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RBV: Read balance validator, a 
tool for prioritising copy number 
variations in germline conditions
Whitney Whitford  1,2*, Klaus Lehnert1,2, Russell G. Snell1,2 & Jessie c. Jacobsen1,2

the popularisation and decreased cost of genome resequencing has resulted in an increased use in 
molecular diagnostics. While there are a number of established and high quality bioinfomatic tools 
for identifying small genetic variants including single nucleotide variants and indels, currently there 
is no established standard for the detection of copy number variants (cnVs) from sequence data. the 
requirement for cnV detection from high throughput sequencing has resulted in the development of 
a large number of software packages. these tools typically utilise the sequence data characteristics: 
read depth, split reads, read pairs, and assembly-based techniques. However, the additional source 
of information from read balance (defined as relative proportion of reads of each allele at each 
position) has been underutilised in the existing applications. Here we present Read Balance Validator 
(RBV), a bioinformatic tool that uses read balance for prioritisation and validation of putative cnVs. 
the software simultaneously interrogates nominated regions for the presence of deletions or 
multiplications, and can differentiate larger CNVs from diploid regions. Additionally, the utility of RBV 
to test for inheritance of cnVs is demonstrated in this report. RBV is a cnV validation and prioritisation 
bioinformatic tool for both genome and exome sequencing available as a python package from https://
github.com/whitneywhitford/RBV.

There are four main types of variation in the human genome: single nucleotide variants (SNVs), small-scale 
changes in genomic content in the form of short indels, structural variants, and aneuploidies. Structural variants 
consist of medium to large-scale changes to the genomic structure, and includes both balanced chromosomal 
rearrangements (such as inversions and translocations) and copy number variants (CNVs). CNVs are typically 
defined as deletions or multiplications of sections of the genome, resulting in changes of genomic content greater 
than 1 kb1. Initial efforts to map genetic variation on the whole genome scale indicated that SNVs constituted the 
majority of variation between individuals2. However, large scale collaborations mapping CNVs in the human 
genome found on average an individual harbours over 1,000 CNVs of 443 bp or greater3–6. Taken together, 
although there is a greater number of SNVs per individual (approximately 3.6 million or ~0.1% of the genome5), 
due to the greater average size of CNVs and indels, they are responsible for greater genomic variance between 
genomes (up to 48.8 Mb or ~1.5%6).

CNVs play an important role in gene expression with changes in genetic content larger than 1 Mb estimated 
to be responsible for 17.7% of the genetic impact on gene expression7. One would expect that the proportion of 
genetically controlled variation in gene expression attributable to CNVs would be higher if CNVs smaller than 
1 Mb were included in such analyses. CNVs are able to affect gene expression directly through copy number 
changes of genes and regulatory elements8, and indirectly through unmasking of recessive alleles9 and positional 
effects10. As such, there has been an increasing volume of research into the role of CNVs in disease. In particular, 
CNVs have been implicated in the aetiology of neuropsychiatric disorders including schizophrenia, intellectual 
disability, and autism spectrum disorder (as reviewed by Malhotra & Sebat, 201211). Therefore, chromosomal 
microarray (CMA) has become a first-tier clinical diagnostic test for patients with unexplained intellectual disa-
bility, autism spectrum disorder, or multiple congenital anomalies, with diagnostic yield of 15–20% (reviewed by 
Miller, et al.12). The use of high throughput sequencing (HTS) in the form of whole exome sequencing (WES) and 
whole genome sequencing (WGS) is increasing for diagnostic testing, both due to its decreasing cost and ability 
to investigate genetic variants without prior hypotheses. HTS based methods offer the potential of identifying 
SNVs, indels and CNVs (including those not detected by current diagnostic CMA thresholds13) in a single test.
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With the rapid implementation of HTS in molecular diagnostics and research, there has been a proliferation 
of  tools for variant identification. There are currently over 80 software packages designed to identify CNVs from 
WGS alone14. These tools predominantly rely on four characteristics of the sequence data: read depth, split reads, 
read pairs, and assembly-based techniques (reviewed by Zhao, et al.15). As yet underutilised, the allele balance of 
reads at a position contributes additional data that can also be exploited for CNV variant detection and validation. 
This ‘read balance’ is computed from relative read coverage of each allele at a given locus. The read balance can 
provide information regarding the copy number over the region in the form of the allele-specific copy number 
(ASCN). Positions in diploid regions of the genome are primarily invariant (homozygous) (as demonstrated in 
Fig. 1A). This is represented by a relative read distribution peak about 1. The heterozygous positions (SNVs) are 
represented by a normal distribution centred on 0.5, with the reads split evenly across the two alleles. A deleted 
(hemizygous or nullizygous) region should not contain any heterozygous positions; nullizygous regions by virtue 
of not containing genetic information for the aligned region, and hemizygous regions due to containing a single 
copy of the non-deleted allele, thus resulting in a distribution peak centred around 1, as depicted in Fig. 1B. A 
triplicated region as represented in Fig. 1C, however, is expected to have homozygous SNVs along with the hete-
rozygous SNVs represented by two normal distributions centred on 0.33 and 0.66, indicating that one third of the 
reads at a given locus include one allele, and two thirds of the reads include the other.

A number of bioinformatic tools have utilised ASCN for determining CNVs in cancer samples16–24. These 
techniques rely on sequence data from paired tumour and normal tissue samples, and therefore are not suitable 
for identifying germline CNVs. Alternatively, AS-GENSENG25 and ERDS26 incorporate read balance information 
into their algorithms along with read depth based data to discover CNVs. However, there is currently no inde-
pendent platform providing validation of CNVs using read balance, allowing for integration of this additional 
data source in established bioinformatic pipelines that use alternative CNV discovery tools. RBV utilises read 
balance data to validate CNVs identified by other software packages, allowing for prioritisation of CNVs in both 
research and molecular diagnostic settings.

implementation
RBV is a python package, which incorporates the read balance data from positions within the CNV of interest 
with randomly sampled windows across the genome to predict the authenticity of CNVs. The software extracts 
the read balance information from a variant call format (vcf) file, uses CNV coordinates from an interval list, and 
can be employed for both WGS and WES generated data. The analyses can be refined by restricting investigation 
to callable regions or outside of known gaps in the reference through the inclusion of either an interval list of 
callable regions, or an interval list of gaps in the reference genome provided by the user. The user can alter the 
specificity of RBV results through adjusting the parameters: quality and depth cut-offs at each position in the 
vcf, readbal cut-off for deletion analyses, and the number of randomly generated permutations for the positions 
and windows. RBV can incorporate data derived from popular variant callers (HaplotypeCaller27, SAMtools28, 
Freebayes29, and Platypus30), and all aligners. However, issues with read balance calculations may arise from 
non-uniquely aligned regions of the genome if the aligner of choice places these reads at more than one position 
in the genome, or regions with non-uniform alignment. We therefore recommend using aligners that randomly 
place reads to only one mappable location by default, such as BWA31, and removing regions with low mappability 
and low sequence complexity by including an intervals file such as that provided in the GATK resources bundle27.

RBV is freely available via https://github.com/whitneywhitford/RBV.

Results
The analysis performed by RBV validates two separate hypotheses: that the putative CNV is a deletion with the 
region being hemizygous or nullizygous, or that the putative CNV is multiplicated where the region is triploid or 
greater.

Figure 1. Distribution of relative reads for diploid, haploid, and triploid regions in whole genome sequence. 
(A) Expected distribution of all positions in a diploid genome. (B) Expected distribution of all positions in a 
hemizygous genome. (C) Expected distribution of all positions in a triploid genome.
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Deletion analyses. Deletions should represent areas of absence of heterozygosity (AOH), therefore the 
probability that a deletion exists (p-value) is calculated based on an empirical cumulative distribution function 
(eCDF). For this calculation, a large number of diploid windows (default 1,000) of the same number of callable 
base pairs as the CNV of interest are randomly generated from callable regions (if specified by the user) within 
the individual’s genome, and the number of heterozygous SNVs in each window is subsequently calculated. The 
empirical p-value is calculated using the eCDF (Eq. 1) for the resulting distribution, with the probability being 
the proportion of randomly generated windows containing the same number or fewer heterozygous SNVs for the 
CNV in question.
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where x1, …, xn represent the number of heterozygous SNVs within each randomly selected window in the eCDF 
equation where n is the number of randomly generated windows of the same size as the CNV, and t is the number 
of heterozygous SNVs within the CNV of interest.

Multiplication analyses. The multiplication hypothesis is interrogated using the two-sample Kolmogorov–
Smirnov (KS) test. For this analysis we only consider the most common allele at each heterozygous position, 
which gives the distribution demonstrated in Fig. 2A,B. The differences in the distribution of read balance for 
randomly generated diploid heterozygous SNVs and the heterozygous SNVs (default 10,000) in the putative CNV 
are compared using the two-sample KS test, represented in Fig. 2C.

performance. To analyse the performance of RBV, 25 high coverage whole genome alignments and their 
associated CNV calls >1 kb from Phase 3 of the 1000 Genomes Project32 were downloaded. In order to facilitate 
comparison, diploid regions were randomly generated covering the same number of callable positions27 for each 
deletion and the same number of heterozygous SNVs for each duplication. For the 31,791 CNVs (23,851 dele-
tions, and 7,940 duplications) analysed, RBV was able to identify statistically significant (P ≥ 0.05) CNVs with 
an overall sensitivity of 6.1% and 41.4% along with a specificity of 99.7% and 47.9%, for deletions and duplica-
tions, respectively (Tables 1 and 2). The ability of RBV to prioritise CNVs over the randomly generated regions is 
demonstrated in Fig. 3.

The comparison shows a separation between CNVs and random regions, with an enrichment of CNVs with 
low p-values. The enrichment is increasingly marked for CNVs of greater size or greater number of heterozy-
gous SNVs. Therefore, RBV has reduced sensitivity to detect smaller CNVs (<30 kb for deletions and <20 het-
erozygous SNVs for duplications) due to the reliance upon relatively infrequent heterozygous positions in the 
randomly generated windows for deletion analysis, and the increased power of a 2-sample KS test with a greater 
number of heterozygous positions in the CNV. These inherent biases are responsible for the poor overall sensitiv-
ity and specificity, and we recommend using RBV for prioritising deletions >30 kb (82.1% sensitivity and 95.9% 
specificity) and duplications with at least 20 heterozygous SNVs (81.6% sensitivity and 84.8% specificity).

In order to determine the performance of RBV based on the number of random windows sampled per dele-
tion (used to calculate the eCDF), a power analysis was performed using a subset of six of the 1000 Genomes 
Phase 3 individuals from different populations, consisting of 1,358 deletions in total. RBV was run using 100, 500, 
1000 (default), 5000 and 10000 random window permutations per deletion with analyses separated into six bin 
sizes (1–10 kb, 10–50 kb, 50–100 kb, 100–500 kb, 500 kb-1 Mb, and 1 Mb+). Sensitivity and specificity (P ≥ 0.05 
deletion vs. random diploid) was consistent for all bin sizes for random window permutations 500 and greater. 
The size of deletion had a far greater effect on the ability of RBV to sensitively and accurately identify deletions 
than random window permutations, where deletions 1–10 kb had a sensitivity of 0%, 10–50 kb had a sensitivity 

Figure 2. RBV data analysis curves. (A) Read balance of the most common allele from heterozygous positions 
in a diploid genome. (B) Read balance of the most common allele from heterozygous positions in a triploid 
genome. (C) CDF curve utilised in a 2-sample KS test, comparing distribution of read balance between 
randomly generated heterozygous SNVs throughout the reference diploid genome: a 100 kb diploid region, and 
a 100 kb triplicated region.
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of 13.2%, 50–100 kb had a sensitivity of 84%, and deletions >100 kb had a sensitivity of 100%. Full analyses are 
presented in the Supplementary Data.

Use cases. We established the ability of RBV to correctly identify CNVs in the context of causative mutations 
using two use cases. Firstly, our in-house CNV filtering and prioritisation pipeline (including RBV) was applied 

Size Total TP FN TN FP Sensitivity Specificity

>10 kb 3783 1459 2324 3703 80 0.3856727 0.978853

>20 kb 1914 1254 660 1846 68 0.6551724 0.964472

>30 kb 1326 1089 237 1271 55 0.821267 0.958522

>50 kb 738 643 95 702 36 0.8712737 0.95122

>100 kb 397 374 23 375 22 0.9420655 0.944584

>150 kb 169 162 7 161 8 0.9585799 0.952663

>200 kb 93 88 5 89 4 0.9462366 0.956989

>300 kb 55 54 1 52 3 0.9818182 0.945455

>400 kb 31 31 0 30 1 1 0.967742

>500 kb 20 20 0 20 0 1 1

>1 Mb 10 10 0 10 0 1 1

All 23851 1459 22392 23771 80 0.0611714 0.996646

Table 1. RBV performance analysis for deletions for 25 Phase 3 1000 Genomes Project individuals with CNV 
calls and high coverage whole genome sequence. SNV: single nucleotide variant, TP: true positive, FN: false 
negative, TN: true negative, FP: false positive.

Number of 
heterozygous SNVs Total TP FN TN FP Sensitivity Specificity

1–2 703 126 577 652 51 0.179232 0.927453

3–9 714 434 280 627 87 0.607843 0.878151

10–19 452 341 111 393 59 0.754425 0.869469

20–49 784 640 144 665 119 0.816327 0.848214

50–99 643 581 62 527 116 0.903577 0.819595

100–199 695 639 56 551 144 0.919424 0.792805

200–499 489 460 29 346 143 0.940695 0.707566

500+ 82 69 13 45 37 0.841463 0.548780

All 7940 3290 4650 3806 4134 0.414358 0.479345

Table 2. RBV performance analysis for duplications for 25 Phase 3 1000 Genomes Project individuals with 
CNV calls and high coverage whole genome sequence. SNV: single nucleotide variant, TP: true positive, FN: 
false negative, TN: true negative, FP: false positive.

Figure 3. Ability of RBV to prioritise authentic CNVs. Comparision between the results from 31,791 CNV 
from 25 Phase 3 1000 Genomes Project individuals39 and randomly generated diploid regions with the same  
number of callalble positions as each deletion, or number of heterozygous positions for each duplication.  
(A) Performance of RBV for 23,851 deletions. (B) Performance of RBV for 7,940 duplications.
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to WGS reads from two siblings who presented with recurrence of ataxia, deafness, developmental delay, rhab-
domyolysis, cardiomyopathy and hypothyroidism33. The pipeline identified a 34 kb deletion encompassing exons 
three to nine (NC_000022.10:g.20028959_20062955del33997) resulting in nullizygosity over this region in both 
siblings. Using default parameters and the GATK callable intervals file, RBV validated the presence of this CNV 
in both siblings when compared to other regions in the genome of the same size resulting in p-values of p = 0.043 
and p = 0.027, with no heterozygous SNVs present across the deleted region for both siblings.

Another use for RBV is to test the potential inheritance of CNVs. Using HTS our laboratory recently 
identified a causative heterozygous 19.6 Mb 2q37 terminal deletion (GRCh37 Chr2:233834098–253404903; 
NC_000002.11:g. 233834098_253404903del) in a child with ASD34. There were both WES and WGS data avail-
able for the affected child, and WES data for the parents. RBV was run with default parameters and the GATK 
callable intervals file, for all four sequence sources. RBV confirmed the deletion with p-value = 0.0 from variants 
called from both WES and WGS from the affected child (with 0 and 92 heterozygous SNVs out of a total 2,930 
and 58,396 variants called in the vcf file over the region, respectively). In comparison, the two parents had 284 and 
294 heterozygous SNVs in the exonic sequence in the same region (out of 3,089 and 3,154 total variants called), 
resulting in p-values of 0.898 and 0.936, respectively. Thus RBV provided evidence that the causative deletion was 
absent in the parents and is therefore de novo, confirmed by Sanger sequencing.

Discussion
As more research and diagnostic centres investigate the identification of CNVs through sequence data, there is increas-
ing need for the ability to prioritise clinically relevant variants called from CNV detection software platforms. Although 
a number of detection tools use read depth, split reads, read pairs, and assembly-based techniques, the utility of read 
balance in CNV analysis has so far been largely underutilised. Thus, RBV was developed to exploit this additional piece 
of sequence information to reinforce calls from CNV calling pipelines, allowing for prioritisation of variants in the 
identification of pathogenic CNVs when used in conjunction with functional annotations.

We compared the results of RBV from 31,791 CNVs and randomly generated diploid regions. From this we 
were able to display the ability of RBV to differentiate genuine deletions >30 kb and duplications with >20 het-
erozygous SNVs from diploid loci. Thus, this software has utility in prioritising putatively pathogenic deletions 
>30 kb and duplications with >20 heterozygous SNVs. However, the sensitivity and specificity of RBV decreases 
for smaller variants with fewer heterozygous SNVs.

One limitation of the analyses performed by RBV results from the tendency of CNV breakpoints to occur as a 
result of replication errors within fragile sites or other repetitive elements35–37. Due to the low sequence complex-
ity of such elements, these regions can be problematic for alignment and variant calling algorithms, resulting in 
low confidence SNV calls which are often excluded from callable intervals files. As such, if a callable intervals file 
is included, the search space for CNVs will be reduced, decreasing the ability of the software to sensitively identify 
true CNVs. Without the inclusion of a callable intervals file, variant callers will have a reduced accuracy in calling 
SNVs, which will subsequently result in a decreased ability of RBV to sensitively identify true duplications and 
potentially decrease the specificity for deletions. Thus, the propensity for CNV breakpoints to occur within repet-
itive regions is potentially partially responsible for RBVs performance bias for larger CNVs.

We were also able to demonstrate the execution of RBV using three clinical cases (two families), including 
successful identification of a 34 kb causative deletion from WGS, and the identification of a 19.6 Mb deletion from 
WGS and WES, along with confirmation of mode of inheritance.

conclusions
RBV is a software tool designed to assist in the rapidly expanding speciality of identifying clinically relevant 
CNVs through prioritisation.

The software includes utility for both multiplication and deletion analysis of nominated CNV sites from both 
WES and WGS data. Sample data for the operation of RBV is available via the GitHub repository.

ethics approval and consent to participate. The 1000 Genomes Project Phase 3 data was obtained 
directly from the The International Genome Sample Resource made available under the Fort Lauderdale 
Agreement38.

The genetic analysis and de-identified publication of variants for use cases was performed under the approval 
of the New Zealand Northern B Health and Disability Ethics Committee (12/NTB/59) in accordance with guide-
lines and regulations in the Ethical Guidelines for Observational Studies from the New Zealand National Ethics 
Advisory Committee. Parents provided written informed consent.

Availability and requirements. Project name: RBV. Project home page: https://github.com/whitneywhit-
ford/RBV. Operating system(s): Linux.Programming language: Python 2.7. Other requirements: SAMtools 1.3 or 
higher, tabix. License: GPL v3. Any restrictions to use by non-academics: None.

Data availability
The datasets analysed for the performance of RBV are available via request.
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