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A Bootstrap Method for Goodness 
of fit and Model Selection with a 
Single observed network
Sixing chen   & Jukka-pekka onnela*

network models are applied in numerous domains where data arise from systems of interactions 
among pairs of actors. Both statistical and mechanistic network models are increasingly capable 
of capturing various dependencies among these actors. Yet, these dependencies pose statistical 
challenges for analyzing such data, especially when the data set comprises only a single observation of 
one network, often leading to intractable likelihoods regardless of the modeling paradigm and limiting 
the application of existing statistical methods for networks. We explore a subsampling bootstrap 
procedure to serve as the basis for goodness of fit and model selection with a single observed network 
that circumvents the intractability of such likelihoods. Our approach is based on flexible resampling 
distributions formed from the single observed network, allowing for more nuanced and higher 
dimensional comparisons than point estimates of quantities of interest. We include worked examples 
for model selection, with simulation, and assessment of goodness of fit, with duplication-divergence 
model fits for yeast (S.cerevisiae) protein-protein interaction data from the literature. The proposed 
approach produces a flexible resampling distribution that can be based on any network statistics of 
one’s choosing and can be employed for both statistical and mechanistic network models.

Networks are used to represent data from systems composed of interactions among pairs of actors (represented 
by nodes)1–5. Often in such systems, these interactions (represented by edges) can depend on the state of the rest 
of the system, such as other edges or attributes of nodes. One prominent example of this is triadic closure in social 
networks, where two people are more likely to be friends should they share a mutual friend6. While innovations 
in network models are increasing the capability to account for various dependencies in the data, this rich level of 
interconnectedness poses a problem for statistical methods for networks.

In typical statistical settings, the premise is that the data is composed of a collection of independent obser-
vations. Typical methods derive efficiency gains and consistency from a large number of samples due to this 
independence. However, in the network context where the structure of the network is of primary interest, the 
edges and their placement are the outcome of interest, but there are often multiple layers of dependence. Thus, the 
premise of independent observations is not met and most statistical methods are not applicable.

To better understand the limitations, we inspect two prominent paradigms of network models. First, statisti-
cal models are probabilistic models that specify the likelihood of observing any given network7–9. One example 
of these models is the family of exponential random graph models (ERGMs)4, which uses observable network 
configurations (such as triangles and k-stars) as the natural sufficient statistics. Although popular in practice, 
ERGMs can be difficult to fit and to sample from, and they may not scale well to large networks10. Estimation of 
ERGMs is done using maximum pseudolikelihood estimation (MPLE)11 or Markov chain Monte Carlo maxi-
mum likelihood estimation (MCMC-MLE)12,13. Pseudolikelihood methods for inference with ERGMs can lead 
to biased results due to the ignored dependence14, while inference for MCMC-MLE proceeds via simulation 
from estimated model13 and is thus entirely model based. Second, mechanistic models are composed of gener-
ative mechanisms that prescribe the growth and change of a network15–20. While they are easy to sample from, a 
mechanistic model allows for numerous paths that can be taken in the state space to produce any one observed 
network, making the likelihood (of all but the most trivial models) intractable. As a result, performing statistical 
procedures is difficult for such models and there is little existing work in the literature for doing so.

In situations where likelihood based methods are not available, one often resorts to resampling methods, such 
as bootstrap, jackknife, and permutation tests21–23. Although the different resampling methods operate differently, 
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they all serve to create new data sets from a single observed data set that mimic the behavior of the original one 
to serve as a basis for statistical procedures. This is an attractive option for networks, especially if there is only a 
single observed network, such as the Internet or the World Wide Web. Having multiple resampled networks that 
resemble, in some ways, the original observed network allows one to bypass the problem of unwieldy or intracta-
ble likelihoods. Even in the best case of the likelihood having a simple functional form, the normalizing constants 
of ERGMs are generally unobtainable even for a network of modest size, since they require summing over a com-
putationally infeasible number of possible network realizations. For example, in a network of m edges, one may 
need to consider all the possible m! orders of adding the edges since the mechanisms of growth may depend on 
the existing state of the network.

In this paper, we explore using a resampling procedure as a basis for statistical procedures for a single observed 
network. While there is some existing research on resampling methods in network settings, our approach is dis-
tinct in many ways. First, there are methods for assessing the goodness of fit for a fitted model24,25. These methods 
generally work by drawing network realizations from the fitted model, and then assessing fit by comparing the 
value of a set of network statistics for the observed network to the distribution of these statistics in the generated 
draws. This resampling scheme is akin to that of the parametric bootstrap. Note that this can be done for the point 
estimate of individual statistics or those of multiple statistics simultaneously, e.g., functionals of the degree distri-
bution. However, the resamples in these methods are only representative of the fitted model and not necessarily 
of the observed network, and comparisons are made based only on point estimates. Second, there are methods 
for a setting where there are multiple independent networks observed for maximum pseudolikelihood estima-
tion (MPLE)26. This is similar to the typical statistical setting with multiple independent observations and is not 
applicable to the setting with a single observed network. Third, there are resampling methods based on subgraphs 
of subsamples of nodes in the observed network27–31. Ohara et al.27, Bhattacharyya et al.28, Thompson et al.30, and 
Gel et al.31 are aimed at estimation and uncertainty quantification of network centrality, distribution of subgraphs, 
and functionals of the degree distribution, while Ali et al.29 is a subgraph-based method for network comparisons.

Our procedure makes use of the bootstrap subsampling scheme from Bhattacharyya et al.28. Importantly, our 
method addresses goodness of fit and model selection rather than estimation, and is based on the entire resam-
pling distribution (rather than point estimates) of any set of statistics obtained from the sampled subgraphs. The 
flexible choice of network statistics allows an investigator to focus the criterion for model fit based on scientific 
interest. The full resampling distribution also contains more information than aggregated subgraph counts and 
point estimates for comparison with candidate models. The procedure also allows for natural uncertainty quanti-
fication regardless of the algorithm used for selecting the model, is agnostic to the modeling paradigm (statistical 
or mechanistic), and can accommodate any model one can sample from. The scaling of the procedure depends on 
the statistics chosen and the number of subsamples taken, where the latter scales linearly.

The rest of the paper is organized as the following. In Materials and Methods, we explain the proposed boot-
strap subsampling procedure, highlight important considerations for some of the steps, and elaborate on potential 
use cases. In Results, some of the proposed use cases (model selection and goodness of fit) are demonstrated with 
simulated and empirical data. Lastly, we conclude with Discussion.

Materials and Methods
Subsampling scheme and resampling distributions. Each subsample of the bootstrap subsampling 
scheme of Bhattacharyya et al.28 consists of a uniform node-wise subsample of all the nodes in the observed 
network Go (with node set Vo and edge set Eo) and their induced subgraph, i.e., the nodes in the subsample and 
all edges between these nodes. For each subsample, one may compute any set of statistics to form a resampling 
distribution of these statistics. Although the subsamples will not have the same properties as the full network or a 
network of the same size as the subsample drawn from the true data generating mechanism32, they will still retain 
features of the true data generating mechanism since the subsampling does not change any between-edge or 
between-node dependence that influenced the formation of the network, despite adding a degree of “missingness” 
by removing elements correlated with those in the subsample. In comparison, should one generate draws from 
a particular fitted model to form a resampling distribution, the between-edge and between-node dependencies 
will be those specified by the fitted model; in this case, the generated networks will only be representative of the 
true data generating mechanism if the fitted model is the true model, which is a strong assumption and usually 
not verifiable in practice.

Because each subsample only consists of a subset of Vo and Eo, each subsample will be missing elements that 
are correlated with those that are included in the subsample. As a result, this must be taken into account when 
any comparisons are made with a null/candidate model Mc. One may be tempted to compare subsamples of Go 
with draws from Mc of the same size as the subsamples. This should however be avoided since there is a degree of 
“missingness” in the subsamples of Go that are not present in such draws from Mc. Even if Mc was the true model, 
this disparity could make the two behave differently. Instead, one should generate draws from Mc of the same size 
as Go and then apply the same subsampling scheme to these draws. This ensures that both the subsamples of Go and 
those of Mc have the same amount of “missingness” and are comparable. Should Mc be representative of the true 
data generating mechanism, then the behavior of the two subsamples their corresponding resampling distributions 
of computed statistics should be similar. The representativeness of the subsamples from Go, as well as their com-
parability with the subsamples from Mc, form the basis of our procedure. Even though we only consider uniform 
subsampling, the subsampling method is flexible and can be chosen to be representative of sampling in practice 
or for statistical and computational ease. The proposed bootstrap subsampling procedure is summarized in Fig. 1.

In contrast to existing methods that also use draws from the fitted model to assess goodness of fit, this 
approach can lead to a richer comparison. For existing methods, after choosing the statistics for assessing good-
ness of fit, the given statistics are computed for Go and for a large number of draws from Mc. The point estimate 
of these statistics for Go are then placed within the distribution of said statistics of the draws from Mc. Goodness 
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of fit is assessed by the location of the point estimate from Go within the draws from Mc. This can be done vis-
ually or by quantifying the proportion of the draws with values of the statistics deemed more extreme. With 
our approach, the two resampling distributions can be compared in many ways, such as their location, spread, 
and shape. In addition, one can quantify the distance between the two distributions using, for example, the 
Kolmogorov-Smirnov (KS) statistic (defined for discrete distributions also33) or the Kullback-Leibler divergence 
to order the fit of different candidate models.

One point of interest and emphasis is that the subsamples from Go are all from a single network, while the sub-
samples from Mc are subsamples of independent network realizations drawn from Mc instead of subsamples from 
a single network drawn from Mc. This scheme is proposed due to potential instability of single generated net-
works and the corresponding subsamples, since there can be a great deal of instability in the generated networks 
depending on the model, including the seed network used to grow networks specified by mechanistic models. In 
addition, the disparity between the two types of subsamples may depend on the proportion of the nodes in each 
subsample. Both of these points are important to the performance of the procedure and are further examined in 
the next two sections.

Stability under sampling. When sampling from the candidate model, one needs to take care to ensure that 
the draws from Mc behave like the observed network even if the candidate model is the true model or an accurate 
model, and in turn, the subsamples of these draws behave like the subsamples of the observed network. In the 
worst case, such draws can look nothing like the observed network despite using a good candidate model, e.g., the 
draws could have highly varying degree distributions that look nothing like that of the observed network. This 
issue can be more prominently demonstrated in the context of some mechanistic network models.

Networks generated from mechanistic models are often grown from a small (relative to the final size of the 
network) seed network according to the model’s generative mechanism until some stopping condition is reached, 
e.g., attaining a requisite number of nodes. There is research showing that the original seed network has no 
influence on the degree distribution in the limit, i.e., for a large number of nodes, for certain types of mechanistic 
network models34,35. While some data sets, such as online social networks, may be sufficiently large to reach this 
asymptotic regime, others, such as protein-protein interaction networks, may not be. Thus, when generating 
draws from candidate models for analysis of smaller networks, the original seed network can potentially have 
a great deal of influence. The seed network maybe as simple as a single node, or a complete graph of only three 
nodes, up to bigger complete graphs, or something more elaborate with more than one component. We briefly 
examine the effect of the seed network on the stability of the degree distribution of networks generated from the 
Erdös-Rènyi and duplication-divergence models, which are frequently used to model protein-protein interaction 
networks.

Erdös-rènyi model. The Erdös-Rènyi (ER) model36 is a simple but rather unique model in that it can be framed 
as both a mechanistic and a statistical model. In the ER model, the number of nodes n is fixed, and there are two 

Figure 1. Schematic of the steps of the proposed bootstrap subsampling procedure for a single observed 
network Go: 1. Obtain subgraphs induced by Bo subsamples of the nodes of Go. 2. Compute the chosen network 
statistics S for each induced subgraph. 3. Form resampling distribution Fo of S from … S So o

B1 o. 4. Draw networks 
of same size as Go from network model Mc. 5. For each generated network GM

1 … GM
B M, obtain one subgraph 

induced by one subsample of the nodes of each network. 6. Compute S for each induced subgraph ( … S SM M
B1 M). 

7. Form resampling distribution Fc of S from … S SM M
B1 M. 8. Perform statistical procedure by comparing Fo and Fc.
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variants of the model that determine how the edges are placed. In the first variant, the G(n,p) model, each of the 
C(n, 2), n choose 2, possible edges are independent and are included in the graph with probability p, so the num-
ber of edges in the graph is binomial. In the other variant, the G(n,m) model, the number of edges in the graph m 
is also fixed. In this case, the random graph has a uniform distribution over all C(C(n, 2),m) possible graphs with 
n nodes and m edges.

The first variant can be easily framed as a mechanistic model. The network generation starts with a seed net-
work of a single node. Then at each stage, a new node is added, and an edge between the new node and each exist-
ing node is added with probability p. This is done until there are n nodes in the network. Rather than starting with 
a seed network of a single node, networks can be generated according to the generative mechanism of the G(n,p) 
model initialized with a different seed network. Here, we generated G(n = 1000, p = 0.1) networks according to 
these rules, with complete graphs of 5, 8, 10, 20, 50, 100 nodes as the seed networks. We generated 50 networks 
of each size of the seed to evaluate the influence of the seed network on the stability of the degree distribution of 
the fully grown network.

The degree distribution of the 50 generated graphs at each size of the seed network are plotted in Fig. 2. While 
the shape of the degree distribution understandably changes as the complete graph used as the seed network gets 
bigger, the size of the seed network seems to have little influence on the stability of the degree distribution. All 50 
networks, for each size of the seed network, have very similar degree distributions. The width of the “band” of the 
50 distributions stacked on top of one another also looks to be mostly unchanging. This seems to indicate that the 
variability in the degree distribution is largely unaffected by the size of the seed network.

Duplication-divergence models. Duplication-divergence models are a popular class of models used for 
protein-protein interaction networks. Some examples include the duplication-mutation-complementation 

Figure 2. The degree distribution of 50 generated graphs from the G(n = 1000, p = 0.1) model with seeds of 5, 
8, 10, 20, 50, 100 nodes, from left to right, then top to bottom, as described in text. This and the next figure show 
the differing influence the seed can have on variability.
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(DMC)18 and duplication-mutation-random mutation models (DMR)17,37. Given a seed network, both DMC and 
DMR models grow the network according to their respective generative mechanisms until the requisite number 
of nodes, n, is reached. In both the DMC and DMR models, a new node is first added at the beginning of each 
step in network generation. An existing node is chosen uniformly at random for duplication, and an edge is then 
added between the new node and each neighbor of the chosen node. After this, the two models diverge. For 
DMC, for each neighbor of the chosen node, one of the edge between the chosen node and the neighbor or the 
edge between the new node and the neighbor is randomly chosen and then removed with probability qmod. The 
step is concluded by adding an edge between the chosen node and the new node with probability qcon. For DMR, 
each edge connected to the new node is removed independently with probability qdel. The step concludes by add-
ing an edge between the new node and any existing node at the start of step t with probability qnew/n(t), where n(t) 
is the number of nodes in the network at the start of step t.

To assess the stability of the degree distribution, we generated 50 network realizations of 1000, 3000, 5000, 
7000, 10000 nodes from both models with the seed network set as a complete graph with 5, 8, 10, 20, 50, 100 
nodes. The parameters of the DMC model were set as qmod = 0.2 and qcon = 0.1, while those of the DMR model 
were qdel = 0.2 and qnew = 0.1. The degree distribution for the 50 generated DMC networks for a subset of all 
combinations of the size of the seed network and the total number of nodes are plotted in Fig. 3; those for all 
combinations for both DMC and DMR models can be found in the Supplementary Information (Figs S1 and 
S2). A general trend in the plots is that the total number of nodes in the network has little to no influence on the 
stability of the degree distribution, while the size of the seed network has a great deal of influence, with stability 
increasing sharply with the size of the seed network, up to 50. For smaller seed networks (5 nodes), the shape and 
spread of the degree distributions vary wildly even for larger networks. For a modest increase in the size of the 

Figure 3. Degree distribution of 50 generated graphs of 1000, 5000, 10000 nodes from the DMC model, left to 
right, with seeds of 5, 10, 20, 50 nodes, top to bottom. This and the previous figure show the differing influence 
the seed can have on variability.
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seed network (10 nodes), the shape and the spread of the degree distributions become more similar. Finally, for 
larger seed networks (20 or 50), the shape and spread of the degree distributions are quite uniform, and the width 
of the “band” of the 50 degree distributions stacked on top of one another also decreases. Clearly, the variability 
of the degree distribution depends greatly on the size of the seed network.

One important difference between the ER and DMC/DMR models is the dependence on exisiting edges on the 
formation of new ones. The instability in the degree distribution of networks generated from DMC/DMR models 
with small seed networks can be attributed to this dependence. While these two examples show the influence the 
seed network can potentially have in generating networks of modest size with mechanistic models, it does beg 
the question of how one selects a meaningful seed that leads to stable sampling while mimicking the behavior of 
the observed network in a principled way. Hypothetically, if the observed network is indeed generated from an 
ER model and assuming the seed network and the parameter values are well chosen, then the generated networks 
should mostly appear similar to the observed network due to the low variability regardless of the size of the seed. 
On the other hand, should the observed network come from a DMC/DMR model and assuming well chosen 
parameter values, as well as an appropriate but small seed network, then the generated networks are unlikely to 
appear similar to the observed network due to the high variability with small seeds as demonstrated.

portion of nodes to include in subsamples. The portion of nodes included in each subsample should not 
be so small such that no characteristics of the observed network or candidate models are retained, but also not so 
big such that the subsamples contain little variability. In one extreme, each subsample consists of just one node 
so that there is no structure within the induced subgraph, and in the other extreme, each subsample is simply the 
entire network. While the latter is of little concern when taking subsamples from independent draws from can-
didate models, it leaves no variability in the subsamples from a single observed network such that any resulting 
resampling distribution would simply be a point mass. We investigate what is an appropriate portion of nodes to 
include in each subsample through a detailed example with one particular model. The details can be found in the 
Supplementary Information.

In our example, we define the criterion for performance in terms of the expectation of the KS statistic (smaller 
values are better) between F1, the resampling distribution from the subsamples of a single network drawn from 
candidate model Mc, and Fc, the resampling distribution from subsamples of several independent networks 
drawn from Mc, where each subsample comes from a different independent draw. This quantity is a measure of 
how closely Fo, the resampling distribution from the subsamples of the observed network, matches Fc when the 
observed network is truly generated by Mc. If the KS statistic is small, discrepency between Fo and Fc will be small 
if the model is correct. Additionally, this quantity being small implies that there is not much difference between 
using F1 or Fc for comparison with Fo, thus we would be better off in electing for the stability of Fc. Note that the 
computation time required for Fc is greater than that for F1. Although not completely generalizable, our example 
suggests to keep the portion of nodes in the subsample low (<30% in this example) as long as enough features of 
the models can be retained.

proposed use cases. There are a variety of statistical procedures that can take advantage of this sampling 
scheme, with a few of them detailed below. Before proposing the general framework for a few typical statistical 
procedures via the bootstrap subsampling procedure, we define the following notation for the rest of the section. 
The observed network will be referred to as Go with Bo subsamples and corresponding induced subgraphs 

… G Go o
B(1) ( )o . The draws from candidate model Mc will be referred to as GM

1 … GM
B M with corresponding subsam-

ple induced subgraphs … G GM M
B(1) ( )M . Given a set of network statistics S chosen for model selection or assessing 

goodness of fit, the set computed from … G Go o
B(1) ( )o  will be referred to as … S So o

B(1) ( )o , while those computed from 
… G GM M

B(1) ( )M  will be referred to as … S SM M
B(1) ( )M . Note that Bo and BM need not be equal.

Model selection. Suppose the goal is to select between candidate models M1 … Mc for Go. Given a set of statistics 
S to base the model selection on, one needs to compute … S SM M

B(1) ( )
i i

M  from … G GM M
B(1) ( )

i i

M  for i = 1 … c. These col-
lections of statistics along with the model indices of each draw form the training data and are the basis for the 
model selection procedure. The selection of S is flexible and should be chosen to prioritize the aspects of the net-
work where similarity to the observed network is most paramount. The training data can be used to train any 
learning algorithm for prediction of the model index. Examples include random forest, support vector machine, 
and ensemble learning algorithms like the Super Learner38–40. The trained algorithm is evaluated at each of 

… S So o
B(1) ( )o  to give selected model M̂1 … M̂Bo

, with majority rule deciding the final selected model.

Algorithm 1. Steps for the model selection with the bootstrap subsampling procedure.

https://doi.org/10.1038/s41598-019-53166-6


7Scientific RepoRtS |         (2019) 9:16674  | https://doi.org/10.1038/s41598-019-53166-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

One distinct advantage of the model selection through this bootstrap subsampling procedure is that it gives 
inherent evidence about uncertainty or confidence in the selected model as well as other candidate models. The 
proportion of … G Go o

B(1) ( )o  that are assigned to each model can be seen as evidence in favor of each candidate 
model, while the proportion of subsamples assigned the model that forms the majority can be seen as confidence 
in the selected model. With algorithms like random forest, where the decision is based on plurality rule, this 
aspect of our approach does not add anything new. But with others, such as support vector machine or the Super 
Learner that are not based on plurality rule, this approach offers a way to quantify uncertainty without the need 
to alter the learning algorithm itself.

Goodness of fit. To assess the goodness of fit for candidate models M1 … Mc, the procedure is similar to that of 
model selection. For a set of statistics S for assessing goodness of fit, one computes … S So o

B(1) ( )o  from … G Go o
B(1) ( )o  

and … S SM M
B(1) ( )

i i

M  from … G GM M
B(1) ( )

i i

M  for i = 1 … c. Rather than training a learning algorithm based on … S SM M
B(1) ( )

i i

M  
as in model selection, … S So o

B(1) ( )o  are directly compared against … S SM M
B(1) ( )

i i

M  for each i to assess fit. As mentioned 
above, this comparison between the distribution of … S So o

B(1) ( )o  and any set of … S SM M
B(1) ( )

i i

M  can be done in terms 
of location, spread, shape, or other aspects of the distribution.

Assessment based on any one of these aspects may however lead to conflicting results, i.e., different models 
having the best fit depending on which aspect the comparison is based on, and it might be desirable to make 
comparisons through a more holistic measure. One solution to this is to compute a distance measure, such as the 
KS statistic or the Kullback-Leibler divergence, between … S So o

B(1) ( )o  and … S SM M
B(1) ( )

i i

M  to quantify the fit of model 
i. This gives a single statistic that takes the entire distribution into account to quantify and to categorically order 
the fit of each candidate model. The KS test statistic and Kullback-Leibler divergence are typically computed in 
one dimension and can be used to compare the fit for each statistic individually as is. Instead, should one wish to 
make a comparison based on all statistics S at the same time, one can look to use generalizations of these 
statistics41–43.

Comparison of multiple networks. If multiple networks are observed instead of a single network, and the goal is 
to assess how similar they are, then one can do so by building a resampling distribution from multiple networks. 
For the case of two observed networks with a set of statistics S for comparison and observed networks Go1 and Go2, 
one can compute … S So o

B
1
(1)

1
( )o1  and … S So o

B
2
(1)

2
( )o2  from subsamples … G Go o

B
1
(1)

1
( )o1  and … G Go o

B
2
(1)

2
( )o2 , respectively. The 

comparison of the two is based on … S So o
B

1
(1)

1
( )o1  and … S So o

B
2
(1)

2
( )o2 , and one can proceed essentially the same way as 

with goodness of fit by comparing different aspects of the two distributions, but with … S So o
B

1
(1)

1
( )o1  and … S So o

B
2

(1)
2

( )o2  
in place of … S So o

B(1) ( )o  and … S SM M
B(1) ( )

i i

M . Should there be more than two observed networks for comparison, then 
the distance measure statistics can once again be used to quantify all pairwise relative similarities between the 
observed networks.

Results
Simulation and empirical data. We use simulation studies as well as data from an empirical network to 
illustrate the use of the bootstrap subsampling procedure in some of the scenarios described in the previous sec-
tion. The simulated data and all code can be found under the Supplementary Information, while the protein-pro-
tein interaction data can be downloaded from the database of interacting proteins (DIP)44 website directly.

Model selection. The simulation studies conducted for model selection consider instances of a variation on the 
afformentioned G(n,m) model we introduced40. This variation generates random graphs with n nodes and m 
edges just as the G(n,m) model with each edge being added one at a time. At each step in network generation, 
a pair of unconnected nodes are selected at random, and the probability for adding an edge between the two is 
determined based on the number of triangles it would close; the edge is then added with the given probability. 
This is repeated until there are m edges in the network. If the probability for adding an edge is fixed, then this is 
the G(n,m) model. Instead, we start with a base probability p0 to add the edge. Should the edge close at least one 
triangle, the probability increases by p1. Should multiple triangles be closed by the edge, then the probability fur-
ther increases by pΔ for each additional triangle closed.

In the simulation, we select between two instances of this model, both having p0 = 0.3 and p1 = 0.1. The differ-
ence comes in pΔ, with pΔ = 0 for model 1, while pΔ varies over 0.05, 0.03, 0.01, 0.005 for model 2. For a given 
choice of n and m, as pΔ decreases and gets closer to 0, the difference between the two models becomes more 
difficult to detect. The generated networks from both models consist of 100 nodes with edge count varying over 

Algorithm 2. Steps for assessing goodness of fit with the bootstrap subsampling procedure.
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100, 500, 1000, 2000. This gives a total of 20 comparisons between the models, one for each combination of values 
of pΔ and m. For a given set of parameter values, the difference between the two models should be easier to detect 
as edge count increases, since the difference due to pΔ has more opportunities to manifest itself. The training data 
consists of a single subsample of 80 nodes for each of 10000 draws from each model ( … G GM M

(1) (10000)
i i

), where i = 1, 
2. The test data consists of 1000 draws from each model (Go), while the model selection is based on 100 subsam-
ples of 80 nodes from each draw ( … G Go o

(1) (100)). Although 100 nodes seems few, it is already large enough for a 
network to give rise to a very large resampling distribution. Additionally, despite the simplicity of the model we 
are using, 100 nodes is large enough for the likelihood function to be intractable.

The model selection is through the Super Learner38–40, with support vector machine (ν-classification with 
ν = 0.5, radial kernel), random forest (Ntree = 1000, min terminal node size = 1), and k-nearest neighbors (k = 10) 
as candidate algorithms, and average clustering coefficient, triangle count, and the three quartiles of the degree 
distribution as predictors. Note the parameters for the candidate algorithms are in parentheses. These statistics 
were chosen as predictors since the difference in pΔ directly affects formation of triangles, while the other statis-
tics are influenced strongly by triangles. For each of the 100 Go

b( )o  for a particular testing network Go, the Super 
Learner will give a score between 0 and 1 for predicting the model class of Go

b( )o , with score < 0.5 assigned model 
1 and score >0.5 assigned model 2. The selected model is the model assigned to Go

b( )o s more frequently.
The results of the simulation are summarized in Fig. 4 and Table 1. Table 1 contains the proportion of test 

networks whose model was correctly classified by the Super Learner at each combination of pΔ and edge count. 
Unsurprisingly, the proportion decreases as pΔ decreases for a fixed edge count, and increases as edge count 
increases for a fixed pΔ. Figure 4 shows the histogram of the confidence for the correct model. When model 1 is 
the true model of the test network, this is the proportion of the 100 subsamples that were assigned model 1, and 
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Figure 4. Histograms of the confidence score (proportion of subsamples assigned the correct model here rather 
than the majority) for pΔ from 0.05, 0.03, 0.01, 0.005, from left to right, and edge count from 100, 500, 1000, 
2000, from top to bottom, with the red vertical lines representing the median. This shows that our proposed 
approach for model selection behaves as one would intuitively expect, i.e., greater differences between the 
models are more frequently classified correctly than smaller differences.

pΔ = 0.05 0.03 0.01 0.005

Edge count = 100 0.5015 0.5005 0.4834 0.5100

500 0.6092 0.5670 0.5178 0.5076

1000 0.9203 0.8202 0.6249 0.5786

2000 0.9890 0.9740 0.8343 0.6810

Table 1. Proportion of the test networks correctly classified at each combination of pΔ and edge count.
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vice versa. When the proportion of correctly classified models is around 0.5, i.e., as good as a random guess, the 
confidence is symmetric and centered close to 0.5. When the proportion is higher than 0.5, the distribution of 
the confidence is shifted to the right, meaning that the two models are easier to tell apart. In addition, the more 
right skewed the histograms, the more confidence in the correct model. The red vertical line indicates the median, 
which also moves to the right as the proportion increases and as the confidence becomes more right skewed. This 
behavior indicates that the confidence for the selected model from the bootstrap subsampling procedure quanti-
fies well the degree of uncertainty in the selected model. Random forest feature importance of all five predictors 
can be found in the Supplementary Information (Fig. S3) to see the shifting role of the predictors in the different 
scenarios.

Goodness of fit. To display our method for assessment of goodness of fit, we examine the yeast (S.cerevisiae) 
protein-protein interaction network data from DIP44. This data set has been much examined in the literature, 
including using network models. There are two particular publications45,46 that fit different duplication divergence 
models to two different previous versions of the yeast data set, with differing seed networks. Here we apply our 
method to compare the fit of the two different models on the most recent version of the data.

Both papers use the same duplication divergence model17,37, which we described as DMR earlier. However, the 
papers used different parameter values and different seed networks. The fit from Hormozdiari et al.45 has param-
eter values p = 0.365 and r = 0.12, and the seed network contains 50 nodes. The seed network was constructed by 
highly connecting cliques, complete graphs where an edge exists between every pair of nodes, of 7 nodes and 10 
nodes, then connecting additional nodes to the cliques. To highly connect the cliques, each possible edge between 
nodes in different cliques (70 such edges) was added with probability 0.67. Then, another 33 nodes were attached 
to randomly chosen nodes from the two cliques. At each step of the network generation, if a singleton (a node not 
connected to any other node) was generated, it was immediately removed in their model. Note that the details for 
obtaining the seed network from Hormozdiari et al.45 were somewhat incomplete, so this is our interpretation of 
the description of their seed network.

Figure 5. The resampling distribution of clustering coefficient (panel a), triangle count (panel b), and degree 
assortativity (panel c) from independent draws from the two model fits (blue for Hormozdiari et al.45 and red 
is for Schweiger et al.46) as well as the PPI network (black). In addition, there are two resampling distributions 
from a single draw from each of the two model fits (green for Hormozdiari et al.45 and orange is for Schweiger 
et al.46). This figure gives a visual representation of the additional information provided by the goodness of 
fit approach as well as difference from comparing point estimates with distribution of the statistics from full 
networks as seen in Fig. 6.

Figure 6. The distribution of clustering coefficient (panel a), triangle count (panel b), and degree assortativity 
(panel c) from independent full network draws from the two model fits (blue for Hormozdiari et al.45 and red is 
for Schweiger et al.46). The corresponding point estimates from the full PPI network are the vertical black lines.
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On the other hand, the fit from Schweiger et al.46 has parameter values p = 0.3 and r = 1.05. The authors use a 
smaller seed network of 40 nodes, generated with an inverse geometric model. To generate this seed network, a 
set of coordinates {x1 … x40} in Rd is generated for each node. Then, each pair of nodes with distance xi − xj greater 
than some threshold R is connected with an edge. Each dimension of the coordinates is independently gener-
ated from the standard normal distribution N(0, 1). In their fit, the seed network uses d = 2 and R = 1.5. Unlike 
Hormozdiari et al.45, Schweiger et al.46 does not remove singletons as they are generated.

Both papers assessed the fit of their model by comparing certain aspects of the generated network to those 
of the yeast PPI network. In Hormozdiari et al.45, model fit was assess via k-hop reachability, the number of dis-
tinct nodes reachable in ≤k edges, the distribution of particular subraphs, such as triangles and stars, as well as 
some measures of centrality. Schweiger et al.46 assess fit with the distribution of bicliques, i.e., subgraphs of two 
disjoint sets of nodes where every possible edge between the two sets exists. Here, we assess the fit of both models 
via our method with the average local clustering coefficient16, triangle count, and the degree assortativity47. The 
local clustering coefficient of a particular node is a measure of to what extent its neighbors resemble a clique. 
Mathematically, this is computed as the number of edges between a node’s neighbors divided by the maximum 
possible number of such edges. We use the average of the local clustering coefficient over all nodes in the network 
as a meassure of local clustering that is also attributable to the network as a whole. We also consider the number 
of triangle subgraphs that appear in the network. Unlike Hormozdiari et al.45, which counts the total number 
of various subgraphs together, the count of triangles alone is a strictly global measure of clustering. Lastly, the 
degree assortativity of a network is a measure of how similar are the degrees of nodes connected by an edge. It is 
defined as the Pearson correlation of the degrees of nodes connected by an edge, so positively assorted networks 
have more edges between nodes of similar degrees, while negatively assorted networks have more edges between 
nodes of dissimilar degrees.

For the analysis, we consider the largest connected component (LCC) of the PPI network just as in 
Hormozdiari et al.45. The full network from the current version of the data contains 5176 nodes and 22977 edges, 
while the LCC contains 5106 (98.6%) nodes and 22935 (99.8%) edges. Networks drawn from each model contain 
the same number of nodes as the LCC, starting from their respective seed networks described above. Subsamples 
from the PPI network as well as networks drawn from each model contain 1550 nodes, roughly corresponding to 
30%. This was the largest portion considered in our study of portion of nodes subsampled above.

The results of the data analysis are summarized in Fig. 5, where it is clear that the ordering of the fit of both 
models differs based on the network statistic of comparison. In accordance with earlier notation, for each statistic, 
we refer to the resampling distribution of the model of Hormozdiari et al.45 as Fc

h and that of Schweiger et al.46 as 
Fc

s, while that of the PPI network is referred to as Fo.
For clustering coefficient (Fig. 5a), both models fit equally poorly, as neither Fc

h nor Fc
s have any overlap with 

Fo. The KS statistic between Fo and each of Fc
h and Fc

s are both 1, indicating very poor fit. For triangle count 
(Fig. 5b), the model of Schweiger et al.46 seems to fit better as Fc

s’s spread has a much bigger overlap with Fo. The 
KS statistic between Fo and Fc

s (0.6778) is also much smaller than that between Fo and Fc
h (0.9018). Lastly, for 

degree assortativity (Fig. 5c), the model of Hormozdiari et al.45 fits much better as the spread of Fc
h overlaps with 

that of Fo, and most of Fc
h’s spread is negative just as Fo. On the other hand, Fc

s is entirely positive and has little 
overlap with Fo. The KS statistic tells the same story, with 0.4373 for Hormozdiari et al.45 and 0.9782 for Schweiger 
et al.46.

In, Fig. 6, we plot the distribution of the same statistics from full network realizations drawn from the two 
models, as well as the point estimate from the full PPI network. We use Lc

h and Lc
s as the full network analogs to 

Fc
h and Fc

s, respectively, and So to denote the point estimate for the full PPI network. For clustering coefficient, 
Lc

h and Lc
s look very similar, so this comparison would not lead to a different conclusion. For triangle count, Lc

s 
visually appears somewhat closer to So than Lc

h. The spread of Lc
s also contains So, albeit barely. However, Lc

s is 
also much more variable than Lc

h. In fact, Lc
s’s spread reaches farther than that of Lc

h on both ends. Based on Lc
h, 

Lc
s and So, it is not obvious which model fits better, whereas our method gives a clear numerical ordering between 

the two models. For degree assortativity, the entirety of Lc
h is closer to So than Lc

s, so this comparison would not 
lead to a different conclusion just as clustering coefficient. Finally, since our method provides a joint distribution 
of the three statistics from each model as well as the PPI network, we are able to quantify overall fit that takes all 
three statistics into account jointly via a distance between the joint distributions (such as the multidimensional 
KS statistic as discussed earlier). This example demonstrates that considering the full resampling distributions, 
rather than point estimates as existing methods do, results in a more nuanced comparison of network models 
with empirical data.

Additionally, in Fig. 5, we plot the subsamples from two individual networks drawn from each model against 
the subsamples from independent networks drawn from each model. For each statistic, the spread and location 
of the two types of subsamples are similar, although triangle count shows a little more deviation than the other 
two since it is a sum rather than a mean. This is likely due to the rather large seeds (50 and 40 nodes) both models 
use as well as the rather small portion of nodes in each subsample (~30%), reflecting our observations in earlier 
sections.

Discussion
Network models are able to model increasingly complex dependencies that arise in network data. Yet this very 
dependency poses a statistical challenge, especially in the case of a single observed network. We propose a boot-
strap subsampling procedure as a basis for statistical procedures in this setting that is based on a flexible resam-
pling distribution built from the single observed network and demonstrate the procedure in both simulation and 
empirical test settings.
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Given any network statistic of interest, its resampling distribution from the observed network can be com-
pared against its analog from a null/candidate model based on any attribute of the distributions, such as location, 
spread, shape, measures of mean, and through pairwise distances. In comparison, existing methods in this setting 
typically rely on the point estimate from the observed network, which leads to a more limited comparison. As 
seen in our empirical example, this additional layer of information can sometimes lead to a different conclusion 
than existing methods. In addition, the distance between the resampling distributions serves as an overall meas-
ure for comparison and provides an ordering of different network models.

The flexibility of our approach is not limited to what one can do with the resampling distributions, but also 
extends to the type of subsampling used to generate them. Although here we used simple random samples of 
the nodes of the network, other schemes are possible. In fact, any method of subsampling is valid as long as it is 
applied to both the observed and model generated data. Thus, it can be tailored to the needs of the investigator, 
including statistical or computational considerations. The method of subsampling can be also used as a sensitivity 
analysis to see whether the results of the analysis remain unchanged under different methods of subsampling. 
This consideration for different methods of subsampling motivates the most immediate step for future work as it 
begs the question whether they can lead to performance gains. Perhaps certain types of subsampling schemes can 
outperform others given the method of sampling used to obtain the observed data.
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