
1Scientific RepoRtS |         (2019) 9:15883  | https://doi.org/10.1038/s41598-019-52419-8

www.nature.com/scientificreports

Multi-symplectic integrator of the 
generalized KdV-type equation 
based on the variational principle
Yi Wei1*, Xing-Qiu Zhang1, Zhu-Yan Shao1, Jian-Qiang Gao1 & Xiao-feng Yang2

the variational principle is used to construct a multi-symplectic structure of the generalized KdV-type 
equation. Accordingly, the local energy conservation law, the local momentum conservation law, and 
the cartan form of the generalized KdV-type equation are given. An explicit multi-symplectic scheme 
for the generalized KdV equation based on the fourier pseudo-spectral method and the symplectic 
euler scheme is constructed. through a numerical examination, the explicit multi-symplectic fourier 
pseudo-spectral scheme for the generalized KdV equation not only preserve the discrete global energy 
conservation law and the global momentum conservation law with high accuracy, but show long-time 
numerical stability as well.

In this paper, we aim to study the generalized KdV-type equation in the form

+ + = .u f u u g u( ) ( ( )) 0, (1 1)t x x xx

where f and g are smooth functions.
When f(u) = αuλ and g(ux) = δux, Eq. (1.1) reduces to the generalized KdV equation

α δ+ + = .λu u u u 0, (1 2)t x xxx

where α,δ, and λ are arbitrary constants.
Setting λ = 1, Eq. (1.2) reduces to the KdV equation1,2

α δ+ + = . .u uu u 0 (1 3)t x xxx

Setting λ = 2, Eq. (1.2) reduces to the mKdV equation1,2

α δ+ + = . .u u u u 0 (1 4)t x xxx
2

The KdV equation is originally used to describe long waves propagating in a channel. The KdV equation can 
also describes the propagation of plasma waves in a dispersive medium2,3. The KdV equation and the mKdV 
equation are most popular soliton equations which have been extensively studied2,4–11, because these two equa-
tions possess many interesting properties of mechanism and geometry12. Based on the homogeneous balance of 
undetermined coefficients method (HBUCM)13,14, Yang et al.13 proposed the definition and a multi-symplectic 
structure of the generalized KdV-type equation. Obviously, the KdV equation, the mKdV equation and the gen-
eralized KdV equation are special cases of the generalized KdV-type equation.

To understand the mechanism of complex physical phenomena, we should obtain solutions of the general-
ized KdV-type equation. There are some methods to obtain exact solutions, such as the first integral method15, 
the (G′/G)-expansion method9, the homogeneous balance method16, the modified simple equation method17, 
simplified Hirota’s method18, and so on. However, the generalized KdV-type equation is a nonlinear partial dif-
ferential equation (NLPDE), it is difficult to obtain the exact solutions or there is no exact solution. In these cases, 
it is natural to resort to the numerical methods13. A large amount of numerical methods have been applied on 
the KdV equation and the mKdV equation in the last few years, including quintic B-Spline basis functions19, 
finite difference scheme20, symplectic method12, multi-symplectic Preissmann box scheme6, multi-symplectic 
box schemes21, and so on.
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Many physical properties of a system are closely related to the geometric structure of the equation22. This 
naturally requires that numerical methods can preserve exactly geometric structure during the simulation. 
Multi-symplectic method possesses the stability and effectiveness, and can preserve the multi-symplectic struc-
ture of the Hamiltonian system14,23. In the present paper, a multi-symplectic structure of the generalized KdV-type 
equation is given by the variational principle. To obtain a multi-symplectic structure of the generalized KdV-type 
equation based on variational principle, we need to cast Eq. (1.1) into a system of equations. Therefore, it will be 
helpful to give a detailed derivation of a multi-symplectic structure for the generalized KdV-type equation since 
this derivation will provide some guiding principles in finding multi-symplectic structures for other NLPDEs.

We also consider a multi-symplectic Fourier pseudo-spectral discretization for Eq. (1.2) and demonstrate its 
convergence by simulating the evolution of the soliton. The remainder of this paper is organized as follows. In 
section 2, a multi-symplectic structure of the generalized KdV-type equation is derived based on the variational 
principle. An explicit multi-symplectic Fourier pseudo-spectral scheme for the generalized KdV equation is given 
in section 3. In section 4, the solitary wave behaviors of the generalized KdV equation are simulated. In section 5, 
some conclusions are given.

Multi-Symplectic Structure of the Generalized Kdv-type equation Based on the 
Variational principle
In this section, a multi-symplectic structure of the generalized KdV-type equation is given by the variational 
principle. The covariant configuration space for Eq. (1.1) is denoted by X × U, where X = (x, t) represents the 
space of independent variables and U = (φ, u, v, ω, σ) represents the space of dependent variables. The internal 
variables φ, u, v, ω, and σ are defined to construct a multi-symplectic structure of the generalized KdV-type equa-
tion. The first order prolongation of X × U is defined to be U(1) = X × U × U1, where U1 = (φ, u, v, ω, σ, φx, ux, vx, 
ωx, σx, φt, ut, vt, ωt, σt) represents the space consisting of the first order partial derivatives. Let ς: X → U be a 
smooth function and we suppose ς ∈ H2[X] × H2[X], where H2[X] is the second order Sobolev space defined on X. 
Then, its first prolongation is denoted by ς φ ω σ φ ω σ φ ω σ= u v u v u vpr ( , , , , , , , , , , , , , , )x x x x x t t t t t

1 . The 
Lagrangian density for Eq. (1.1) is

ς ς= ∧ .L L dx dt(pr ( )) (pr ( )) , (2 1)1 1

where

∫ς ω φ σ φ ω σ= − − − + + + − . .∬L f u d u u u u g v dv v(pr ( )) 2 ( ) 2 2 ( ) 2 (2 2)t x x
1 2

Corresponding to the Lagrangian density (2.2), the action functional is defined by

∫ς ς= .S L( ) (pr ( )), (2 3)M

1

where ς ∈ H2[M] × H2[M] and M is an open set in X.
Let V be a vector field on X × U with the form

ξ η τ φ ω σ
φ

ϕ φ ω σ

φ ω σ ρ φ ω σ
ω

γ φ ω σ
σ

=
∂
∂

+
∂
∂

+
∂

∂
+

∂
∂

+ϑ
∂
∂

+
∂

∂
+

∂
∂

.
.

V x t
t

x t
x

x t u v x t u v
u

x t u v
v

x t u v x t u v

( , ) ( , ) ( , , , , , , ) ( , , , , , , )

( , , , , , , ) ( , , , , , , ) ( , , , , , , )
(2 4)

The flow exp(βV) of the vector field V is a one-parameter transformation group of X × U. The map ς: M → U 
and a family of maps ς →

∼


M U:  depend on the parameter β. Now, the variation of the action functional (2.1) is 
calculated as follows:

∫

∫

∫
∫

δ
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d
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d
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f u d u u u u

g v dv v dx dt

Adx dt B

( )

(pr ( ))

2 ( ) 2

2 ( ) 2

, (2 5)

M

M
t x

x

M

0

0

1

0

2

where

∫ξ η τ ω ϕ φ σ ω

σ ρ φ γ

= + + + + − + − − − −

+ ϑ − + − + − .

A E F I G u f u du

g v u u v

( ) ( ) ( ) ( 2 2 ( ) )

(2 ( ) 2 ) ( ) (2 2 ), (2 6)

t x t x t x t x

x x
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∫ ξ η τ ω ϕ σ= − + − + + + .∂
B Edx Fdt Idx Gdt dt udx dt( ( ) ( ) ( ) (2 )), (2 7)M

∫
∫

ωφ σ

ω φ σ

= − = + = −

= + + − + . .

∬
∬

E f u d u g v dv F u I u

G f u d u u u g v dv v

2 ( ) 2 ( ) , 2 , ,

2 ( ) 2 ( ) 2 (2 8)

t t

t

2 2

2

If ξ, η, τ, φ, ϑ, ρ, and γ have compact support on M, then B = 0. In this case, with the requirement of δS = 0 and 
from Eq. (2.5), the variation ξ yields the local energy conservation law

+ = .E F 0, (2 9)t x

and the variation η yields the local momentum conservation law

+ = .I G 0, (2 10)t x

where E, F, I, and G are same as to Eq. (2.8).
For a conservative L, i.e., one that does not depend on x and t explicitly, Eqs (2.9) and (2.10) become the local 

energy conservation law and the local momentum conservation law, respectively5.
The variations τ, φ, ϑ, ρ, and γ yield the Euler-Lagrange equation

∫
ω

φ σ ω

σ
φ

− =

− − = +

= −
=
= . .

u

f u du

g v
u

u v

0,

2 2 ( ) ,

0 2 2 ( ),
,

2 2 (2 11)

t x

t x

x

x

If the condition that ξ, η, τ, σ, θ, ϑ, and ς having compact support on M is not imposed, then from the bound-
ary integral B, the Cartan form can be defined as

∫
Θ ω φ σ φ

ω σ

= + ∧ + ∧

+ − − − ∧
.∬( )

d du dt ud dx

g v dv f u d u u v dx dt

( 2 )

2 ( ) 2 ( ) 2 ,
(2 12)

L

2

which satisfies (denote the interior product and pull back mapping as ⌋ and ()*)

∫ ς Θ= | . .∂

⁎B V(pr ) pr _ (2 13)M
L

1 1

The multi-symplectic form of the generalized KdV-type equation is defined to be

Θ Θ= . .d (2 14)L L

Remark 1 Equation (2.11) is equivalent to a multi-symplectic structure of generalized KdV-type Eq. (1.1) as 
follows:

+ = ∇ .M K z zz S( ), (2 15)zt x5 5

where
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M K z u
v

0 1 0 0 0
1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,

0 0 0 1 0
0 0 0 0 2
0 0 0 0 0
1 0 0 0 0
0 2 0 0 0

, ,5 5

and Hamiltonian function ∫ω σ= + − + .∬zS u v g v dv f u d u( ) 2 2 ( ) 2 ( ) 2

Remark 2. The multi-symplectic structure (2.15) is identical to the results by using the HBUCM13. Moreover, the 
Cartan form of the generalized KdV-type equation can be obtained by the variational principle.

Remark 3. Obviously, a multi-symplectic structure of the generalized KdV Eq. (1.2) is
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,
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, ,4 4

and Hamiltonian function δ ω= + +α

λ λ+ +

λ+

zS v u( ) u2
( 3 2)

22

2 .
According to the multi-symplectic theory presented by Bridges24–27, the multi-symplectic conservation law 

in the wedge product form, the local energy conservation law and the local momentum conservation law for the 
generalized KdV Eq. (1.2) are as follows:

θ κ+ = + = + = .E F G I0, 0, 0, (2 18)t x t x x t

where

θ φ κ φ ω δ= ∧ = − ∧ − ∧d du d d du dv, 2 ,

α
λ λ

δ φ ω δ α
λ λ

δ ω φ=
+ +

− = + =
+ +

+ + + = − .
λ λ+ +

E u v F vu G u v u u I u2
3 2

, 2 , 2
( 3 2)

,t t t

1

2
2

2

2
2 2

explicit Multi-Symplectic fourier pseudo-Spectral Method for the Generalized Kdv 
equation
In order to derive the algorithms conveniently, we introduce some notations: xi = xL + ih, tj = jτ (i = 0, 1,…, N − 1; 
j = 0,1, …), where = =−h x x

N
L
N

R L  and τ are spatial and temporal step lengths, the indexes i and j denote the 
discrete space and time dimensions. Denote ui

j as the approximate value of u(xi, tj). As we know, the first-order 
differential operator ∂x yields the Fourier spectral differentiation matrix D. Here, D is an N×N anti-symmetry 
matrix with elements (N is an even number)

µ µ
=
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 ≠
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D

x x r s

r s
( )

1
2

( 1) cot
2

, ,

0, , (3 1)
r s

r s r s

,

where r = 1,2, …, N and s = 1, 2,…, N represent column and row of the matrix D, and µ = π
L

2 . For more details, 
one can consult refs. 11,28 and references therein.
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1

and discretizing the multi-symplectic structure of the generalized KdV Eq. (2.17) with the Fourier pseudo-spectral 
method in the space domain, the discrete form of the generalized KdV Eq. (1.2) can be obtained as follows:

ω

Φ ω
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2 2 ,
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1

Theorem 1. The Fourier pseudo-spectral semi-discretization (3.3) has N semi-discrete multi-symplectic conser-
vation laws
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∑
χ

ζ+ = =
.=

−
Dd

dt
i N( ) 0, ( 1, 2, , ),

(3 4)
i

k

N

i k i k
0

1

, ,

where χ ζ ϕ ω ρ= ∧ = ∧ =z M z z K z zd d d d u v, , [ , , , , ] ,i i i i i i i i i i i i
1
2

1
2

T  index i represent i th equation and is from 
1 to N.

Proof. Equation (3.3) can be re-written as a compact form

∑+ = ∇ .
.=

−
M z K D zd

dt
Sz( ) ( )

(3 5)
i

k

N

i k k iz
0

1

,

The variational equation associated with Eq. (3.5) is

∑+ = .
.=

−
M K D z z zd

dt
d d S dz ( ) ( )

(3 6)zzi
k

N

i k k i i
0

1

,

Taking the wedge product with zd i on both sides of Eq. (3.6) and noticing

∧ = .z z zd S d( ) 0, (3 7)zzi i i

thus, we show the N semi-discrete multi-symplectic conservation laws.
Because D is anti-symmetry and ζ ζ=i k k i, , , summing Eq. (3.6) over the spatial index yields

∑ χ =
.=

−d
dt

0,
(3 8)j

N

j
0

1

which implies conservation of the total symplecticity over time. Thus, it is natural to integrate with respect to time 
by using a symplectic integrator13,29.

Discretizing Eq. (3.3) with respect to the time domain by the symplectic Euler scheme yields

∑δ δ+ + = ∇
.
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M z M z K D z zS( ) ( ),

(3 9)zt i
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where δ +
t  and δ −

t  are the forward and backward difference operators, respectively:
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j i
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j1 1

and +M  and −M  are the matrices splitting for the symplectic structure matrix M,

= + = − . .+ − + −M M M M M, (3 11)T

The matrix splitting of M is not unique13,29. Here, taking +M  as an upper triangle matrix

= − =
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0 0 0 0
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(3 12)
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an efficient stable explicit scheme for the generalized KdV Eq. (1.2) is obtained as follows:
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Eliminating the auxiliary variables and re-writing the equations, a compact form is obtained as follows:

τ
δ α






− 




+ + = = − .λ
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D Du u u u u i N1
2

( ) ( ) ( ) 0, ( 1, , 1)
(314)
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1 1
3

where i is spatial index and D3 = D · D · D.
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Theorem 2. The discrete scheme (3.13) has N full-discrete multi-symplectic conservation laws

∑
χ χ

ζ
τ
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+ = =
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−
D i N( ) 0, ( 1, 2, , ),

(3 15)
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where χ ζ= ∧ = ∧+
+z M z z K zd d d d, ,i

j
i
j

i
j

k
j

i
j

k
j1

2
1 1

2
 index i representation i th equation.

Proof From theorem 1 and Eqs (3.6) and (3.13) can be re-written as a compact form
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1 1
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The variational equation associated with Eq. (3.16) is

∑τ τ
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+
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M z z M z z K D z z zd d d d d S d( ) ( )

(3 17)zz
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1 1
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,

Taking the wedge product with zd i
j on both sides of Eq. (3.17) and noticing

∧ = . .z z zd S d( ) 0 (3 18)zzi
j

i
j

i
j

then, the N full-discrete multi-symplectic conservation laws are verified13,29.

numerical experiment
In this section, we conduct a typical numerical experiment for the scheme (3.14) to verify the theoretical conclu-
sions, including the accuracy, the ability to preserve the local energy conservation law and the local momentum 
conservation law of the generalized KdV Eq. (1.2) for long-time integration.

Applying the Riccati-Bernoulli sub-ODE method30 to the generalized KdV Eq. (1.2), has an exact solution as 
follows:

δ λ λ
αλ

ξ ξ δ
λ

=





+ + 














= −
.

λ
u A s A x A t( 3 2)

2
ech

2
, ,

(3 19)

2
2

1

2

where A is an arbitrary constant.
Inserting the parameters λ α δ= = =2 , 1, 1 and =A 2 into Eq. (1.2), we obtain

+ + = .u u u u 0, (3 20)t x xxx
2

which has the exact traveling wave solution (set λ α δ= = =2 , 1, 1 and A = 2 in Eq. (3.19))

=





+ 


 −











.
.

u x t x t( , ) (4 3 2 )
2

Sech 2
2

( )
(3 21)

2

1
2

The space interval is = −x x[ , ] [ 20, 40]L R  with the periodic boundary condition

− = + .u x t u x t( 20, ) ( 40, ), (3 22)

and the initial condition

=





+ 














.
.

u x x( , 0) (4 3 2 )
2

Sech 2
2 (3 23)

2

1
2

We fix the space step = .h 0 2 and the time step τ = × −1 10 4 for the scheme (3.14). Based on the 
multi-symplectic theory of Bridges24–27, the global energy E(t) and the global momentum I(t) of the generalized 
KdV Eq. (3.20) with the periodic boundary condition (3.22) and the initial condition (3.23) are written as

∫ ∫=




 +
−






= − .

.−

+

−
E t u u dx I t u dx( ) 2

4 3 2
, ( )

(3 24)
x

20

40 2 2
2

20

40 2

Accordingly, Ej and Ij, which denote the discrete global energy and the global momentum on the jth time level, 
are written as
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N
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1

1
2 2

1
2

1

1
2

The errors of the discrete global energy conservation law Error E and the global momentum conservation law 
Error I on the jth time level are defined as follows:

= − = − .E E E I I IError , Error , (3 26)j j0 0

where E0 and I 0 are the initial value of the discrete global energy and the global momentum.
Now we define the error as follows:

τ= − .
.≤ ≤ − ∞u x j uError max ( , )

(3 27)i N
i i

j

0 1

Applying the scheme (3.14) to simulate the generalized KdV Eq. (3.20) with the periodic boundary condition 
(3.22) and the initial conditions (3.23) up to t = 20, three-dimensional waveform figure of numerical solutions 
(Fig. 1a (t = 1) and Fig. 1b (t = 20)), two-dimensional waveform figure of numerical solutions (Fig. 2a (t = 1) 
and Fig. 2b (t = 20)), three-dimensional error figure (Fig. 3a), two-dimensional error figure (Fig. 3b), the global 
energy error figure (Fig. 4a) and the global momentum error figure (Fig. 4b) are obtained as follows:

Figure  1 shows that waveform of numerical solutions does not change with time by applying the 
multi-symplectic Fourier pseudo-spectral method to Eq. (3.20). It indicates that the basic geometric properties of 
Eq. (3.20) can be well maintained by the numerical soliton solutions. From Fig. 2a,b, u decreases gradually and 
tends to zero with → ∞x , which is consistent with the exact solution (3.21), and the numerical solutions nearly 
overlap the exact solution, which implies high accuracy of the multi-symplectic Fourier pseudo-spectral scheme. 
From the Fig. 3a,b, it is shown that the errors between the exact solution and the numerical solution are up to 
10−9, and the errors are mainly from the boundary conditions. From Fig. 4a,b, the multi-symplectic Fourier 
pseudo-spectral method to the generalized KdV equation can well maintain two important geometric properties 

Figure 1. Three-dimensional waveform of numerical solution: (a) the numerical solution with time ≤ ≤t0 1, 
(b) the numerical solution with time ≤ ≤t0 20.

Figure 2. Two-dimensional waveform of numerical solution and exact solution: (a) The exact solution and the 
numerical solution with time t = 1, (b) The exact solutions and the numerical solutions with time t = 20.
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of the system, which are the global energy conservation law and the global momentum conservation law. 
Obviously, when we take 10−5 time steps, the multi-symplectic Fourier pseudo-spectral method to the generalized 
KdV equation can preserve the discrete global energy conservation law and global momentum conservation law 
quite well, which implies long-time numerical stability of the multi-symplectic pseudo-spectral method.

conclusions
The generalized KdV-type equation, which can degenerate to the mKdV equation and the generalized KdV 
equation, is given. The variational principle is successfully used to establish a multi-symplectic structure for the 
KdV-type equation. Based on the variational principle, we also obtain the multi-symplectic structure, local energy 
conservation law and local momentum conservation law of the generalized KdV-type equation, which are iden-
tical to the results by using the HBUCM6,13. An explicit multi-symplectic scheme for the generalized KdV equa-
tion based on the Fourier pseudo-spectral method and the symplectic Euler scheme are constructed. Through a 
numerical examination, the explicit multi-symplectic Fourier pseudo-spectral scheme for the generalized KdV 
equation not only preserve the discrete global energy conservation law and the global momentum conservation 
law with high accuracy, but show long-time numerical stability as well.

The performance of variational principle is found to be simple and efficient. Moreover, similar to the process 
of the generalized KdV-type equation, multi-symplectic structures of some NLPDEs can be obtained.
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