
1Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreports

Athena: Automated tuning
of k-mer based Genomic error
correction Algorithms using
Language Models
Mustafa Abdallah1,4, Ashraf Mahgoub1,4, Hany Ahmed2 & Somali chaterji3*

the performance of most error-correction (ec) algorithms that operate on genomics reads is dependent
on the proper choice of its configuration parameters, such as the value of k in k-mer based techniques.
In this work, we target the problem of finding the best values of these configuration parameters
to optimize error correction and consequently improve genome assembly. We perform this in an
adaptive manner, adapted to different datasets and to EC tools, due to the observation that different
configuration parameters are optimal for different datasets, i.e., from different platforms and species,
and vary with the EC algorithm being applied. We use language modeling techniques from the Natural
Language Processing (NLP) domain in our algorithmic suite, Athena, to automatically tune the
performance-sensitive configuration parameters. Through the use of N-Gram and Recurrent neural
Network (RNN) language modeling, we validate the intuition that the EC performance can be computed
quantitatively and efficiently using the “perplexity” metric, repurposed from NLP. After training
the language model, we show that the perplexity metric calculated from a sample of the test (or
production) data has a strong negative correlation with the quality of error correction of erroneous NGS
reads. Therefore, we use the perplexity metric to guide a hill climbing-based search, converging toward
the best configuration parameter value. Our approach is suitable for both de novo and comparative
sequencing (resequencing), eliminating the need for a reference genome to serve as the ground truth.
We find that Athena can automatically find the optimal value of k with a very high accuracy for 7 real
datasets and using 3 different k-mer based EC algorithms, Lighter, Blue, and Racer. The inverse relation
between the perplexity metric and alignment rate exists under all our tested conditions—for real and
synthetic datasets, for all kinds of sequencing errors (insertion, deletion, and substitution), and for high
and low error rates. The absolute value of that correlation is at least 73%. In our experiments, the best
value of k found by Athena achieves an alignment rate within 0.53% of the oracle best value of k found
through brute force searching (i.e., scanning through the entire range of k values). Athena’s selected
value of k lies within the top-3 best k values using N-Gram models and the top-5 best k values using
RNN models With best parameter selection by Athena, the assembly quality (NG50) is improved by a
Geometric Mean of 4.72X across the 7 real datasets.

Rapid advances in next-generation sequencing (NGS) technologies, with the resulting drops in sequencing costs,
offer unprecedented opportunities to characterize genomes across the tree-of-life. While NGS techniques allow
for rapid parallel sequencing, they are more error-prone than Sanger reads and generate different error profiles,
e.g., substitutions, insertions, and deletions. The genome analysis workflow needs to be carefully orchestrated so
errors in reads are not magnified downstream. Consequently, multiple error-correction (EC) techniques have
been developed for improved performance for applications ranging from de novo variant calling to differential
expression, iterative k-mer selection for improved genome assembly1 and for long-read error correction2,3.

1School of Electrical and Computer Engineering, Purdue University, West Lafayette, USA. 2Department of
Electronics and Electrical Communications Engineering, Cairo University, Cairo, Egypt. 3Department of Agricultural
and Biological Engineering, Purdue University, West Lafayette, USA. 4These authors contributed equally: Mustafa
Abdallah and Ashraf Mahgoub. *email: schaterji@schaterji.io

Corrected: Author Correction

open

https://doi.org/10.1038/s41598-019-52196-4
mailto:schaterji@schaterji.io
https://doi.org/10.1038/s41598-020-59141-w

2Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Dataset Exhaustive Search With Athena (RNN) With Athena (N-gram)

Lighter

Selected k
Alignment
Rate (%)

EC Gain
(%) Selected k

Alignment
Rate (%)

EC Gain
(%) Selected k

Alignment
Rate(%)

EC
Gain
(%)

D1 k = 17 98.95% 96.30% Same as Exhaustive Search Same as Exhaustive Search

D2 k = 15 61.42% 73.80% k = 17 61.15% 80.10% Same as RNN

D3 k = 15 80.44% 86.78% k = 17 80.39% 95.34% Same as Exhaustive Search

D4 k = 17 93.95% 89.87% Same as Exhaustive Search Same as Exhaustive Search

D5 k = 17 92.15% 81.70% k = 25 92.09% 83.80% Same as Exhaustive Search

D6 k = 25 86.16% NA k = 17 85.63% NA Same as RNN

D7 k = 15 40.53% 37.58% Same as Exhaustive Search k = 17 40.24% 7.70%

Blue

D1 k = 20 99.53% 99% k = 25 99.29% 98.60% Same as Exhaustive Search

D2 k = 20 57.44% 4.61% Same as Exhaustive Search Same as Exhaustive Search

D3 k = 20 84.17% 99.20% Same as Exhaustive Search Same as Exhaustive Search

D4 k = 20 95.31% 98.50% Same as Exhaustive Search Same as Exhaustive Search

D5 k = 20 92.33% 88.90% Same as Exhaustive Search Same as Exhaustive Search

D6 k = 30 86.18% NA Same as Exhaustive Search k = 25 86.07% NA

D7 k = 25 17.19% 3.57% k = 30 16.96% 1.47% Same as Exhaustive Search

RACER

D1 GL = 4.7M 99.26% 84.80% Same as Exhaustive Search Same as Exhaustive Search

D2 GL = 4.7M 81.15% 92.90% Same as Exhaustive Search Same as Exhaustive Search

D3 GL = 3.7M 84.11% 88.27% Same as Exhaustive Search Same as Exhaustive Search

D4 GL = 4.2M 95.33% 97% Same as Exhaustive Search Same as Exhaustive Search

D5 GL = 4.2M 92.29% 81.63% GL = 20M 92.28% 80.50% Same as Exhaustive Search

D6 GL = 120M 86.36% NA Same as Exhaustive Search GL = 20M 86.12% NA

D7 GL = 3M 17.55% 21.10% GL = 20M 17.40% 26.50% Same as Exhaustive Search

Table 2. Comparison of Lighter, Blue, and RACER using 7 datasets. This is for finding the best k-value (GL
for RACER) using Athena variants vs. exhaustive search. We find either the optimal value or within 0.53%
(over Alignment Rate) and within 8.5% (EC Gain) of the theoretical best (in the worst case), consistent with
the reported results by Lighter (Figure 5 in6). These slightly sub-optimal configurations is due to the impact of
sub-sampling. However, with appropriate sampling rate selection, Athena achieves configurations that is 0.53%
of the oracle best configuration (found with exhaustive searching). We also notice that for RACER, GL found
by Athena is within 3% of the reference GL (except for the RNN model with D5, which still achieves very close
performance for both Alignment Rate and EC Gain). The Gain metric is not shown for D6 as the tool used
to compute it was not able to handle reads of length 250 bp. We notice that the best genome length found by
Athena for D7 (human genome) is 20Mbp, which is very low compared to the actual human genome length
(≈3 k Mbp). This shows that using heuristics to estimate the optimal value of K based on only one parameter
(genome length) can produce significantly suboptimal performance, even if the actual value of the genome
length is provided. Moreover, GenomeLength parameter in Racer represents the approximate length of the
DNA molecule that originated the reads. If only parts of a genome were sequenced, then only the total length of
those parts should be used, instead of the length of the total genome. Dataset D7 is just for a part of the genome
(24 Mbp), and Athena ‘s genome length selection of 20Mbp shows the efficacy of Athena for this usecase.

Dataset Coverage #Reads Read Length Genome Type Accession Number

D1 80X 20.8M 136 bp E. coli str. K-12 substr SRR001665

D2 71X 7.1M 47 bp E. coli str. K-12 substr SRR022918

D3 173X 18.1M 36 bp Acinetobacter sp. ADP1 SRR006332

D4 62X 3.5M 75 bp B. subtilis DRR000852

D5 166X 7.1M 100 bp L. interrogans C sp.
ADP1 SRR397962

D6 70X 33.6M 250 bp A. thaliana ERR2173372

D7 67X 202M 101 bp Homo sapiens SRR1658570

Table 1. Datasets’ description with coverage, number of reads, read lengths, genome type, and the Accesson
number. Coverage is estimated according to Illumina’s documentation49.

https://doi.org/10.1038/s41598-019-52196-4

3Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Importantly, the values of the performance-sensitive configuration parameters are dependent not only on the
dataset but also on the specific EC tool (Table 2). The performance of many EC algorithms is highly dependent
on the proper choice of configuration parameters, e.g., k-value (length of the substring) in k-spectrum-based
techniques. Selecting different k-values has a trade-off such that small values increase the overlap probability
between reads, however, an unsuitably small value degrades EC performance because it does not allow the algo-
rithm to discern correct k-mers from erroneous ones. In contrast, unsuitably high k-values decrease the overlap
probability and hurts EC performance because most k-mers will now appear unique. The k-mers that appear
above a certain threshold frequency, and are therefore expected to be legitimate, are solid k-mers, the others are
called insolid or untrusted k-mers. In k-spectrum-based methods, the goal is to convert insolid k-mers to solid
ones with a minimum number of edit operations. Thus, an adaptive method for finding the best k-value and other
parameters is needed for improved EC performance, and in turn, genome assembly.

Many existing EC solutions (e.g., Reptile4, Quake5, Lighter6, Blue7) require users to specify the k-mer size.
Although these EC tools do not rely on a reference genome to perform correction, the best configuration value
is usually found by exploration over the range of k-values8 and evaluating performance metrics, e.g., EC Gain,
Alignment Rate, Accuracy, Recall, and Precision using a reference genome. Therefore, a reference genome is
typically needed to serve as ground truth for such evaluations, making this tuning approach infeasible for de
novo sequencing tasks. Existing tools leave the best parameter choice to the end user and this has been explicitly
pointed out as an open area of work in1,9. However, a number of recent surveys highlighted that the automated
choice of parameters for the specific dataset being processed is crucial for the user to avoid inadvertently selecting
the wrong parameters10.

Some existing tools (e.g., KMERGENIE11) provide intuitive abundance histograms or heuristics to guide
k-value selection when performing de Bruijn graph based genome assembly. However, they only account for the
dataset when performing the optimal k-value selection. We find that this approach is unsuitable for our prob-
lem (i.e., finding best k-value for error correction) as the optimal k-value here also depends on the correction
algorithm (e.g., the optimal k-values for Blue and Lighter in our evaluation vary, Table 2). Also, the user is finally
responsible for interpreting the visualization and selecting the optimal k-mer value. To make the above argument
specific, we found that k = 25 achieves within 0.04% from the best EC Gain performance for dataset D1 when
using Blue. On the other hand, if the same k-value was used for D1 again but this time with the tool Lighter, the
EC Gain drops by 26.8% from the maximum Gain (Tables 1 and 2 in Appendix).

In addition, there is no single k-value that works optimally for all datasets, even when using the same EC
tool. For example, we found that k = 25 gives the best EC Gain performance for D5 using Lighter, showing an EC
Gain of 83.8%. However, the same k-value used for D3 with Lighter gives an EC Gain of only 65% compared to a
Gain of 95.34% when using the optimal k-value (Table 1 in Appendix). Thus, there is a need for a data-driven and
tool-specific method to select the optimal k-value.

Our solution, Athena finds the best value of the configuration parameters for correcting errors in genome
sequencing, such as the value of k in k-mer based methods (Just as Athena is the Greek Goddess of wisdom and
a fierce warrior, we wish our technique to unearth the genomic codes underlying disease in a fearless war against
maladies). Further, Athena does not require access to a reference genome to determine the optimal parameter
configuration. In our evaluation, we use Bowtie2 for alignment and measure alignment rate as a metric to evaluate
Athena. However, alignment is not needed for Athena to work as shown in Fig. 1. Athena, like other EC tools,
leverages the fact that NGS reads have the property of reasonably high coverage, 30X–150X coverage depth is
commonplace. From this, it follows that the likelihood of correct overlaps for a given portion of the genome will
outnumber the likelihood of erroneous ones4. Athena uses a language model (LM) to estimate the correctness of
the observed sequence considering the frequency of each subsequence and its fitness with respect to the context.
This is integral to traditional NLP tasks such as speech recognition, machine translation, or text summarization
in which LM is a probability distribution capturing certain characteristics of a sequence of symbols and words,
which in this case is specialized to the dataset and to the EC tool of choice for optimal performance.

In our context, we use LM to estimate the probabilistic likelihood that some observed sequence is solid or insolid,
in the context of the specific genome. We create an LM using as training, the enire original dataset (with uncor-
rected reads). We then run the EC algorithm on a subset of the overall data with a specific value of the configura-
tion parameter. Subsequently, we use the trained LM at runtime to compute a metric called the “Perplexity metric”
(which is widely used in the NLP literature). We show empirically that the perplexity metric has a strong negative
correlation with the quality of the error correction (measured typically through the metric called “EC gain”).

Figure 1. Overview of Athena’s workflow. First, we train the language model using the entire set of uncorrected
reads for the specific dataset. Second, we perform error correction on a subsample from the uncorrected reads
using an EC tool (e.g., Lighter or Blue) and a range of k-values. Third, we compute perplexity of each corrected
sample, corrected with a specific EC tool, and decide on the best k-value for the next iteration, i.e., the one
corresponding to the lowest perplexity metric because EC quality is negatively correlated with the perplexity
metric. This process continues until the termination criteria are met. Finally, the complete set of reads is
corrected with the best k-value found and then used for evaluation.

https://doi.org/10.1038/s41598-019-52196-4

4Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Crucially, the Perplexity metric evaluation does not require the computationally expensive alignment to a refer-
ence genome, even when available. Through a stochastic optimization method, we evaluate the search space to
pick the best configuration-parameter value for the EC algorithm-k in k-mer-based methods and the Genome
Length (GL) in the RACER EC tool. Moreover, most EC tools are evaluated based on their direct ability to reduce
error rates rather than to improve genome assembly. Although in general, assembly benefits from the error cor-
rection pre-processing step, sub-optimal error correction can reduce assembly quality due to conversion of benign
errors into damaging ones12. In our evaluation, we see that the EC improvement due to Athena also leads to
higher quality assembly (Table 3).

In summary, this paper makes the following contributions.

 1. We compare and contrast two LM variants of Athena, N-gram and RNN-based. Through this, we show
that N-Gram modeling can be faster to train while char-RNN provides similar accuracy to N-gram, albeit
with significantly lower memory footprint, conducive to multi-tenant analysis pipelines (e.g., MG-RAST
for metagenomics processing13).

 2. We introduce a likelihood-based metric, the Perplexity metric (repurposed from NLP), to evaluate EC
quality without the need for a reference genome. This is the first such use of this metric in the computa-
tional genomics domain.

 3. We compare and contrast two LM variants of Athena, N-gram and RNN-based. Through this, we show that
N-Gram modeling can be faster to train while char-RNN provides similar accuracy to N-gram, albeit with
significantly lower memory footprint, conducive to multi-tenant analysis pipelines (e.g., MG-RAST for
metagenomics processing13).

 4. We apply Athena to 3 k-mer based EC tools: Lighter6, Blue7, and RACER14 on 7 real datasets, with varied
error rates and read lengths. We show that Athena was successful in finding either the best parameters
(k for Lighter and Blue, and GenomeLength for RACER) or parameters that perform within 0.53% of the
overall alignment rate to the best values using exhaustive search against a reference genome. We couple EC,
with best parameter selection by Athena, to the Velvet genome assembler and find that it improves assem-
bly quality (NG50) by a Geometric Mean of 4.72X across 7 evaluated datasets.

Background
Error correction and evaluation. The majority of error correction tools share the following intuition:
high-fidelity sequences (or, solid sequences) can be used to correct errors in low-fidelity sequences (or, in-solid
sequences). However, they vary significantly in the way they differentiate between solid and in-solid sequences.
For example4, corrects genomic reads containing insolid k-mers using a minimum number of edit operations
such that these reads contain only solid k-mers after correction. The evaluation of de novo sequencing techniques
rely on likelihood-based metrics such as ALE15 and CGAL16, without relying on the availability of a reference
genome. On the other hand, comparative sequencing or re-sequencing, such as to study structural variations
among two genomes, do have reference genomes available.

Language modeling. To increase the accuracy of detecting words in speech recognition, language modeling
techniques have been used to see which word combinations have higher likelihood of occurrence than others,
thus improving context-based semantics. Thus, language modeling is being used in many applications such as
speech recognition17, text retrieval, and many NLP applications. The main task of these statistical models is to
capture historical information and predict the future sequences based on that information18. Language models
are classified into two main categories: (i) Count-based methods that represent traditional statistical models,

— Correlation to Alignment Comparison with FIONA Assembly quality
Runtime
Improvement

Dataset
Correlation
(N-Gram)

Correlation
(RNN)

Fiona + Bowtie2
(Alignment Rate)

RACER w/o
Athena + Bowtie2
(Alignment Rate)

RACER w/
Athena + Bowtie2
(Alignment Rate)

NG50 of
Velvet
w/o EC

NG50 of Velvet w/
(Racer + Athena) Athena Bowtie2

D1 −0.977 −0.938 99.25% 85.01% 99.26% 3019 6827 (2.26X) 1 m 38 s 10 m 5 s

D2 −0.981 −0.969 73.75% 58.66% 81.15% 47 2164 (46X) 49 s 3 m 53 s

D3 −0.982 −0.968 83.12% 80.79% 84.11% 1042 4164 (4X) 1 m 39 s 7 m 50 s

D4 −0.946 −0.930 95.33% 93.86% 95.33% 118 858 (7.27X) 52 s 3 m 8 s

D5 −0.970 −0.962 92.34% 90.91% 92.29% 186 2799 (15X) 1 m 40 s 9 m 42 s

D6 −0.944 −0.979 87.43% 85.76% 86.84% 1098 1237 (1.12X) 6 m 40 s 1 h 42 m

D7 −0.723 −0.862 NA 17.17% 17.55% 723 754 (1.04X) 16 m 71 m

Table 3. Comparison of Overall Alignment Rate of Fiona versus RACER (with and without Athena’s tuning).
RACER requires the user to enter a value for the “Genome Length”, which has no default value. Therefore,
“RACER w/o Athena” is RACER operating with a fixed Genome Length of 1M. Columns 5 & 6 demonstrate the
strong anti-correlation values between Perplexity and Alignment Rate. The last two columns show the assembly
quality (in terms of NG50) before and after correction by RACER, tuned with Athena. Improvements in NG50
are shown between parentheses, while NGA50 and the amount of assembly errors metrics showed similar
improvements and hence omitted. We also show the search time comparison for estimating the perplexity
metric with Athena (N-gram) for a point in search space vs. estimating overall alignment rate with Bowtie2.

https://doi.org/10.1038/s41598-019-52196-4

5Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

usually involve estimating N-gram probabilities via counting and subsequent smoothing. (ii) Continuous-space
language modeling is based on training deep learning algorithms. In recent years, continuous-space LMs such as
fully-connected Neural Probabilistic Language Models (NPLM) and Recurrent Neural Network language models
(RNNs) are proposed. Now we describe in detail each class of our language models.

n-Gram-based language modeling. This type of modeling is word-based. The main task that N-Gram
based models19 have been used for is to estimate the likelihood of observing a word Wi, given the set of previous
words W0, …Wi−1, estimated using the following equation:

∏ ∏... = | ... ≈ | ...
=

−
=

− −P W W W P W W W P W W W(, , ,) (, ,) (, ,)
(1)m

i

m

i i
i

m

i i i n0 1
1

1 1
1

1

where n represents the number of history words the model uses to predict the next word. Obviously, a higher n
results in better prediction, at the cost of higher training time resulting from a more complex model. Also notice that
for this model to operate, it has to store all conditional probability values and hence has a high memory footprint.

Char-RNN-Based language modeling. Recurrent neural network (RNN) is a very popular class of neural
networks for dealing with sequential data, frequently encountered in the NLP domain. The power of RNN is that
each neuron or unit can use its internal state memory to save information from the previous input and use that
state, together with the current input, to determine what the next output should be. Character-level RNN mod-
els, char-RNN for short, operate by taking a chunk of text and modeling the probability distribution of the next
character in the sequence, given a sequence of previous characters. This then allows it to generate new text, one
character at a time20. RNNs consist of three main layers: Input Layer, Hidden Layer, and Output Layer. First, Input
Layer takes xt vector, which is input at a time step t, usually a one-hot encoding vector of the tth word or character
of the input sentence. Second, Hidden Layer consists of the hidden state at the same time step st, which represents
the memory of this network. It is calculated as a non-linear function f (e.g., tanh) of the previous hidden state st−1
and the input at current time step xt with the following relation:

= + .−s f Ux Ws() (2)t t t 1

Here, W is a matrix that consists of hidden weights of this hidden layer. Finally, Output Layer consists of a vector
ot, which represents the output at step t and contains prediction probabilities for the next character in the sentence.
Formally, its length equals the size of the vocabulary and is calculated using a softmax function. Backpropagation
was used to train the RNN to update weights and minimize the error between the observed and the estimated next
word. For Deep RNN architectures, there are multiple parameters that affect the performance of the model. The
two main parameters are: Number of Hidden Layers and Number of Neurons per Layer. For our Char-RNN language
modeling, vocabulary would include the four nucleotide bases as characters A, C, G, and T. Each input is a one-hot
encoding vector for the four nucleotides. Each output vector at each time step also has the same dimension.

Perplexity of the language model. Perplexity is a measurement of how well a language model predicts
a sample. In NLP, perplexity is one of the most effective ways of evaluating the goodness of fit of a language
model since a language model is a probability distribution over entire sentences of text21. For example, 5 per word
perplexity of a model translates to the model being as confused on test data as if it had to select uniformly and
independently from 5 possibilities for each word. Thus, a lower perplexity indicates that language model is better
at making predictions. For an N-Gram language model, perplexity of a sentence is the inverse probability of the
test set, normalized by the number of words21.

=
....

≈
∏ | ...= − −

PP W
P W W W P W W W

() 1
(, , ,)

1
(, ,) (3)m i

m
i i i n1 2 1 1

m m

It is clear from (3) that minimizing perplexity is the same as maximizing the probability of the observed set of
m words from W1 to Wm.

For RNN, perplexity is measured as the exponential of the mean of the cross-entropy loss (CE) as shown in (4)22,
where ŷ is the predicted next character–the output of the RNN–and |V| is the vocabulary size used during training.

∑= − .
=

| |
ˆ ˆCE y y p y p y(,) ()log(())

(4)i

V

i i
1

Although these two models estimate the perplexity metric differently, they achieve the same purpose, which
is estimating the correctness of a sequence given the trained probability distribution. In the next section, we
describe how our system Athena uses these models to find the best k-value for a given tool and dataset.

our Solution: Athena
Application of language models. We use two different LM variants in our Athena algorithm. We describe
them next.

N-Gram language models. We train an N-Gram model19, which is word-based, from the input set of reads before
correction. This N-Gram model needs word-based segmentation of the input read as a pre-processing phase.
Then, we use this trained LM to evaluate EC performance.

https://doi.org/10.1038/s41598-019-52196-4

6Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

RNN language models. The second technique is RNN-based LM23, using different RNN architectures, e.g.,
standard RNNs, LSTMs, and GRUs. These models can be trained either as word-based models or character-based
models. We train our RNN variant as character-based model to avoid having to make the decision about how to
segment the genomic string, as we have to do for the N-Gram model.

Training time and memory footprint. Contrasting our 2 LM variants: Although training N-Gram LMs is much
faster relative to RNN-based models (3–5 minutes for N-Gram vs. 10–11 hours for RNN-based across the 7 data-
sets), they still have the requirement of splitting a read into words of specific length. Further, RNN-based models
have much lower memory footprint and storage requirements relative to N-Gram. This is because N-Gram mod-
els need to store conditional probabilities in large tables with an average size of 0.6–1.1 GB across the 7 datasets.
In contrast, RNNs only need to store the network architecture and weights with an average size of 3–5 MB across
the 7 datasets. For instance, the size of N-gram model for D7 is 2 GB while the size for the RNN model is only 3.5
MB. With respect to run time, N-gram takes 16 minutes for the whole dataset D7 while RNN takes 30 minutes on
a 50 K sample of D7. Also, we used an LSTM variant of Athena and found that it took 3 times longer to train and
test but gave insignificant improvement in perplexity over RNN.

Intuition for the use of the perplexity metric. Our design uses the Perplexity metric to provide an accu-
rate, and importantly, quick estimation of the EC quality with the current configuration parameter value(s). The
Perplexity metric is based on the LM trained on the entire original (uncorrected) dataset. The Perplexity metric
is then calculated on the dataset of the corrected reads (entire dataset for N-Gram and 1% for RNN) to measure
the EC performance. It measures how well LM can predict the next element in an input stream. Suppose the input
stream is H and the next element is e. Then, the Perplexity metric is inversely proportional to the probability
of seeing “e” in the stream, given the history H for the learned model. Moreover, the Perplexity metric has the
advantage of taking the context of the element (e.g., previous and subsequent k-mers) into consideration when
estimating the probability of observing that element. This context-awareness feature is not considered in simple
k-mer counting methods. This method works because we see empirically that there is a high negative correlation
of the Perplexity metric with both EC metrics–Alignment Rate and EC Gain. Given this anti-correlation, we can
rely on the Perplexity metric as an evaluation function, and apply a simple search technique (e.g., hill climbing)
to find the best k-value for a given dataset. In this description, for simplicity of exposition, we use the k-value in
k-mer based techniques as an example of Athena -tuned configuration parameter. However, Athena can tune
any other relevant configuration parameter in EC algorithms and we experimentally show the behavior with
another parameter–Genome Length–in the RACER tool. Figure 2 shows an example how Perplexity can evaluate
the likelihood of a sequence of k-mers using their frequencies and contextual dependencies. In this example, we
notice that the corrected read set (i.e., on the right) has a considerably lower Perplexity value (15.2), relative to
the erroneous set (77.72). Thus, our intuition that the Perplexity metric reflects the correctness of the read dataset
holds true here through the observed negative relationship.

Search through the parameter space. Our objective is to find the best k-value that will minimize the
Perplexity of the corrected dataset. The Perplexity function is denoted by f in (5).

= =k Perplexity f LM D karg min arg min (, ,) (5)opt k k i0i i

Here, LM: trained language model, D0: uncorrected read set, and k: the configuration parameter we wish
to tune. f is a discrete function as k-values are discrete, and therefore, its derivative is not computable. Thus, a
gradient-based optimization technique is inapplicable. Hence, we use a simple hill-climbing technique to find the
value of k that gives the minimum value of f, for the given LM and D0 in (5).

The following pseudo-code describes the steps used for finding the best k-value for a given dataset. We start
with Algorithm 1, which invokes Algorithm 2 multiple times, each time with a different starting value. We begin
by training an LM on the original uncorrected read set (D0). Second, we assume that the best value of k lies in a
range from A to B (initially set to either the tool’s recommended range, or between 1 and L, where L is the read
size).

We apply an existing EC algorithm (Lighter, Blue, or RACER in our evaluation) with different initial values
… ∈k k A B(, ,) (,)m0 to avoid getting stuck in local minima, going through multiple iterations for a given initial

value. We evaluate the Perplexity for the corrected dataset with current values of k: ki, and its neighbors, (ki − δ
and ki + δ). Athena takes δ as a user input. The larger values of δ allows Athena to search the k-mers space faster,
but it has the downside of missing good values of k*. The default value for δ is 1. Notice that using δ = 1 is not the
same as applying exhaustive search to all possible values of k, as with the hill-climbing technique that Athena uses,
the search is terminated when the current k-mer is better than its neighbours (as shown in step 2 in Algorithm 2).
In each iteration, we apply hill-climbing search to identify the next best value of ki for the following iteration. The
algorithm terminates whenever the Perplexity relative to ki is less than the perplexities of both its neighbors or the
maximum number of (user-defined) iterations is reached. However, all shown results are with respect to only one
initial value (i.e., m = 0 in k0, ki, …, km).

Time and space complexity. Because we apply hill climbing search to find the best value of k, the worst-case time
complexity of the proposed algorithm is L × |S′|, where L is the upper bound of the range of k-values to search
for and |S′| is size of selected sample. For the space complexity, Athena only needs to save the Perplexity values of
previously investigated k-values, which is also linear in terms of L.

https://doi.org/10.1038/s41598-019-52196-4

7Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Evaluation with Real Datasets
In this section, we evaluate Athena variants separately by correcting errors in 6 real datasets and evaluating the
quality of the resultant assembly.

implementation notes and dataset. We implement the N-Gram model using SRILM toolkit24. SRILM
is an open source toolkit that supports building statistical N-Gram LMs, in addition to evaluating the likelihood
of new sequences using the Perplexity metric. For the RNN LM implementation, we build on the TensorFlow
platform25. Specifically, we utilized Character-level RNN models, char-RNN for short, which takes a chunk of text
and models the probability distribution of the next character in the sequence, given a sequence of previous char-
acters. After correction, we run the Bowtie2 aligner26 and measure the Alignment Rate and the Error Correction
Gain (EC Gain). A higher value for either metric implies superior error correction. We do a sweep through a
range of k-values and measure the alignment rate to determine if the Athena -generated k-value is optimal or its
distance from optimality.

For interpreting the execution time results, our experiments were performed on Dell Precision T3500
Workstation, with 8 CPU cores, each running at 3.2 GHZ, 12GB RAM, and Ubuntu 16.04 Operating System. We
use 3 EC tools, in pipeline mode with Athena, namely, Lighter, Blue, and RACER. Blue uses a k-mer consensus
to target different kinds of errors, e.g., substitution, deletion and insertion errors, as well as uncalled bases (rep-
resented by N). This improves the performance of both alignment and assembly7. In contrast, Lighter is much
faster as it uses only a sample of k-mers to perform correction. We use the automated subsampling factor (called
alpha) selection option in Lighter, which is estimated based on the genome size. Third, RACER uses a different
configuration parameter distinct from the k-value, specifically Genome Length (GL), and we are able to tune GL
as well. Our ability to tune any of these EC algorithm’s parameters is in line with our vision and ongoing work to
design extensible blocks of software to expedite algorithmic development in bioinformatics27. Incidentally, we
started using another popular EC tool, Reptile, but it only allowed for a smaller range of k-values, beyond which
it ran into out-of-memory errors. Hence, to demonstrate results with the full range of k values, we restricted our-
selves to Lighter, Blue, and RACER. Our datasets are Illumina short reads (Table 1), used in multiple prior studies
(e.g.4,6,28,29). For these, there exist ground-truth reference genomes, which we use to evaluate the EC quality. The
seven datasets have different read lengths (from 36 bp to 250 bp) and different error rates (from <3% to 43%).

optimal parameter selection. The results of using Athena with Lighter, Blue, and RACER tools are shown
in Table 2 for each dataset. The value of k found through exhaustive testing (or, GL for RACER) along with the EC
quality is given first. Then it is noted when the Athena -selected configuration matches this theoretical best. We
find that in 27 of 36 cases (75%) the configuration found by Athena matches the theoretical best. In the remaining
cases, our chosen parameters are within 0.53% in overall alignment rate to the best values. We see that the optimal
parameter value almost always corresponds to the lowest perplexity scores computed using Athena’s language
modeling (Tables 1 and 2 in Appendix). Further, the anti-correlation between perplexity and alignment rate holds
for both optimal and non-optimal k-values. This shows that our hypothesis is valid across a range of k-values. We
notice that the feasible range of k-values in Blue is (20, 32), distinct from Lighter’s. Another interesting obser-
vation is that the optimal k-values are different across the two different EC tools, Lighter and Blue, for the same
dataset, as observed before6. Athena can be applied to a different configuration parameter, GL for the RACER
tool, in line with our design as a general-purpose tuning tool.

n-gram language model results. We start by training an N-Gram language model from the original
dataset. We divide each read into smaller segments (words) of length Ls (set to 7 by default). A careful reader may

Algorithm 1. Correct Set of Reads.

Algorithm 2. Find Optimal k.

https://doi.org/10.1038/s41598-019-52196-4

8Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

be concerned that selecting the best value of Ls is a difficult problem in itself, of the same order of difficulty as
our original problem. Fortunately, this is not the case and Ls selection turns out to be a much simpler task. From
domain knowledge, we know that if we use Ls = 4 or less, the frequencies of the different words will be similar
as this increases the overlap probability between the generated words, thus reducing the model’s discriminatory
power, while a large value will mean that the model’s memory footprint increases. We find that for a standard
desktop-class machine with 32 GB of memory, Ls = 8 is the maximum that can be accommodated. Further, we
find that the model performance is not very sensitive in the range (5–7), so we end up using Ls = 7. The same
argument holds for selecting a history of words, and we use a tri-gram model (history of 3 words, i.e., n = 3) for
all our experiments. Second, we compare the perplexity metric for datasets corrected with different k-values and
compare the perplexity metric (without a reference genome) to the alignment rate (using a reference genome).
We always report the average perplexity, which is just the total perplexity averaged across all words. Our results
show a high negative correlation between the two metrics on the 7 datasets (≤−0.930 for the first six datasets
and ≤−0.723 for D7), as shown in Table 3. To reiterate, the benefit of using the perplexity metric is that it can be
computed without the ground truth and even where a reference genome is available, it is more computationally
efficient than aligning to the reference and then computing the alignment rate.

char-Rnn language model results. For training our RNN, we used the “tensorflow-char-rnn” library25.
After parameter tuning, we use the following architecture for our experiments: 2 hidden layers with 300 neurons
per layer, output layer with size 4 (i.e., corresponding to the four base pairs), mini-batch size 200, and learning
rate 2e−3 respectively. For each of the 7 datasets, we used 90% for training and 10% for validation, with no overlap,
for coming up with the optimal RNN architecture.

For our char-RNN results, we find that the perplexity metric has a strong negative relation to the overall
alignment rate (Table 3), with the absolute value of the correlation always greater than 0.86. Here, we have to
sample the corrected set for calculating the perplexity measure because using an RNN to perform the calculation
is expensive. This is because it involves, for predicting each character, doing 4 feed-forward passes (correspond-
ing to the one-hot encodings for A, T, G, or C), each through 600 neurons. Empirically, for a test sample size of
50 K, this translates to approximately 30 minutes on a desktop-class machine. In the experiments with the real
datasets, we use 50 K samples with uniform sampling, and in synthetic experiments, we use 100 K samples (i.e.,
only 1% of the dataset). Importantly, the strong quantitative relationship between perplexity and the EC quality
is maintained even at the low sampling rate (0.5% for real dataset). Note that this test sample size is different from
the sample size used by the EC tool to perform the correction, shown in Fig. 1, which must be at least of coverage
30X to ensure accurate k-mer analysis30.

comparison with a self-tuning ec tool. Here, we compare Athena with the EC tool, Fiona31, which
estimates its parameters internally. The purpose of this comparison is to show that Athena can tune k-mer-based
approaches (RACER specifically for this experiment) to achieve comparable performance to suffix array-based
approaches (e.g., Fiona), reducing the gap between the two approaches.

The works by10 and32 show a similar comparison between different EC approaches concluding that the auto-
matic selection of configuration parameters, based on the datasets, is crucial for EC performance. However, they
do not perform such parameter tuning automatically. Table 3 presents the overall alignment rate for our 6 eval-
uation datasets, calculated after doing correction by Fiona. We notice that RACER, when tuned with Athena,
outperforms automatic tuning by Fiona in 3 of the 7 datasets (i.e., by about 0.01%, 7.4% and 1% on D1, D2, and
D3 respectively), while they are equal in one dataset. Finally, Fiona is better on D5 by 0.05% and on D6 by 0.59%.
Notice that Racer’s runtime is 5–6X faster compared to Fiona, which is similar to the runtimes reported in33.
Moreover, we omit the result of Fiona with D7 as the tool took more than 6 hours without producing the corrected
reads.

Figure 2. An example showing how the perplexity metric encodes errors in genomic reads. The read on the
left is an erroneous read selected from dataset D3, while the read on the right is the same read, after correction
with Lighter. When using language modeling to compute the perplexity for both reads, we notice that the read
on the right has a lower perplexity value (15.2), relative to the erroneous read (77.72), as the sequence of k-mers
after correction has a higher probability of occurrence. Also notice that the probability of a sequence of k-mers
depends on both their frequencies and their relative order in the read, which allows the perplexity metric to
capture how likely it is to observe this k-mer given the neighboring k-mers in a given read.

https://doi.org/10.1038/s41598-019-52196-4

9Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Impact on assembly quality and searching time. Here we show the impact on genome assembly qual-
ity of using an EC tool tuned with Athena. We use Velvet34 to perform the assembly and QUAST35 to evaluate the
assembly quality. We compare the NG50 before and after correction done by RACER using the best GL found
by Athena. The results (Table 3) show a significant improvement on NG50 by 2.26X, 46X, 4X, 7.27X, 15X, 1.2X,
and 1.04X respectively. For D7, the improvement is the lowest, since D7 has the lowest alignment rate across all
datasets. We also collect the NGA50 scores and it shows identical improvements as the NG50. These improve-
ments are consistent with what was reported in7,12, which measured improvement due to the use of EC tools with
manually tuned configuration parameters.

Search time improvement with Athena. Consider that in our problem statement, we are trying to search through
a space of configuration parameters in order to optimize a metric (EC Gain or Alignment Rate). The search space
can be large and since the cost of searching shows up as a runtime delay, it is important to reduce the time that it
takes to evaluate that metric of each search point. Although EC tools don’t need a reference genome to operate,
current state-of-the-art method use a reference genome to tune EC performance. As shown in1,11, the best value
of configuration parameter k is found by iteratively picking a single k-value, run the EC tool with that value,
then perform alignment (with one of several available tools such as Bowtie2), and finally compute the metric for
that value. In contrast, with Athena, to explore one point in the search space, we run the EC algorithm with the
k-value, and then compute the Perplexity metric, which does not involve the time-consuming alignment step.
Here, we evaluate the relative time spent in exploring one point in the search space using Athena vis-à-vis the
current state-of-the-art. The result is shown in Table 3. For this comparison, the alignment is done by Bowtie226.
We find that using the baseline approach, each step in the search takes respectively 6.2X, 4.8X, and 4.7X, 3.6X,
5.82X, 15.3X, and 4.4X longer for the 7 datasets. That is because the time taken by the LM to calculate the per-
plexity is linear in terms of the input (number of reads x read length), while the runtimes of alignment algorithms
are superlinear36.

Further, while we use the hill-climbing technique to search through the space, today’s baseline methods use
exhaustive search, such as in Lighter6 and thus the end-to-end runtime advantage of Athena will be magnified.

impact of sub-sampling. One drawback of sub-sampling is the reduction of coverage, which can negatively
impact the accuracy of k-mer analysis. Therefore, we select the sub-sampling ratio so that the sample size has a
coverage of at least 30X, which was found sufficient by several prior works (such as30) for accurate k-mer analysis.
When the coverage is less than 30X, the distribution of solid k-mers vs. non-solid k-mers becomes very close, for
which EC tools (e.g., Lighter with dataset D2) will not perform any correction for any given value of k. So it is a
limitation in EC tools in general to require higher coverage for accurate error correction. For datasets with cover-
age less than 30X, we use the complete dataset without any subsampling.

We use the well-known Lander-Waterman’s formula37 to estimate the required sample-size to reach such cov-
erage. If the data coverage is less than 30X, the whole dataset is used.

We also notice from Table 2 that Athena sometimes proposes slightly sub-optimal configurations compared
to oracle best (within 0.53% in terms of overall alignment rate). This is due to the impact of sub-sampling as the
best configuration for the sample can be slightly different from the best configuration for the complete dataset. We
study the impact of sub-sampling on the accuracy of Athena. We use D2 for this experiment as it is the one with
the highest error rate across all 7 datasets. First, we select two random samples from D2 with sampling rates of
35% (30X) and 70% (50X) respectively and investigate the correlation between perplexity and EC gain. As shown
in Fig. 3, perplexity and EC gain have a very high inverse correlation, for all three tools, across the entire range
of k-values. This shows that sampling in Athena has the advantage of significant improvements in runtime, while
preserving the accuracy of optimal parameter selection.

Second, we select a random sample from D2 with a sampling rate of 40%. We scan over the range of values of
the tuning parameter (k-mer size for Lighter and Blue, Genome length for RACER) and calculate perplexity and
EC gain for each value. We repeat this experiment with 70 different random samples and find that the selected
value did not change in all runs, which also matches the best value with exhaustive searching over the complete
dataset. This shows that the sub-sampling does not overfit the data and preserves the accuracy of the optimal
parameter selection.

Figure 3. Impact of sub-sampling on perplexity and gain. We compare the perplexity and gain with samples
of sizes 35% and 70% of the D2 dataset. We observe the negative correlation between both metrics and also the
positive correlation between the values of each metric on the two samples.

https://doi.org/10.1038/s41598-019-52196-4

1 0Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Evaluation with Synthetically Injected Errors
Here we experiment on datasets where we synthetically inject errors of three kinds - insertion, deletion, and
substitution. The real data sets used in our evaluation in Section belonged to Illumina sequencing platform and
therefore had primarily substitution errors (about 99% of all errors). However, other platforms such as 454 or Ion
torrent sequencing suffers primarily from insertions and deletions10. Hence our synthetic injections are meant
to uncover if the relationship between perplexity and error rate holds for these other error types. We start by
randomly collecting 100 K short reads from the reference genome (i.e., almost error-free) for two organisms used
in the real datasets–E. coli (D1, D2) and Acinetobacter (D3). Afterward, we inject errors of each type as follows:

 1. Deletion: We select the index of injection (position of the deleted segment), which follows a uniform
distribution U(0, L − d), where L is the length of the read and d is the length to delete.

 2. Insertion: Similar to deletion errors, the index of insertion follows a uniform distribution U(0, L − I),
where I is the length of inserted segment. Moreover, each base pair in the inserted segment follows a uni-
form distribution over the four base pairs (A, C, G, or T).

 3. Substitution: For this type of synthetic errors, we select k positions of substitutions following a uniform
distribution U(0, L). Then, we substitute each base pair of the k positions with another base pair following a
uniform distribution over the four base pairs (A, C, G, or T). Note that there is one-in-four chance that the
substitution results in the same base pair.

We test the proposed approach against two levels of synthetic errors: low error rate (Uniform in (1, 5) bp in
error per read), and high error rate (Uniform in (6, 10) bp in error per read). In all cases, the language model is
trained using the original data set, mentioned in Table 1, with the natural ambient rate of error. Figure 4 shows
the results for the perplexity metric in the data set after error injection (i.e., without doing correction), for the
three error types and an equi-probable mixture of the three. The results show that for all types of errors, the direct
quantitative relation between error rate and perplexity holds–the perplexity values are higher for high error rate
injection. One observation is that the values of perplexity for insertion and substitution errors are higher than
for deletion errors. For example, insertion and substitution perplexities are 3X & 4.7X the deletion perplexity for
high error rate data sets, and 2X & 1.5X for low error rate data sets. This is expected because in deletion errors, the
segment of the read after the index of deletion is a correct segment and hence is expected by the language model.
On the other hand, for insertion and substitutions, the added synthetic base pairs will most likely construct wrong
segments. Such segments will have very low counts in the language model and therefore produce higher overall
perplexities. Another observation is that the perplexities for the injection into data set D1 are higher than for D3.
This is likely because D3 had a higher natural ambient rate of error and hence the additional injection does not
cause as much increase in the perplexity metric.

Related Work
error correction approaches. EC tools can be mainly divided into three categories: k-spectrum based,
suffix tree/array-based, and multiple sequence alignment-based (MSA) methods. Each tool takes one or more
configuration parameters. While we have experimented with Athena applied to the first kind, with some engi-
neering effort, it can be applied to tuning tools that belong to the other two categories.

Figure 4. N-Gram (Figure A,B) and RNN (Figure C,D) Perplexity metric for different types of synthetic errors:
Indels and Substitution errors, and a mixture of the three for E. coli str reference genome (Figure A,C) and
Acinetobacter sp. reference genome (Figure B,D). We compare two versions of such errors: high and low error
rates.

https://doi.org/10.1038/s41598-019-52196-4

1 1Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Language modeling in genomics. In the genomics domain, LM was used in38 to find the characteristics
of organisms in which N-Gram analysis was applied to 44 different bacterial and archaeal genomes and to the
human genome. In subsequent work, they used N-Gram-based LM for extracting patterns from whole genome
sequences. Others39 have used LM to enhance domain recognition in protein sequences. For example40, has used
N-Gram analysis specifically to create a Bayesian classifier to predict the localization of a protein sequence over
10 distinct eukaryotic organisms. RNNs can be thought of as a generalization of Hidden Markov Models (HMMs)
and HMMs have been applied in several studies that seek to annotate epigenomic data. For example41, presents
a fast method using spectral learning with HMMs for annotating chromatin states in the human genome. Thus,
we are seeing a steady rise in the use of ML techniques, traditionally used in NLP, being used to make sense of
-omics data.

Automatic parameter tuning. used a Feature-based Accuracy Estimator as a parameter advisor for the
Opal aligner software42,43. The field of computer systems has had several successful solutions for automatic con-
figuration tuning of complex software systems. Our own work44 plus others45 have shown how to do this for
distributed databases, while other works have done this for distributed computing frameworks like Hadoop46,47
or cloud configurations48. We take inspiration from them but our constraints and requirements are different (such
as, avoiding reliance on ground truth corrected sequences).

Discussion
The space to search for finding the optimal configuration is non-convex in general. Therefore, it is possible to
get stuck in a local minima, and hence, we use multiple random initializations. However, in our evaluation, we
find that a single initialization suffices. Some EC tools have a number of performance-sensitive configuration
parameters with interdependencies. There, systems such as Rafiki44 can encode the dependencies, while relying
on Athena ‘s LM to compute the corresponding performance metric, converging toward optimal parameters.
With some engineering effort, Athena can be used to optimize the k-value in DBG-based assemblers as well,
though there will be different optimization passes since the optimal values are likely to be different for the error
correction and assembly stages.

Finally, a careful reader may wonder if we can use copy number of all solid k-mers instead of the perplexity
metric. The problem with this approach is that it will require a predefined frequency threshold to identify the
solid k-mers. Using the perplexity metric, there is no need for such a threshold. Also the perplexity metric takes
into account the context of the k-mer (i.e., previous and subsequent k-mers) in deciding the accuracy of the EC
tool output. Also, notice that our main target is to find the optimal k-mer size, and different k-mers will have
different thresholds as well.

conclusion
The performance of most EC tools for NGS reads is highly dependent on the proper choice of its configuration
parameters, e.g., k-value selection in k-mer based techniques. It is computationally expensive to search through
the entire range of parameters to determine the optimal value, which varies from one dataset to another. Using
our Athena suite, we target the problem of automatically tuning these parameters using language modeling tech-
niques from the NLP domain without the need for a ground truth genome. Through N-Gram and char-RNN
language modeling, we compute the “perplexity” metric, a novel one for this problem domain, and find that the
metric has a high negative correlation with the quality of genomic assembly and can be computed efficiently
without using a reference genome. The perplexity metric then guides a hill climbing-based search toward the best
k-value. We evaluate Athena with 6 different real datasets, plus with synthetically injected errors. We find that the
predictive performance of the perplexity metric is maintained under all scenarios. Further, using the perplexity
metric, Athena can search for and arrive at the best k-value, or within 0.53% of the assembly quality obtained
using brute force. Athena suggests a k-value within the top-3 best k-values for N-Gram models and the top-5 best
k-values for RNN models (the top values were determined by brute force searching).

Received: 1 April 2019; Accepted: 7 October 2019;
Published online: 06 November 2019

References
 1. Mahadik, K., Wright, C., Kulkarni, M., Bagchi, S. & Chaterji, S. Scalable genomic assembly through parallel de bruijn graph

construction for multiple k-mers. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,
and Health Informatics, 425–431 (ACM, 2017).

 2. Szalay, T. & Golovchenko, J. A. De novo sequencing and variant calling with nanopores using poreseq. Nat. biotechnology 33, 1087
(2015).

 3. Sameith, K., Roscito, J. G. & Hiller, M. Iterative error correction of long sequencing reads maximizes accuracy and improves contig
assembly. Briefings bioinformatics bbw003 (2016).

 4. Yang, X., Dorman, K. S. & Aluru, S. Reptile: representative tiling for short read error correction. Bioinforma. 26, 2526–2533 (2010).
 5. Kelley, D. R., Schatz, M. C. & Salzberg, S. L. Quake: quality-aware detection and correction of sequencing errors. Genome biology 11,

R116 (2010).
 6. Song, L., Florea, L. & Langmead, B. Lighter: fast and memory-efficient sequencing error correction without counting. Genome

biology 15, 509 (2014).
 7. Greenfield, P., Duesing, K., Papanicolaou, A. & Bauer, D. C. Blue: correcting sequencing errors using consensus and context.

Bioinforma. 30, 2723–2732 (2014).
 8. Kao, W.-C., Chan, A. H. & Song, Y. S. Echo: a reference-free short-read error correction algorithm. Genome research (2011).
 9. Peng, Y., Leung, H. C., Yiu, S.-M. & Chin, F. Y. Idba–a practical iterative de bruijn graph de novo assembler. In RECOMB, 426–440

(2010).

https://doi.org/10.1038/s41598-019-52196-4

1 2Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

 10. Yang, X., Chockalingam, S. P. & Aluru, S. A survey of error-correction methods for next-generation sequencing. Briefings
bioinformatics 14, 56–66 (2012).

 11. Chikhi, R. & Medvedev, P. Informed and automated k-mer size selection for genome assembly. Bioinforma. 30, 31–37 (2013).
 12. Heydari, M., Miclotte, G., Demeester, P., Van de Peer, Y. & Fostier, J. Evaluation of the impact of illumina error correction tools on

de novo genome assembly. BMC bioinformatics 18, 374 (2017).
 13. Meyer, F. et al. Mg-rast version 4—lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis.

Briefings Bioinforma. 105 (2017).
 14. Ilie, L. & Molnar, M. Racer: Rapid and accurate correction of errors in reads. Bioinforma. 29, 2490–2493 (2013).
 15. Clark, S. C., Egan, R., Frazier, P. I. & Wang, Z. Ale: a generic assembly likelihood evaluation framework for assessing the accuracy of

genome and metagenome assemblies. Bioinforma. 29, 435–443 (2013).
 16. Fabri, A. & Teillaud, M. Cgal-the computational geometry algorithms library. In 10e colloque national en calcul des structures, 6

(2011).
 17. Elaraby, M. S., Abdallah, M., Abdou, S. & Rashwan, M. A deep neural networks (dnn) based models for a computer aided

pronunciation learning system. In International Conference on Speech and Computer, 51–58 (Springer, 2016).
 18. Zhai, C. Statistical language models for information retrieval. Synth. Lect. on Hum. Lang. Technol. 1, 1–141 (2008).
 19. Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D. & Lai, J. C. Class-based n-gram models of natural language. Comput.

linguistics 18, 467–479 (1992).
 20. Graves, A. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013).
 21. Azzopardi, L., Girolami, M. & Van Rijsbergen, K. Investigating the relationship between language model perplexity and ir precision-

recall measures. (2003).
 22. Inan, H., Khosravi, K. & Socher, R. Tying word vectors and word classifiers: A loss framework for language modeling. arXivpreprint

arXiv:1611.01462 (2016).
 23. Kombrink, S., Mikolov, T., Karafiát, M. & Burget, L. Recurrent neural network based language modeling in meeting recognition. In

Twelfth annual conference of the international speech communication association (2011).
 24. Stolcke, A. Srilm – an extensible language modeling toolkit. In ICSLP, 901–904 (2002).
 25. Abadi, M. et al. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16), 265–283 (2016).
 26. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. methods 9, 357–359 (2012).
 27. Mahadik, K. et al. Sarvavid: a domain specific language for developing scalable computational genomics applications. In Proceedings

of the 2016 International Conference on Supercomputing, 34 (ACM, 2016).
 28. Schröder, J., Schröder, H., Puglisi, S. J., Sinha, R. & Schmidt, B. Shrec: a short-read error correction method. Bioinforma. 25,

2157–2163, https://doi.org/10.1093/bioinformatics/btp379 (2009).
 29. Guo, H. et al. degsm: memory scalable construction of large scale de bruijn graph. bioRxiv 388454 (2018).
 30. Liu, B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXivpreprint

arXiv:1308.2012 (2013).
 31. Schulz, M. H. et al. Fiona: a parallel and automatic strategy for read error correction. Bioinforma. 30, i356–i363 (2014).
 32. Molnar, M. & Ilie, L. Correcting illumina data. Briefings bioinformatics 16, 588–599 (2014).
 33. Allam, A., Kalnis, P. & Solovyev, V. Karect: accurate correction of substitution, insertion and deletion errors for next-generation

sequencing data. Bioinforma. 31, 3421–3428 (2015).
 34. Zerbino, D. & Birney, E. Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome research gr–074492

(2008).
 35. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. Quast: quality assessment tool for genome assemblies. Bioinforma. 29, 1072–1075

(2013).
 36. Baichoo, S. & Ouzounis, C. A. Computational complexity of algorithms for sequence comparison, short-read assembly and genome

alignment. Biosyst. 156, 72–85 (2017).
 37. Lander, E. S. & Waterman, M. S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231–239

(1988).
 38. Ganapathiraju, M. K. et al. Comparative n-gram analysis of whole-genome sequences. 2nd Int. Conf. on Hum. Lang. Technol. Res.

(HLT) 76–81 (2002).
 39. Coin, L., Bateman, A. & Durbin, R. Enhanced protein domain discovery by using language modeling techniques from speech

recognition. Proc. Natl. Acad. Sci. 100, 4516–4520 (2003).
 40. King, B. R. & Guda, C. ngloc: an n-gram-based bayesian method for estimating the subcellular proteomes of eukaryotes. Genome

biology 8, R68 (2007).
 41. Song, J. & Chen, K. C. Spectacle: fast chromatin state annotation using spectral learning. Genome biology 16, 1–18 (2015).
 42. DeBlasio, D. & Kececioglu, J. Parameter advising for multiple sequence alignment. In BMC bioinformatics, vol. 16, A3 (BioMed

Central, 2015).
 43. Wheeler, T. J. & Kececioglu, J. D. Multiple alignment by aligning alignments. Bioinforma. 23, i559–i568 (2007).
 44. Mahgoub, A. et al. Rafiki: a middleware for parameter tuning of nosql datastores for dynamic metagenomics workloads. In

Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference, 28–40 (ACM, 2017).
 45. Van Aken, D., Pavlo, A., Gordon, G. J. & Zhang, B. Automatic database management system tuning through large-scale machine

learning. In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD), 1009–1024 (ACM, 2017).
 46. Bei, Z. et al. RFHOC: A Random-Forest Approach to Auto-Tuning Hadoop’s Configuration. IEEE Transactions on Parallel

Distributed Syst. 27, 1470–1483 (2016).
 47. Li, M. et al. Mronline: Mapreduce online performance tuning. In Proceedings of the 23rd international symposium on High-

performance parallel and distributed computing, 165–176 (ACM, 2014).
 48. Alipourfard, O. et al. Cherrypick: Adaptively unearthing the best cloud configurations for big data analytics. NSDI 2, 4–2 (2017).
 49. Illumina. Estimating Sequencing Coverage.

Acknowledgements
This work is supported in part by the NIH R01 Grant 1R01AI123037, a Lilly Endowment grant, a gift from Adobe
Research, and funding from Purdue’s College of Engineering and Department of Ag. and Biological Engineering.
Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and
do not necessarily reflect the views of the funding agencies.

Author contributions
M.A., A.M., H.A., and S.C. participated in the computational analyses. M.A., A.M. and S.C. wrote the manuscript.
S.C. provided overall guidance and funding for the project. All authors read and edited the final manuscript.

https://doi.org/10.1038/s41598-019-52196-4
https://doi.org/10.1093/bioinformatics/btp379

13Scientific RepoRtS | (2019) 9:16157 | https://doi.org/10.1038/s41598-019-52196-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-52196-4.
Correspondence and requests for materials should be addressed to S.C.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

https://doi.org/10.1038/s41598-019-52196-4
https://doi.org/10.1038/s41598-019-52196-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Athena: Automated Tuning of k-mer based Genomic Error Correction Algorithms using Language Models
	Background
	Error correction and evaluation.
	Language modeling.
	N-Gram-based language modeling.
	Char-RNN-Based language modeling.
	Perplexity of the language model.

	Our Solution: Athena
	Application of language models.
	N-Gram language models.
	RNN language models.
	Training time and memory footprint.

	Intuition for the use of the perplexity metric.
	Search through the parameter space.
	Time and space complexity.

	Evaluation with Real Datasets
	Implementation notes and dataset.
	Optimal parameter selection.
	N-gram language model results.
	Char-RNN language model results.
	Comparison with a self-tuning EC tool.
	Impact on assembly quality and searching time.
	Search time improvement with Athena.

	Impact of sub-sampling.

	Evaluation with Synthetically Injected Errors
	Related Work
	Error correction approaches.
	Language modeling in genomics.
	Automatic parameter tuning.

	Discussion
	Conclusion
	Acknowledgements
	Figure 1 Overview of Athena’s workflow.
	Figure 2 An example showing how the perplexity metric encodes errors in genomic reads.
	Algorithm 1 Correct Set of Reads.
	Algorithm 2 Find Optimal k.
	Figure 3 Impact of sub-sampling on perplexity and gain.
	Figure 4 N-Gram (Figure A,B) and RNN (Figure C,D) Perplexity metric for different types of synthetic errors: Indels and Substitution errors, and a mixture of the three for E.
	Table 1 Datasets’ description with coverage, number of reads, read lengths, genome type, and the Accesson number.
	Table 2 Comparison of Lighter, Blue, and RACER using 7 datasets.
	Table 3 Comparison of Overall Alignment Rate of Fiona versus RACER (with and without Athena’s tuning).

