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Athena: Automated tuning 
of k-mer based Genomic error 
correction Algorithms using 
Language Models
Mustafa Abdallah1,4, Ashraf Mahgoub1,4, Hany Ahmed2 & Somali chaterji3*

the performance of most error-correction (ec) algorithms that operate on genomics reads is dependent 
on the proper choice of its configuration parameters, such as the value of k in k-mer based techniques. 
In this work, we target the problem of finding the best values of these configuration parameters 
to optimize error correction and consequently improve genome assembly. We perform this in an 
adaptive manner, adapted to different datasets and to EC tools, due to the observation that different 
configuration parameters are optimal for different datasets, i.e., from different platforms and species, 
and vary with the EC algorithm being applied. We use language modeling techniques from the Natural 
Language Processing (NLP) domain in our algorithmic suite, Athena, to automatically tune the 
performance-sensitive configuration parameters. Through the use of N-Gram and Recurrent neural 
Network (RNN) language modeling, we validate the intuition that the EC performance can be computed 
quantitatively and efficiently using the “perplexity” metric, repurposed from NLP. After training 
the language model, we show that the perplexity metric calculated from a sample of the test (or 
production) data has a strong negative correlation with the quality of error correction of erroneous NGS 
reads. Therefore, we use the perplexity metric to guide a hill climbing-based search, converging toward 
the best configuration parameter value. Our approach is suitable for both de novo and comparative 
sequencing (resequencing), eliminating the need for a reference genome to serve as the ground truth. 
We find that Athena can automatically find the optimal value of k with a very high accuracy for 7 real 
datasets and using 3 different k-mer based EC algorithms, Lighter, Blue, and Racer. The inverse relation 
between the perplexity metric and alignment rate exists under all our tested conditions—for real and 
synthetic datasets, for all kinds of sequencing errors (insertion, deletion, and substitution), and for high 
and low error rates. The absolute value of that correlation is at least 73%. In our experiments, the best 
value of k found by Athena achieves an alignment rate within 0.53% of the oracle best value of k found 
through brute force searching (i.e., scanning through the entire range of k values). Athena’s selected 
value of k lies within the top-3 best k values using N-Gram models and the top-5 best k values using 
RNN models With best parameter selection by Athena, the assembly quality (NG50) is improved by a 
Geometric Mean of 4.72X across the 7 real datasets.

Rapid advances in next-generation sequencing (NGS) technologies, with the resulting drops in sequencing costs, 
offer unprecedented opportunities to characterize genomes across the tree-of-life. While NGS techniques allow 
for rapid parallel sequencing, they are more error-prone than Sanger reads and generate different error profiles, 
e.g., substitutions, insertions, and deletions. The genome analysis workflow needs to be carefully orchestrated so 
errors in reads are not magnified downstream. Consequently, multiple error-correction (EC) techniques have 
been developed for improved performance for applications ranging from de novo variant calling to differential 
expression, iterative k-mer selection for improved genome assembly1 and for long-read error correction2,3.
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Dataset Exhaustive Search With Athena (RNN) With Athena (N-gram)

Lighter

Selected k
Alignment 
Rate (%)

EC Gain 
(%) Selected k

Alignment 
Rate (%)

EC Gain 
(%) Selected k

Alignment 
Rate(%)

EC 
Gain 
(%)

D1 k = 17 98.95% 96.30% Same as Exhaustive Search Same as Exhaustive Search

D2 k = 15 61.42% 73.80% k = 17 61.15% 80.10% Same as RNN

D3 k = 15 80.44% 86.78% k = 17 80.39% 95.34% Same as Exhaustive Search

D4 k = 17 93.95% 89.87% Same as Exhaustive Search Same as Exhaustive Search

D5 k = 17 92.15% 81.70% k = 25 92.09% 83.80% Same as Exhaustive Search

D6 k = 25 86.16% NA k = 17 85.63% NA Same as RNN

D7 k = 15 40.53% 37.58% Same as Exhaustive Search k = 17 40.24% 7.70%

Blue

D1 k = 20 99.53% 99% k = 25 99.29% 98.60% Same as Exhaustive Search

D2 k = 20 57.44% 4.61% Same as Exhaustive Search Same as Exhaustive Search

D3 k = 20 84.17% 99.20% Same as Exhaustive Search Same as Exhaustive Search

D4 k = 20 95.31% 98.50% Same as Exhaustive Search Same as Exhaustive Search

D5 k = 20 92.33% 88.90% Same as Exhaustive Search Same as Exhaustive Search

D6 k = 30 86.18% NA Same as Exhaustive Search k = 25 86.07% NA

D7 k = 25 17.19% 3.57% k = 30 16.96% 1.47% Same as Exhaustive Search

RACER

D1 GL = 4.7M 99.26% 84.80% Same as Exhaustive Search Same as Exhaustive Search

D2 GL = 4.7M 81.15% 92.90% Same as Exhaustive Search Same as Exhaustive Search

D3 GL = 3.7M 84.11% 88.27% Same as Exhaustive Search Same as Exhaustive Search

D4 GL = 4.2M 95.33% 97% Same as Exhaustive Search Same as Exhaustive Search

D5 GL = 4.2M 92.29% 81.63% GL = 20M 92.28% 80.50% Same as Exhaustive Search

D6 GL = 120M 86.36% NA Same as Exhaustive Search GL = 20M 86.12% NA

D7 GL = 3M 17.55% 21.10% GL = 20M 17.40% 26.50% Same as Exhaustive Search

Table 2. Comparison of Lighter, Blue, and RACER using 7 datasets. This is for finding the best k-value (GL 
for RACER) using Athena variants vs. exhaustive search. We find either the optimal value or within 0.53% 
(over Alignment Rate) and within 8.5% (EC Gain) of the theoretical best (in the worst case), consistent with 
the reported results by Lighter (Figure 5 in6). These slightly sub-optimal configurations is due to the impact of 
sub-sampling. However, with appropriate sampling rate selection, Athena achieves configurations that is 0.53% 
of the oracle best configuration (found with exhaustive searching). We also notice that for RACER, GL found 
by Athena is within 3% of the reference GL (except for the RNN model with D5, which still achieves very close 
performance for both Alignment Rate and EC Gain). The Gain metric is not shown for D6 as the tool used 
to compute it was not able to handle reads of length 250 bp. We notice that the best genome length found by 
Athena for D7 (human genome) is 20Mbp, which is very low compared to the actual human genome length 
(≈3 k Mbp). This shows that using heuristics to estimate the optimal value of K based on only one parameter 
(genome length) can produce significantly suboptimal performance, even if the actual value of the genome 
length is provided. Moreover, GenomeLength parameter in Racer represents the approximate length of the 
DNA molecule that originated the reads. If only parts of a genome were sequenced, then only the total length of 
those parts should be used, instead of the length of the total genome. Dataset D7 is just for a part of the genome 
(24 Mbp), and Athena ‘s genome length selection of 20Mbp shows the efficacy of Athena for this usecase.

Dataset Coverage #Reads Read Length Genome Type Accession Number

D1 80X 20.8M 136 bp E. coli str. K-12 substr SRR001665

D2 71X 7.1M 47 bp E. coli str. K-12 substr SRR022918

D3 173X 18.1M 36 bp Acinetobacter sp. ADP1 SRR006332

D4 62X 3.5M 75 bp B. subtilis DRR000852

D5 166X 7.1M 100 bp L. interrogans C sp. 
ADP1 SRR397962

D6 70X 33.6M 250 bp A. thaliana ERR2173372

D7 67X 202M 101 bp Homo sapiens SRR1658570

Table 1. Datasets’ description with coverage, number of reads, read lengths, genome type, and the Accesson 
number. Coverage is estimated according to Illumina’s documentation49.
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Importantly, the values of the performance-sensitive configuration parameters are dependent not only on the 
dataset but also on the specific EC tool (Table 2). The performance of many EC algorithms is highly dependent 
on the proper choice of configuration parameters, e.g., k-value (length of the substring) in k-spectrum-based 
techniques. Selecting different k-values has a trade-off such that small values increase the overlap probability 
between reads, however, an unsuitably small value degrades EC performance because it does not allow the algo-
rithm to discern correct k-mers from erroneous ones. In contrast, unsuitably high k-values decrease the overlap 
probability and hurts EC performance because most k-mers will now appear unique. The k-mers that appear 
above a certain threshold frequency, and are therefore expected to be legitimate, are solid k-mers, the others are 
called insolid or untrusted k-mers. In k-spectrum-based methods, the goal is to convert insolid k-mers to solid 
ones with a minimum number of edit operations. Thus, an adaptive method for finding the best k-value and other 
parameters is needed for improved EC performance, and in turn, genome assembly.

Many existing EC solutions (e.g., Reptile4, Quake5, Lighter6, Blue7) require users to specify the k-mer size. 
Although these EC tools do not rely on a reference genome to perform correction, the best configuration value 
is usually found by exploration over the range of k-values8 and evaluating performance metrics, e.g., EC Gain, 
Alignment Rate, Accuracy, Recall, and Precision using a reference genome. Therefore, a reference genome is 
typically needed to serve as ground truth for such evaluations, making this tuning approach infeasible for de 
novo sequencing tasks. Existing tools leave the best parameter choice to the end user and this has been explicitly 
pointed out as an open area of work in1,9. However, a number of recent surveys highlighted that the automated 
choice of parameters for the specific dataset being processed is crucial for the user to avoid inadvertently selecting 
the wrong parameters10.

Some existing tools (e.g., KMERGENIE11) provide intuitive abundance histograms or heuristics to guide 
k-value selection when performing de Bruijn graph based genome assembly. However, they only account for the 
dataset when performing the optimal k-value selection. We find that this approach is unsuitable for our prob-
lem (i.e., finding best k-value for error correction) as the optimal k-value here also depends on the correction 
algorithm (e.g., the optimal k-values for Blue and Lighter in our evaluation vary, Table 2). Also, the user is finally 
responsible for interpreting the visualization and selecting the optimal k-mer value. To make the above argument 
specific, we found that k = 25 achieves within 0.04% from the best EC Gain performance for dataset D1 when 
using Blue. On the other hand, if the same k-value was used for D1 again but this time with the tool Lighter, the 
EC Gain drops by 26.8% from the maximum Gain (Tables 1 and 2 in Appendix).

In addition, there is no single k-value that works optimally for all datasets, even when using the same EC 
tool. For example, we found that k = 25 gives the best EC Gain performance for D5 using Lighter, showing an EC 
Gain of 83.8%. However, the same k-value used for D3 with Lighter gives an EC Gain of only 65% compared to a 
Gain of 95.34% when using the optimal k-value (Table 1 in Appendix). Thus, there is a need for a data-driven and 
tool-specific method to select the optimal k-value.

Our solution, Athena finds the best value of the configuration parameters for correcting errors in genome 
sequencing, such as the value of k in k-mer based methods (Just as Athena is the Greek Goddess of wisdom and 
a fierce warrior, we wish our technique to unearth the genomic codes underlying disease in a fearless war against 
maladies). Further, Athena does not require access to a reference genome to determine the optimal parameter 
configuration. In our evaluation, we use Bowtie2 for alignment and measure alignment rate as a metric to evaluate 
Athena. However, alignment is not needed for Athena to work as shown in Fig. 1. Athena, like other EC tools, 
leverages the fact that NGS reads have the property of reasonably high coverage, 30X–150X coverage depth is 
commonplace. From this, it follows that the likelihood of correct overlaps for a given portion of the genome will 
outnumber the likelihood of erroneous ones4. Athena uses a language model (LM) to estimate the correctness of 
the observed sequence considering the frequency of each subsequence and its fitness with respect to the context. 
This is integral to traditional NLP tasks such as speech recognition, machine translation, or text summarization 
in which LM is a probability distribution capturing certain characteristics of a sequence of symbols and words, 
which in this case is specialized to the dataset and to the EC tool of choice for optimal performance.

In our context, we use LM to estimate the probabilistic likelihood that some observed sequence is solid or insolid, 
in the context of the specific genome. We create an LM using as training, the enire original dataset (with uncor-
rected reads). We then run the EC algorithm on a subset of the overall data with a specific value of the configura-
tion parameter. Subsequently, we use the trained LM at runtime to compute a metric called the “Perplexity metric” 
(which is widely used in the NLP literature). We show empirically that the perplexity metric has a strong negative 
correlation with the quality of the error correction (measured typically through the metric called “EC gain”).  

Figure 1. Overview of Athena’s workflow. First, we train the language model using the entire set of uncorrected 
reads for the specific dataset. Second, we perform error correction on a subsample from the uncorrected reads 
using an EC tool (e.g., Lighter or Blue) and a range of k-values. Third, we compute perplexity of each corrected 
sample, corrected with a specific EC tool, and decide on the best k-value for the next iteration, i.e., the one 
corresponding to the lowest perplexity metric because EC quality is negatively correlated with the perplexity 
metric. This process continues until the termination criteria are met. Finally, the complete set of reads is 
corrected with the best k-value found and then used for evaluation.
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Crucially, the Perplexity metric evaluation does not require the computationally expensive alignment to a refer-
ence genome, even when available. Through a stochastic optimization method, we evaluate the search space to 
pick the best configuration-parameter value for the EC algorithm-k in k-mer-based methods and the Genome 
Length (GL) in the RACER EC tool. Moreover, most EC tools are evaluated based on their direct ability to reduce 
error rates rather than to improve genome assembly. Although in general, assembly benefits from the error cor-
rection pre-processing step, sub-optimal error correction can reduce assembly quality due to conversion of benign 
errors into damaging ones12. In our evaluation, we see that the EC improvement due to Athena also leads to 
higher quality assembly (Table 3).

In summary, this paper makes the following contributions.

 1. We compare and contrast two LM variants of Athena, N-gram and RNN-based. Through this, we show 
that N-Gram modeling can be faster to train while char-RNN provides similar accuracy to N-gram, albeit 
with significantly lower memory footprint, conducive to multi-tenant analysis pipelines (e.g., MG-RAST 
for metagenomics processing13).

 2. We introduce a likelihood-based metric, the Perplexity metric (repurposed from NLP), to evaluate EC 
quality without the need for a reference genome. This is the first such use of this metric in the computa-
tional genomics domain.

 3. We compare and contrast two LM variants of Athena, N-gram and RNN-based. Through this, we show that 
N-Gram modeling can be faster to train while char-RNN provides similar accuracy to N-gram, albeit with 
significantly lower memory footprint, conducive to multi-tenant analysis pipelines (e.g., MG-RAST for 
metagenomics processing13).

 4. We apply Athena to 3 k-mer based EC tools: Lighter6, Blue7, and RACER14 on 7 real datasets, with varied 
error rates and read lengths. We show that Athena was successful in finding either the best parameters 
(k for Lighter and Blue, and GenomeLength for RACER) or parameters that perform within 0.53% of the 
overall alignment rate to the best values using exhaustive search against a reference genome. We couple EC, 
with best parameter selection by Athena, to the Velvet genome assembler and find that it improves assem-
bly quality (NG50) by a Geometric Mean of 4.72X across 7 evaluated datasets.

Background
Error correction and evaluation. The majority of error correction tools share the following intuition: 
high-fidelity sequences (or, solid sequences) can be used to correct errors in low-fidelity sequences (or, in-solid 
sequences). However, they vary significantly in the way they differentiate between solid and in-solid sequences. 
For example4, corrects genomic reads containing insolid k-mers using a minimum number of edit operations 
such that these reads contain only solid k-mers after correction. The evaluation of de novo sequencing techniques 
rely on likelihood-based metrics such as ALE15 and CGAL16, without relying on the availability of a reference 
genome. On the other hand, comparative sequencing or re-sequencing, such as to study structural variations 
among two genomes, do have reference genomes available.

Language modeling. To increase the accuracy of detecting words in speech recognition, language modeling 
techniques have been used to see which word combinations have higher likelihood of occurrence than others, 
thus improving context-based semantics. Thus, language modeling is being used in many applications such as 
speech recognition17, text retrieval, and many NLP applications. The main task of these statistical models is to 
capture historical information and predict the future sequences based on that information18. Language models 
are classified into two main categories: (i) Count-based methods that represent traditional statistical models, 

— Correlation to Alignment Comparison with FIONA Assembly quality
Runtime 
Improvement

Dataset
Correlation 
(N-Gram)

Correlation 
(RNN)

Fiona + Bowtie2 
(Alignment Rate)

RACER w/o 
Athena + Bowtie2 
(Alignment Rate)

RACER w/
Athena + Bowtie2 
(Alignment Rate)

NG50 of 
Velvet 
w/o EC

NG50 of Velvet w/
(Racer + Athena) Athena Bowtie2

D1 −0.977 −0.938 99.25% 85.01% 99.26% 3019 6827 (2.26X) 1 m 38 s 10 m 5 s

D2 −0.981 −0.969 73.75% 58.66% 81.15% 47 2164 (46X) 49 s 3 m 53 s

D3 −0.982 −0.968 83.12% 80.79% 84.11% 1042 4164 (4X) 1 m 39 s 7 m 50 s

D4 −0.946 −0.930 95.33% 93.86% 95.33% 118 858 (7.27X) 52 s 3 m 8 s

D5 −0.970 −0.962 92.34% 90.91% 92.29% 186 2799 (15X) 1 m 40 s 9 m 42 s

D6 −0.944 −0.979 87.43% 85.76% 86.84% 1098 1237 (1.12X) 6 m 40 s 1 h 42 m

D7 −0.723 −0.862 NA 17.17% 17.55% 723 754 (1.04X) 16 m 71 m

Table 3. Comparison of Overall Alignment Rate of Fiona versus RACER (with and without Athena’s tuning). 
RACER requires the user to enter a value for the “Genome Length”, which has no default value. Therefore, 
“RACER w/o Athena” is RACER operating with a fixed Genome Length of 1M. Columns 5 & 6 demonstrate the 
strong anti-correlation values between Perplexity and Alignment Rate. The last two columns show the assembly 
quality (in terms of NG50) before and after correction by RACER, tuned with Athena. Improvements in NG50 
are shown between parentheses, while NGA50 and the amount of assembly errors metrics showed similar 
improvements and hence omitted. We also show the search time comparison for estimating the perplexity 
metric with Athena (N-gram) for a point in search space vs. estimating overall alignment rate with Bowtie2.
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usually involve estimating N-gram probabilities via counting and subsequent smoothing. (ii) Continuous-space 
language modeling is based on training deep learning algorithms. In recent years, continuous-space LMs such as 
fully-connected Neural Probabilistic Language Models (NPLM) and Recurrent Neural Network language models 
(RNNs) are proposed. Now we describe in detail each class of our language models.

n-Gram-based language modeling. This type of modeling is word-based. The main task that N-Gram 
based models19 have been used for is to estimate the likelihood of observing a word Wi, given the set of previous 
words W0, …Wi−1, estimated using the following equation:

∏ ∏... = | ... ≈ | ...
=

−
=

− −P W W W P W W W P W W W( , , , ) ( , , ) ( , , )
(1)m

i

m

i i
i

m

i i i n0 1
1

1 1
1

1

where n represents the number of history words the model uses to predict the next word. Obviously, a higher n 
results in better prediction, at the cost of higher training time resulting from a more complex model. Also notice that 
for this model to operate, it has to store all conditional probability values and hence has a high memory footprint.

Char-RNN-Based language modeling. Recurrent neural network (RNN) is a very popular class of neural 
networks for dealing with sequential data, frequently encountered in the NLP domain. The power of RNN is that 
each neuron or unit can use its internal state memory to save information from the previous input and use that 
state, together with the current input, to determine what the next output should be. Character-level RNN mod-
els, char-RNN for short, operate by taking a chunk of text and modeling the probability distribution of the next 
character in the sequence, given a sequence of previous characters. This then allows it to generate new text, one 
character at a time20. RNNs consist of three main layers: Input Layer, Hidden Layer, and Output Layer. First, Input 
Layer takes xt vector, which is input at a time step t, usually a one-hot encoding vector of the tth word or character 
of the input sentence. Second, Hidden Layer consists of the hidden state at the same time step st, which represents 
the memory of this network. It is calculated as a non-linear function f (e.g., tanh) of the previous hidden state st−1 
and the input at current time step xt with the following relation:

= + .−s f Ux Ws( ) (2)t t t 1

Here, W is a matrix that consists of hidden weights of this hidden layer. Finally, Output Layer consists of a vector 
ot, which represents the output at step t and contains prediction probabilities for the next character in the sentence. 
Formally, its length equals the size of the vocabulary and is calculated using a softmax function. Backpropagation 
was used to train the RNN to update weights and minimize the error between the observed and the estimated next 
word. For Deep RNN architectures, there are multiple parameters that affect the performance of the model. The 
two main parameters are: Number of Hidden Layers and Number of Neurons per Layer. For our Char-RNN language 
modeling, vocabulary would include the four nucleotide bases as characters A, C, G, and T. Each input is a one-hot 
encoding vector for the four nucleotides. Each output vector at each time step also has the same dimension.

Perplexity of the language model. Perplexity is a measurement of how well a language model predicts 
a sample. In NLP, perplexity is one of the most effective ways of evaluating the goodness of fit of a language 
model since a language model is a probability distribution over entire sentences of text21. For example, 5 per word 
perplexity of a model translates to the model being as confused on test data as if it had to select uniformly and 
independently from 5 possibilities for each word. Thus, a lower perplexity indicates that language model is better 
at making predictions. For an N-Gram language model, perplexity of a sentence is the inverse probability of the 
test set, normalized by the number of words21.
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It is clear from (3) that minimizing perplexity is the same as maximizing the probability of the observed set of 
m words from W1 to Wm.

For RNN, perplexity is measured as the exponential of the mean of the cross-entropy loss (CE) as shown in (4)22, 
where ŷ is the predicted next character–the output of the RNN–and |V| is the vocabulary size used during training.

∑= − .
=

| |
ˆ ˆCE y y p y p y( , ) ( )log( ( ))
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V
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Although these two models estimate the perplexity metric differently, they achieve the same purpose, which 
is estimating the correctness of a sequence given the trained probability distribution. In the next section, we 
describe how our system Athena uses these models to find the best k-value for a given tool and dataset.

our Solution: Athena
Application of language models. We use two different LM variants in our Athena algorithm. We describe 
them next.

N-Gram language models. We train an N-Gram model19, which is word-based, from the input set of reads before 
correction. This N-Gram model needs word-based segmentation of the input read as a pre-processing phase. 
Then, we use this trained LM to evaluate EC performance.
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RNN language models. The second technique is RNN-based LM23, using different RNN architectures, e.g., 
standard RNNs, LSTMs, and GRUs. These models can be trained either as word-based models or character-based 
models. We train our RNN variant as character-based model to avoid having to make the decision about how to 
segment the genomic string, as we have to do for the N-Gram model.

Training time and memory footprint. Contrasting our 2 LM variants: Although training N-Gram LMs is much 
faster relative to RNN-based models (3–5 minutes for N-Gram vs. 10–11 hours for RNN-based across the 7 data-
sets), they still have the requirement of splitting a read into words of specific length. Further, RNN-based models 
have much lower memory footprint and storage requirements relative to N-Gram. This is because N-Gram mod-
els need to store conditional probabilities in large tables with an average size of 0.6–1.1 GB across the 7 datasets. 
In contrast, RNNs only need to store the network architecture and weights with an average size of 3–5 MB across 
the 7 datasets. For instance, the size of N-gram model for D7 is 2 GB while the size for the RNN model is only 3.5 
MB. With respect to run time, N-gram takes 16 minutes for the whole dataset D7 while RNN takes 30 minutes on 
a 50 K sample of D7. Also, we used an LSTM variant of Athena and found that it took 3 times longer to train and 
test but gave insignificant improvement in perplexity over RNN.

Intuition for the use of the perplexity metric. Our design uses the Perplexity metric to provide an accu-
rate, and importantly, quick estimation of the EC quality with the current configuration parameter value(s). The 
Perplexity metric is based on the LM trained on the entire original (uncorrected) dataset. The Perplexity metric 
is then calculated on the dataset of the corrected reads (entire dataset for N-Gram and 1% for RNN) to measure 
the EC performance. It measures how well LM can predict the next element in an input stream. Suppose the input 
stream is H and the next element is e. Then, the Perplexity metric is inversely proportional to the probability 
of seeing “e” in the stream, given the history H for the learned model. Moreover, the Perplexity metric has the 
advantage of taking the context of the element (e.g., previous and subsequent k-mers) into consideration when 
estimating the probability of observing that element. This context-awareness feature is not considered in simple 
k-mer counting methods. This method works because we see empirically that there is a high negative correlation 
of the Perplexity metric with both EC metrics–Alignment Rate and EC Gain. Given this anti-correlation, we can 
rely on the Perplexity metric as an evaluation function, and apply a simple search technique (e.g., hill climbing) 
to find the best k-value for a given dataset. In this description, for simplicity of exposition, we use the k-value in 
k-mer based techniques as an example of Athena -tuned configuration parameter. However, Athena can tune 
any other relevant configuration parameter in EC algorithms and we experimentally show the behavior with 
another parameter–Genome Length–in the RACER tool. Figure 2 shows an example how Perplexity can evaluate 
the likelihood of a sequence of k-mers using their frequencies and contextual dependencies. In this example, we 
notice that the corrected read set (i.e., on the right) has a considerably lower Perplexity value (15.2), relative to 
the erroneous set (77.72). Thus, our intuition that the Perplexity metric reflects the correctness of the read dataset 
holds true here through the observed negative relationship.

Search through the parameter space. Our objective is to find the best k-value that will minimize the 
Perplexity of the corrected dataset. The Perplexity function is denoted by f in (5).

= =k Perplexity f LM D karg min arg min ( , , ) (5)opt k k i0i i

Here, LM: trained language model, D0: uncorrected read set, and k: the configuration parameter we wish 
to tune. f is a discrete function as k-values are discrete, and therefore, its derivative is not computable. Thus, a 
gradient-based optimization technique is inapplicable. Hence, we use a simple hill-climbing technique to find the 
value of k that gives the minimum value of f, for the given LM and D0 in (5).

The following pseudo-code describes the steps used for finding the best k-value for a given dataset. We start 
with Algorithm 1, which invokes Algorithm 2 multiple times, each time with a different starting value. We begin 
by training an LM on the original uncorrected read set (D0). Second, we assume that the best value of k lies in a 
range from A to B (initially set to either the tool’s recommended range, or between 1 and L, where L is the read 
size).

We apply an existing EC algorithm (Lighter, Blue, or RACER in our evaluation) with different initial values 
… ∈k k A B( , , ) ( , )m0  to avoid getting stuck in local minima, going through multiple iterations for a given initial 

value. We evaluate the Perplexity for the corrected dataset with current values of k: ki, and its neighbors, (ki − δ 
and ki + δ). Athena takes δ as a user input. The larger values of δ allows Athena to search the k-mers space faster, 
but it has the downside of missing good values of k*. The default value for δ is 1. Notice that using δ = 1 is not the 
same as applying exhaustive search to all possible values of k, as with the hill-climbing technique that Athena uses, 
the search is terminated when the current k-mer is better than its neighbours (as shown in step 2 in Algorithm 2). 
In each iteration, we apply hill-climbing search to identify the next best value of ki for the following iteration. The 
algorithm terminates whenever the Perplexity relative to ki is less than the perplexities of both its neighbors or the 
maximum number of (user-defined) iterations is reached. However, all shown results are with respect to only one 
initial value (i.e., m = 0 in k0, ki, …, km).

Time and space complexity. Because we apply hill climbing search to find the best value of k, the worst-case time 
complexity of the proposed algorithm is L × |S′|, where L is the upper bound of the range of k-values to search 
for and |S′| is size of selected sample. For the space complexity, Athena only needs to save the Perplexity values of 
previously investigated k-values, which is also linear in terms of L.
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Evaluation with Real Datasets
In this section, we evaluate Athena variants separately by correcting errors in 6 real datasets and evaluating the 
quality of the resultant assembly.

implementation notes and dataset. We implement the N-Gram model using SRILM toolkit24. SRILM 
is an open source toolkit that supports building statistical N-Gram LMs, in addition to evaluating the likelihood 
of new sequences using the Perplexity metric. For the RNN LM implementation, we build on the TensorFlow 
platform25. Specifically, we utilized Character-level RNN models, char-RNN for short, which takes a chunk of text 
and models the probability distribution of the next character in the sequence, given a sequence of previous char-
acters. After correction, we run the Bowtie2 aligner26 and measure the Alignment Rate and the Error Correction 
Gain (EC Gain). A higher value for either metric implies superior error correction. We do a sweep through a 
range of k-values and measure the alignment rate to determine if the Athena -generated k-value is optimal or its 
distance from optimality.

For interpreting the execution time results, our experiments were performed on Dell Precision T3500 
Workstation, with 8 CPU cores, each running at 3.2 GHZ, 12GB RAM, and Ubuntu 16.04 Operating System. We 
use 3 EC tools, in pipeline mode with Athena, namely, Lighter, Blue, and RACER. Blue uses a k-mer consensus 
to target different kinds of errors, e.g., substitution, deletion and insertion errors, as well as uncalled bases (rep-
resented by N). This improves the performance of both alignment and assembly7. In contrast, Lighter is much 
faster as it uses only a sample of k-mers to perform correction. We use the automated subsampling factor (called 
alpha) selection option in Lighter, which is estimated based on the genome size. Third, RACER uses a different 
configuration parameter distinct from the k-value, specifically Genome Length (GL), and we are able to tune GL 
as well. Our ability to tune any of these EC algorithm’s parameters is in line with our vision and ongoing work to 
design extensible blocks of software to expedite algorithmic development in bioinformatics27. Incidentally, we 
started using another popular EC tool, Reptile, but it only allowed for a smaller range of k-values, beyond which 
it ran into out-of-memory errors. Hence, to demonstrate results with the full range of k values, we restricted our-
selves to Lighter, Blue, and RACER. Our datasets are Illumina short reads (Table 1), used in multiple prior studies 
(e.g.4,6,28,29). For these, there exist ground-truth reference genomes, which we use to evaluate the EC quality. The 
seven datasets have different read lengths (from 36 bp to 250 bp) and different error rates (from <3% to 43%).

optimal parameter selection. The results of using Athena with Lighter, Blue, and RACER tools are shown 
in Table 2 for each dataset. The value of k found through exhaustive testing (or, GL for RACER) along with the EC 
quality is given first. Then it is noted when the Athena -selected configuration matches this theoretical best. We 
find that in 27 of 36 cases (75%) the configuration found by Athena matches the theoretical best. In the remaining 
cases, our chosen parameters are within 0.53% in overall alignment rate to the best values. We see that the optimal 
parameter value almost always corresponds to the lowest perplexity scores computed using Athena’s language 
modeling (Tables 1 and 2 in Appendix). Further, the anti-correlation between perplexity and alignment rate holds 
for both optimal and non-optimal k-values. This shows that our hypothesis is valid across a range of k-values. We 
notice that the feasible range of k-values in Blue is (20, 32), distinct from Lighter’s. Another interesting obser-
vation is that the optimal k-values are different across the two different EC tools, Lighter and Blue, for the same 
dataset, as observed before6. Athena can be applied to a different configuration parameter, GL for the RACER 
tool, in line with our design as a general-purpose tuning tool.

n-gram language model results. We start by training an N-Gram language model from the original 
dataset. We divide each read into smaller segments (words) of length Ls (set to 7 by default). A careful reader may 

Algorithm 1. Correct Set of Reads.

Algorithm 2. Find Optimal k.
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be concerned that selecting the best value of Ls is a difficult problem in itself, of the same order of difficulty as 
our original problem. Fortunately, this is not the case and Ls selection turns out to be a much simpler task. From 
domain knowledge, we know that if we use Ls = 4 or less, the frequencies of the different words will be similar 
as this increases the overlap probability between the generated words, thus reducing the model’s discriminatory 
power, while a large value will mean that the model’s memory footprint increases. We find that for a standard 
desktop-class machine with 32 GB of memory, Ls = 8 is the maximum that can be accommodated. Further, we 
find that the model performance is not very sensitive in the range (5–7), so we end up using Ls = 7. The same 
argument holds for selecting a history of words, and we use a tri-gram model (history of 3 words, i.e., n = 3) for 
all our experiments. Second, we compare the perplexity metric for datasets corrected with different k-values and 
compare the perplexity metric (without a reference genome) to the alignment rate (using a reference genome). 
We always report the average perplexity, which is just the total perplexity averaged across all words. Our results 
show a high negative correlation between the two metrics on the 7 datasets (≤−0.930 for the first six datasets 
and ≤−0.723 for D7), as shown in Table 3. To reiterate, the benefit of using the perplexity metric is that it can be 
computed without the ground truth and even where a reference genome is available, it is more computationally 
efficient than aligning to the reference and then computing the alignment rate.

char-Rnn language model results. For training our RNN, we used the “tensorflow-char-rnn” library25. 
After parameter tuning, we use the following architecture for our experiments: 2 hidden layers with 300 neurons 
per layer, output layer with size 4 (i.e., corresponding to the four base pairs), mini-batch size 200, and learning 
rate 2e−3 respectively. For each of the 7 datasets, we used 90% for training and 10% for validation, with no overlap, 
for coming up with the optimal RNN architecture.

For our char-RNN results, we find that the perplexity metric has a strong negative relation to the overall 
alignment rate (Table 3), with the absolute value of the correlation always greater than 0.86. Here, we have to 
sample the corrected set for calculating the perplexity measure because using an RNN to perform the calculation 
is expensive. This is because it involves, for predicting each character, doing 4 feed-forward passes (correspond-
ing to the one-hot encodings for A, T, G, or C), each through 600 neurons. Empirically, for a test sample size of 
50 K, this translates to approximately 30 minutes on a desktop-class machine. In the experiments with the real 
datasets, we use 50 K samples with uniform sampling, and in synthetic experiments, we use 100 K samples (i.e., 
only 1% of the dataset). Importantly, the strong quantitative relationship between perplexity and the EC quality 
is maintained even at the low sampling rate (0.5% for real dataset). Note that this test sample size is different from 
the sample size used by the EC tool to perform the correction, shown in Fig. 1, which must be at least of coverage 
30X to ensure accurate k-mer analysis30.

comparison with a self-tuning ec tool. Here, we compare Athena with the EC tool, Fiona31, which 
estimates its parameters internally. The purpose of this comparison is to show that Athena can tune k-mer-based 
approaches (RACER specifically for this experiment) to achieve comparable performance to suffix array-based 
approaches (e.g., Fiona), reducing the gap between the two approaches.

The works by10 and32 show a similar comparison between different EC approaches concluding that the auto-
matic selection of configuration parameters, based on the datasets, is crucial for EC performance. However, they 
do not perform such parameter tuning automatically. Table 3 presents the overall alignment rate for our 6 eval-
uation datasets, calculated after doing correction by Fiona. We notice that RACER, when tuned with Athena, 
outperforms automatic tuning by Fiona in 3 of the 7 datasets (i.e., by about 0.01%, 7.4% and 1% on D1, D2, and 
D3 respectively), while they are equal in one dataset. Finally, Fiona is better on D5 by 0.05% and on D6 by 0.59%. 
Notice that Racer’s runtime is 5–6X faster compared to Fiona, which is similar to the runtimes reported in33. 
Moreover, we omit the result of Fiona with D7 as the tool took more than 6 hours without producing the corrected 
reads.

Figure 2. An example showing how the perplexity metric encodes errors in genomic reads. The read on the 
left is an erroneous read selected from dataset D3, while the read on the right is the same read, after correction 
with Lighter. When using language modeling to compute the perplexity for both reads, we notice that the read 
on the right has a lower perplexity value (15.2), relative to the erroneous read (77.72), as the sequence of k-mers 
after correction has a higher probability of occurrence. Also notice that the probability of a sequence of k-mers 
depends on both their frequencies and their relative order in the read, which allows the perplexity metric to 
capture how likely it is to observe this k-mer given the neighboring k-mers in a given read.
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Impact on assembly quality and searching time. Here we show the impact on genome assembly qual-
ity of using an EC tool tuned with Athena. We use Velvet34 to perform the assembly and QUAST35 to evaluate the 
assembly quality. We compare the NG50 before and after correction done by RACER using the best GL found 
by Athena. The results (Table 3) show a significant improvement on NG50 by 2.26X, 46X, 4X, 7.27X, 15X, 1.2X, 
and 1.04X respectively. For D7, the improvement is the lowest, since D7 has the lowest alignment rate across all 
datasets. We also collect the NGA50 scores and it shows identical improvements as the NG50. These improve-
ments are consistent with what was reported in7,12, which measured improvement due to the use of EC tools with 
manually tuned configuration parameters.

Search time improvement with Athena. Consider that in our problem statement, we are trying to search through 
a space of configuration parameters in order to optimize a metric (EC Gain or Alignment Rate). The search space 
can be large and since the cost of searching shows up as a runtime delay, it is important to reduce the time that it 
takes to evaluate that metric of each search point. Although EC tools don’t need a reference genome to operate, 
current state-of-the-art method use a reference genome to tune EC performance. As shown in1,11, the best value 
of configuration parameter k is found by iteratively picking a single k-value, run the EC tool with that value, 
then perform alignment (with one of several available tools such as Bowtie2), and finally compute the metric for 
that value. In contrast, with Athena, to explore one point in the search space, we run the EC algorithm with the 
k-value, and then compute the Perplexity metric, which does not involve the time-consuming alignment step. 
Here, we evaluate the relative time spent in exploring one point in the search space using Athena vis-à-vis the 
current state-of-the-art. The result is shown in Table 3. For this comparison, the alignment is done by Bowtie226. 
We find that using the baseline approach, each step in the search takes respectively 6.2X, 4.8X, and 4.7X, 3.6X, 
5.82X, 15.3X, and 4.4X longer for the 7 datasets. That is because the time taken by the LM to calculate the per-
plexity is linear in terms of the input (number of reads x read length), while the runtimes of alignment algorithms 
are superlinear36.

Further, while we use the hill-climbing technique to search through the space, today’s baseline methods use 
exhaustive search, such as in Lighter6 and thus the end-to-end runtime advantage of Athena will be magnified.

impact of sub-sampling. One drawback of sub-sampling is the reduction of coverage, which can negatively 
impact the accuracy of k-mer analysis. Therefore, we select the sub-sampling ratio so that the sample size has a 
coverage of at least 30X, which was found sufficient by several prior works (such as30) for accurate k-mer analysis. 
When the coverage is less than 30X, the distribution of solid k-mers vs. non-solid k-mers becomes very close, for 
which EC tools (e.g., Lighter with dataset D2) will not perform any correction for any given value of k. So it is a 
limitation in EC tools in general to require higher coverage for accurate error correction. For datasets with cover-
age less than 30X, we use the complete dataset without any subsampling.

We use the well-known Lander-Waterman’s formula37 to estimate the required sample-size to reach such cov-
erage. If the data coverage is less than 30X, the whole dataset is used.

We also notice from Table 2 that Athena sometimes proposes slightly sub-optimal configurations compared 
to oracle best (within 0.53% in terms of overall alignment rate). This is due to the impact of sub-sampling as the 
best configuration for the sample can be slightly different from the best configuration for the complete dataset. We 
study the impact of sub-sampling on the accuracy of Athena. We use D2 for this experiment as it is the one with 
the highest error rate across all 7 datasets. First, we select two random samples from D2 with sampling rates of 
35% (30X) and 70% (50X) respectively and investigate the correlation between perplexity and EC gain. As shown 
in Fig. 3, perplexity and EC gain have a very high inverse correlation, for all three tools, across the entire range 
of k-values. This shows that sampling in Athena has the advantage of significant improvements in runtime, while 
preserving the accuracy of optimal parameter selection.

Second, we select a random sample from D2 with a sampling rate of 40%. We scan over the range of values of 
the tuning parameter (k-mer size for Lighter and Blue, Genome length for RACER) and calculate perplexity and 
EC gain for each value. We repeat this experiment with 70 different random samples and find that the selected 
value did not change in all runs, which also matches the best value with exhaustive searching over the complete 
dataset. This shows that the sub-sampling does not overfit the data and preserves the accuracy of the optimal 
parameter selection.

Figure 3. Impact of sub-sampling on perplexity and gain. We compare the perplexity and gain with samples 
of sizes 35% and 70% of the D2 dataset. We observe the negative correlation between both metrics and also the 
positive correlation between the values of each metric on the two samples.
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Evaluation with Synthetically Injected Errors
Here we experiment on datasets where we synthetically inject errors of three kinds - insertion, deletion, and 
substitution. The real data sets used in our evaluation in Section belonged to Illumina sequencing platform and 
therefore had primarily substitution errors (about 99% of all errors). However, other platforms such as 454 or Ion 
torrent sequencing suffers primarily from insertions and deletions10. Hence our synthetic injections are meant 
to uncover if the relationship between perplexity and error rate holds for these other error types. We start by 
randomly collecting 100 K short reads from the reference genome (i.e., almost error-free) for two organisms used 
in the real datasets–E. coli (D1, D2) and Acinetobacter (D3). Afterward, we inject errors of each type as follows:

 1. Deletion: We select the index of injection (position of the deleted segment), which follows a uniform 
distribution U(0, L − d), where L is the length of the read and d is the length to delete.

 2. Insertion: Similar to deletion errors, the index of insertion follows a uniform distribution U(0, L − I), 
where I is the length of inserted segment. Moreover, each base pair in the inserted segment follows a uni-
form distribution over the four base pairs (A, C, G, or T).

 3. Substitution: For this type of synthetic errors, we select k positions of substitutions following a uniform 
distribution U(0, L). Then, we substitute each base pair of the k positions with another base pair following a 
uniform distribution over the four base pairs (A, C, G, or T). Note that there is one-in-four chance that the 
substitution results in the same base pair.

We test the proposed approach against two levels of synthetic errors: low error rate (Uniform in (1, 5) bp in 
error per read), and high error rate (Uniform in (6, 10) bp in error per read). In all cases, the language model is 
trained using the original data set, mentioned in Table 1, with the natural ambient rate of error. Figure 4 shows 
the results for the perplexity metric in the data set after error injection (i.e., without doing correction), for the 
three error types and an equi-probable mixture of the three. The results show that for all types of errors, the direct 
quantitative relation between error rate and perplexity holds–the perplexity values are higher for high error rate 
injection. One observation is that the values of perplexity for insertion and substitution errors are higher than 
for deletion errors. For example, insertion and substitution perplexities are 3X & 4.7X the deletion perplexity for 
high error rate data sets, and 2X & 1.5X for low error rate data sets. This is expected because in deletion errors, the 
segment of the read after the index of deletion is a correct segment and hence is expected by the language model. 
On the other hand, for insertion and substitutions, the added synthetic base pairs will most likely construct wrong 
segments. Such segments will have very low counts in the language model and therefore produce higher overall 
perplexities. Another observation is that the perplexities for the injection into data set D1 are higher than for D3. 
This is likely because D3 had a higher natural ambient rate of error and hence the additional injection does not 
cause as much increase in the perplexity metric.

Related Work
error correction approaches. EC tools can be mainly divided into three categories: k-spectrum based, 
suffix tree/array-based, and multiple sequence alignment-based (MSA) methods. Each tool takes one or more 
configuration parameters. While we have experimented with Athena applied to the first kind, with some engi-
neering effort, it can be applied to tuning tools that belong to the other two categories.

Figure 4. N-Gram (Figure A,B) and RNN (Figure C,D) Perplexity metric for different types of synthetic errors: 
Indels and Substitution errors, and a mixture of the three for E. coli str reference genome (Figure A,C) and 
Acinetobacter sp. reference genome (Figure B,D). We compare two versions of such errors: high and low error 
rates.
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Language modeling in genomics. In the genomics domain, LM was used in38 to find the characteristics 
of organisms in which N-Gram analysis was applied to 44 different bacterial and archaeal genomes and to the 
human genome. In subsequent work, they used N-Gram-based LM for extracting patterns from whole genome 
sequences. Others39 have used LM to enhance domain recognition in protein sequences. For example40, has used 
N-Gram analysis specifically to create a Bayesian classifier to predict the localization of a protein sequence over 
10 distinct eukaryotic organisms. RNNs can be thought of as a generalization of Hidden Markov Models (HMMs) 
and HMMs have been applied in several studies that seek to annotate epigenomic data. For example41, presents 
a fast method using spectral learning with HMMs for annotating chromatin states in the human genome. Thus, 
we are seeing a steady rise in the use of ML techniques, traditionally used in NLP, being used to make sense of 
-omics data.

Automatic parameter tuning. used a Feature-based Accuracy Estimator as a parameter advisor for the 
Opal aligner software42,43. The field of computer systems has had several successful solutions for automatic con-
figuration tuning of complex software systems. Our own work44 plus others45 have shown how to do this for 
distributed databases, while other works have done this for distributed computing frameworks like Hadoop46,47 
or cloud configurations48. We take inspiration from them but our constraints and requirements are different (such 
as, avoiding reliance on ground truth corrected sequences).

Discussion
The space to search for finding the optimal configuration is non-convex in general. Therefore, it is possible to 
get stuck in a local minima, and hence, we use multiple random initializations. However, in our evaluation, we 
find that a single initialization suffices. Some EC tools have a number of performance-sensitive configuration 
parameters with interdependencies. There, systems such as Rafiki44 can encode the dependencies, while relying 
on Athena ‘s LM to compute the corresponding performance metric, converging toward optimal parameters. 
With some engineering effort, Athena can be used to optimize the k-value in DBG-based assemblers as well, 
though there will be different optimization passes since the optimal values are likely to be different for the error 
correction and assembly stages.

Finally, a careful reader may wonder if we can use copy number of all solid k-mers instead of the perplexity 
metric. The problem with this approach is that it will require a predefined frequency threshold to identify the 
solid k-mers. Using the perplexity metric, there is no need for such a threshold. Also the perplexity metric takes 
into account the context of the k-mer (i.e., previous and subsequent k-mers) in deciding the accuracy of the EC 
tool output. Also, notice that our main target is to find the optimal k-mer size, and different k-mers will have 
different thresholds as well.

conclusion
The performance of most EC tools for NGS reads is highly dependent on the proper choice of its configuration 
parameters, e.g., k-value selection in k-mer based techniques. It is computationally expensive to search through 
the entire range of parameters to determine the optimal value, which varies from one dataset to another. Using 
our Athena suite, we target the problem of automatically tuning these parameters using language modeling tech-
niques from the NLP domain without the need for a ground truth genome. Through N-Gram and char-RNN 
language modeling, we compute the “perplexity” metric, a novel one for this problem domain, and find that the 
metric has a high negative correlation with the quality of genomic assembly and can be computed efficiently 
without using a reference genome. The perplexity metric then guides a hill climbing-based search toward the best 
k-value. We evaluate Athena with 6 different real datasets, plus with synthetically injected errors. We find that the 
predictive performance of the perplexity metric is maintained under all scenarios. Further, using the perplexity 
metric, Athena can search for and arrive at the best k-value, or within 0.53% of the assembly quality obtained 
using brute force. Athena suggests a k-value within the top-3 best k-values for N-Gram models and the top-5 best 
k-values for RNN models (the top values were determined by brute force searching).
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