.g.62). Reactions required for 
the modeling, but without any evidence of correctness, received the lowest confidence scores. FlySilico version 
1.0 covers 293 metabolites and 363 reactions. Supplemental Table S1 summarizes all pathways, reactions and 
metabolites present in the model.

constraint-based modeling. After the reconstruction process, the coefficients of the mass-balanced reac-
tions form a mathematical representation as stoichiometric matrix S. The constraint-based modeling approach 
follows equation:

= ⋅ =vSdx
dt

0 (1)

with

α β≤ ≤0 (2)i i

where x is a vector with all metabolites, S is the stoichiometric matrix and v is a vector with all fluxes under 
steady state conditions. The lower (αi) and upper (βi) bounds to each flux vi impose additional constraints to the 
system. The null space of S includes any v that satisfies the solution under this steady state assumption with the 
given constraints. The model is solved by optimizing the system for a given objective function, i.e. the primary 
goal of an organism (such as biomass production for fast growing unicellular organisms as for example E. coli), 
using linear programming. A detailed explanation of constraint-based modeling, flux balance analysis and linear 
programming is provided e.g. in:63 or64. For our model solutions we compared solutions allowing loops as well 
as loopless65,66 variants (Fig. S7). The loopless solution reflects the biology better, and thus we used this method 
throughout the study unless otherwise noted.

flux variability analysis. Flux variability analysis (FVA67) is a computational method to identify the max-
imum and minimum fluxes of reactions from a given network while it preserves a certain network state (e.g. 
maximum biomass production rate). FVA solves two optimization problems for each reaction vi after solving a 
given objective function.
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0  is an optimal solution for the objective function, γ is a parameter which controls the optimality 
of the solution (suboptimal: γ≤ <0 1; optimal: γ = 1), c is the vector which represents the linear objective 
function.

calculation of biomass and uptake rates. In order to identify an appropriate biomass function, we esti-
mated the body composition of differently aged larvae by targeted absolute biochemical quantifications as well as 
GC-MS based metabolomics measurements. We reasoned that the main larval constituents are water, proteins, 
carbohydrates and storage lipids given that the latter two are the main storage forms fueling metamorphosis and 
that the larvae are filled up with the adipose-tissue like storage organ – called the fat body – which is the main 
storage site for storage lipids and glycogen. The water content could be easily measured by gravimetrics (see 
above) and on top of free protein, glucose, triglyceride and glycogen amounts, we also determined the levels of 
lactate and free glycerol by targeted biochemical assays (see above). Our GC-MS measurements further covered 
metabolites from the central carbon metabolism as well as almost all free amino acids.

Biomass functions usually cover each amino acid separately. Yet, our free protein measurements did not pro-
vide such fine-grained information. The GC-MS based metabolomics measurements resulted in the identifica-
tion of free amino acid amounts; yet three amino acids (arginine, glutamine and histidine) were missing in our 
measurements. In order to approximate the levels of the different amino acids, we followed a bioinformatics 
strategy with the reasoning that the amino acid fractions would relate to the respective amino acid frequency 
across the Drosophila proteome. Thus, we first calculated the frequency of each of the twenty classical amino 
acids in the complete proteome of Drosophila melanogaster (http://www.uniprot.org/uniprot/?query=pro-
teome:UP000000803). Figure S8 provides the calculated amino acid frequencies. We based the coefficients on the 
differences between the first and last time points investigated. Thus, for each measurement we calculated:

− = ∆m m m (4)h Metabolite h Metabolite Metabolite168 , 96 , ,

where ∆m Metabolite, i
 represents the weight difference of a metabolite i between 168 h and 96 h in gram, m h Metabolite168 , i

 
is the weight of the metabolite i at 168 h in gram, and m h Metabolite96 , i

 is the weight of the metabolite i at 96 h in gram. 
For the amino acids, we could now calculate the individual amino acid weights with the help of the calculated 
amino acid frequencies:
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= = ∗∆ ∆ˆm m m f (5)Metabolite AA Protein AA, ,i i i

where mAAi
 shall be equivalent to ∆m Metabolite, i

 and represents the weight of amino acid i in gram, ∆m Protein,  is the 
difference of weight of the protein in gram which was calculated based on equation Eq. 4, and fAAi which repre-
sents the frequency of amino acid i from Fig. S8. Metabolite weights from equations Eqs 4 and 5 enable the calcu-
lation of an assay-based coefficient for each metabolite for the biomass objective function:
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where xAssay Metabolite, i
 represents the coefficient of the metabolite based on assay data in mmol

g
, MMetabolitei

 is the 
molar mass of metabolite i in g

mmol
, ∆m dry,  is the larval dry weight difference from 96 h till 168 h in gram, and 

nMetabolitei
 is the amount of metabolite i in mmol.

The GC-MS analysis quantified free metabolite amounts. In order to calculate a GC-MS coefficient, we calcu-
lated the difference of metabolite amounts between 168 h and 96 h by the following equation:

= −∆n n n (7)Metabolite h Metabolite h Metabolite, 168 , 96 ,i i i

where ∆n Metabolite, i
 represents the difference of amount between 168 h and 96 h from metabolite i in mmol, 

n h Metabolite168 , i
 is the amount of the metabolite i at 168 h in mmol, and n h Metabolite96 , i

 is the amount of the metabolite 
i at 96 h in mmol. We used the resulting metabolite amounts from equation Eq. 7 to calculate a GC-MS coefficient 
with the equation:
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where xGCMS Metabolite, i
 as the GC-MS coefficient of the metabolite i in mmol

g
, ∆m dry,  is the difference of dry weight 

between 168 h and 96 h in gram, and nMetabolitei
 is the amount of metabolite i in mmol.

Through equation Eqs 6 and 8 the biomass function coefficient can be calculated for all metabolites with the 
following equation:

= +x x x (9)Metabolite Assay Metabolite GCMS Metabolite, ,i i i

where xMetabolitei
 is the biomass function coefficient of metabolite i, xAssay Metabolite, i

 as the assay-based coefficient of 
metabolite i, and xGCMS Metabolite, i

 as the GC-MS-based coefficient of metabolite i. All coefficients of Eq. 9 are in 
mmol

g
. Drosophila melanogaster is cholesterol auxotroph27,68. To simulate the cholesterol auxotrophy of Drosophila, 

we included cholesterol in the biomass function based on measurements of cholesterol levels from larvae reared 
on HD (Fig. S9). The biomass coefficient of cholesterol was calculated according to the equation:
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where xCholesterol is the biomass coefficient for cholesterol in mmol
g

, cCholesterol Protein,  is the cholesterol mass per protein 
mass in g

g Protein
, ∆m Protein,  is the difference of weight of protein between 168 h and 96 h in gram, MCholesterol is the molar 

mass of cholesterol in g
mmol

, ∆m dry,  is the difference of dry weight between 168 h and 96 h in gram. The mean value of the 
cholesterol mass per protein mass of all 3 time points (96 h, 132 h and 168 h) is ≈ .

µ
c 5 46Cholesterol Protein

ng
g Protein, .

Approximation of food intake. Given that the absolute quantification of the uptake of solid food by lar-
vae is difficult, and that the measurement of the absorption rate and organismic distribution for each nutrient is 
close to impossible, we used a theoretical approximation of the food intake as a starting point for our modeling 
experiments. First, we calculated the maximum volume of the mouth cavity by approximating a cylindrical shape 
and taking length and diameter measurements of the differently aged larvae into account. We calculated the oral 
cavity volume according to equation:

π= ∗ ∗V r h (11)mouth
2

where Vmouth is the volume of the oral cavity in mm3, π is the mathematical constant, r is the radius of the oral 
cavity in mm, and h is the height of the oral cavity in mm.

Because the larva grows over time, we estimated the diameter of the larva as the mean of the width of time 
points 96 h and 168 h and assumed that the diameter of the oral cavity is about half of the larva diameter (the 
radius of the oral cavity thus is = .r mm0 118 ). We took the height h of the oral cavity from a publication from 
Alpatov35. Here, the height of the oral cavity is the average of the mean length from larval stages II and III with a 
value of = .h mm0 25 . Thus, the resulting oral cavity volume according to equation Eq. 11 is vMouth = 0.011 mm2.
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We approximated the feeding rate using measures of the sclerite reactions per minute from69 =( )fFeed min
110 , 

with the assumptions that each sclerite reaction completely fills the oral cavity and that all food ingredients are 
homogeneously distributed. The dietary intake can thus be calculated using the following equation:

ρ= ∗ ∗m v f (12)Dietary Mouth Feed holidic

where mDietary is the dietary intake in g
h

, vMouth is the oral cavity volume in mm3, fFeed is the sclerite reactions per h, 
and ρholidicis the sum of the mass concentrations of the holdic diet ingredients in 

µ
g
L

. Our calculated dietary intake 
is = .m 0 064Dietary

g
h

.
Our calculation is of course an overestimation given that each sclerite reaction most likely does not fill the 

mouth volume completely and that the uptake from the gut is not 100% efficient. To account for this limitation, 
we introduced a correction factor χ based on our experimental data and simulations by an iterative process. In 
brief, we calculated all uptake rates with increasing values for the correction factor χ (from 0 to 0.20 in 0.001 
steps) and used the different uptake rates to calculate the corresponding growth rate. We selected for χ the value 
where the calculated growth rate fitted the experimentally determined growth rate best (Fig. S4). We determined 
the experimental growth rate based on the dry weight measurements during the three time points. We calculated 
the growth rate between the first and last time point as:

=
−
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t
,
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As a result we obtained the experimental growth rate = .µBIOMASS Exp h,
0 0882  and for χ = .0 122 the predicted 

growth rate = .µBIOMASS Pred h,
0 088 . Thus, the corrected dietary intake calculation is:

χ= ⁎ ⁎m m p (14)Dietary Metabolite Dietary Metabolite, i i

where mDietary Metabolite, i
 is the dietary intake of metabolite i in g

h
, mDietary is the dietary intake in g

h
, χ is the correc-

tion factor, and pMetabolitei
 is the proportion of each metabolite i in the holidic medium.

For the network modelling, all dietary internalizations have to be flux rates or uptake rates, which we calcu-
lated as follows:
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where vuptake i,  is the uptake rate of metabolite i in 
∗
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, mDietary Metabolite, i
 is the dietary intake of metabolite i in g

h
, 

MMetabolitei
 is the molar mass of metabolite i in g

mmol
, and ∆m dry,  is the difference of dry weight between 168 h and 

96 h in gram.

Summary statement. FlySilico, a flux balance analysis suitable metabolic network of Drosophila melano-
gaster is presented, and its use for the investigation of larval growth and metabolism is demonstrated.

Data availability
The supplementary material consists of the metabolic network reconstruction (Table S1), the raw data of all 
measurements (Table S2), the result of the flux variability analysis for the different diet simulations (Table S3) 
and the corresponding flux changes in relation to the standard HD (Table S4). Additionally, we added interactive 
versions of the metabolic network map (Interactive Supplementary Fig. 1) and the GAM/NGAM plot (Interactive 
Supplementary Fig. 2), which corresponds Fig. S6. Further, we provide all raw data, the custom python scripts 
used for the calculation of the weights of the biomass function and the uptake rates, the model comparison and 
the main scripts for the model reconstruction and analysis in a zip file for use with the Anaconda Project function 
(https://anaconda-project.readthedocs.io/en/latest/). Once unzipped, the folder contains all information to create 
an Anaconda Python environment with the required packages in the appropriate version to run our code and 
all necessary information to rerun or modify our analyses. A readme file within the folder should guide users 
through the procedure to get the environment operational. We additionally provide all scripts via GitLab: https://
gitlab.com/Beller-Lab/flysilico.
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