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Differential interleukin-1β 
induction by uropathogenic 
Escherichia coli correlates with its 
phylotype and serum C-reactive 
protein levels in Korean infants
Jong-Hyeok Jung1,2,9, Hyun Jung Hong3,9, Aziz Gharderpour1,2, Jae Young Cho3,  
Bum-Seo Baek1,2, Yong Hur5, Byoung Choul Kim6, Donghyun Kim  1,7, Seung-Yong Seong1,2,5,7, 
Jae-Young Lim3,4* & Sang-Uk Seo  1,2,8*

Urinary tract infection (UTI) is one of the most common bacterial infections in infants less than 
age 1 year. UTIs frequently recur and result in long-term effects include sepsis and renal scarring. 
Uropathogenic Escherichia coli (UPEC), the most prevalent organism found in UTIs, can cause host 
inflammation via various virulence factors including hemolysin and cytotoxic necrotizing factors 
by inducing inflammatory cytokines such as interleukin (IL)-1β. However, the ability of each UPEC 
organism to induce IL-1β production may differ by strain. Furthermore, the correlation between 
differential IL-1β induction and its relevance in pathology has not been well studied. In this study, we 
isolated UPEC from children under age 24 months and infected bone-marrow derived macrophages 
with the isolates to investigate secretion of IL-1β. We found that children with higher concentrations of 
C-reactive protein (CRP) were more likely to harbor phylotype B2 UPEC strains that induced more IL-1β 
production than phylotype D. We also observed a significant correlation between serum CRP level and  
in vitro IL-1β induction by phylotype B2 UPEC bacteria. Our results highlight the diversity of UPEC in 
terms of IL-1β induction capacity in macrophages and suggest a potential pathogenic role in UTIs by 
inducing inflammation in infants.

Urinary tract infection (UTI) is one of the most common bacterial infections and occurs in approximately 150 
million people a year1. Infants under age 1 year are more susceptible to UTIs. In general, UTIs are more com-
mon in girls, although before age 1 year boys have more UTIs than girls2. A previous study found that 18% of 
infants under age 12 months who experience UTIs have recurrences within a few months3. Moreover, depending 
on when a UTI is diagnosed and treated after occurrence, the outcome may include sepsis, renal scarring, and 
hypertension4.

Among bacteria that can lead to UTI, uropathogenic Escherichia coli (UPEC) is the most common and is 
found in 80~90% of UTI patients1. As the urinary tract is a harsh environment for bacteria due to continuous flow 
of urine, UPECs can replicate in the form of intracellular bacterial communities (IBCs) as a strategy to survive5. 
Various virulence factors such as fimbriae/adhesins, pore-forming toxins, and iron-uptake molecules contribute 
to this survival strategy6. UPEC make use of fimbriae and adhesins, including type 1 fimbriae, P fimbriae, and Afa 
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adhesins, to adhere to host cell surfaces7,8 while pore-forming toxins such as cytotoxic necrotizing factors (CNF) 
and hemolysin of UPEC can make pores in host cell membranes for invasion9,10.

Inflammation often accompanies UTIs and is associated with renal scarring and disease severity11. Several 
cytokines, including TNF-α, interleukin (IL)−1β, IL-6, and IL-8, are involved in the inflammation that accom-
panies UTIs12. IL-1β, which is often detected in serum samples of children with UTIs, has been used as a marker 
for acute pyelonephritis13. IL-1β is primarily secreted by monocytes and macrophages. It induces tissue dam-
age and infiltration of neutrophils. To avoid uncontrolled inflammation, secretion of the active-form of IL-1β is 
tightly regulated and modulated by a molecular complex called inflammasome14. Several UPEC virulence factors 
can activate inflammasome and directly influence IL-1β secretion. Pore-forming toxin, especially hemolysin, is 
known to induce IL-1β secretion and cell death in bladder tissue15. Hemolysin of Proteus mirabilis and group B 
Streptococcus can also induce IL-1β secretion via NLRP3 inflammasome and enhance inflammation16,17. In UTI 
and meningitis animal models, E. coli CNF exacerbates inflammation18,19. CNF can synergistically promote IL-1β 
secretion with lipopolysaccharide in a caspase-1/caspase-11-dependent manner20.

Macrophages in the urinary tract have various roles in host defense against invading UPEC. At an early infec-
tion time point, the absence of macrophage results in a higher bacterial burden and alteration of innate immune 
signaling21. Macrophages in urinary tissue can recruit neutrophils to the uroepithelium during UPEC infection 
and depletion of these tissue macrophages results in ablation of neutrophil migration and bacteria clearance22. 
Moreover, there is evidence that some UPEC strains can directly infect macrophages, reside in intracellular vesi-
cles, and make IBCs23,24. Invasion of macrophages by UPEC can result in prolonged survival of UPEC and recur-
rent infection25. From these results, we can consider macrophages in the urinary tract to be both sensor and 
reservoir of UPEC.

Much research about inflammation in UTI has focused on host responses at the tissue level or interactions 
between UPEC and epithelial cells26–28. However, myeloid cells recruited to the site of infection also play an 
immediate role in innate immune responses21,29. Macrophages are not only target cells for primary UPEC infec-
tion but they also play key roles in inflammatory response23. Inflammation is considered a double-edged sword in 
many diseases because it is essential for controlling infection while it is hazardous to the host when exacerbated 
in the acute phase30–32. To investigate the relationship between different characteristics of UPEC and a patient’s 
inflammatory responses, we recruited patients under age 24 months and measured serum C-reactive protein 
(CRP) concentration, which is known to rise in response to inflammation. We chose this age group because 
infants are highly susceptible to severe progression including renal scarring upon UTI33. In parallel, we isolated 
UPEC strains from child patients to analyzed phylotype, virulence gene expression, and IL-1β induction poten-
tial. Integrative analyses were made from a data series obtained from patient’s blood and UPEC isolates.

Distribution of 
virulence genes

Phylogenetic group

Total 
(n = 40), %

Group B2 
(n = 28), %

Group D 
(n = 12), %

papC 18 (64.3) 7 (58.3) 25 (62.5)

sfa/foc (sfa) 6 (21.4) — 6 (15)

afaC 6 (21.4) 1 (8.3) 7 (17.5)

fimH 20 (71.4) 11 (91.7) 31 (77.5)

cnf 3 (10.7) — 3 (7.5)

hly 4 (14.3) — 4 (10)

aer 15 (53.6) 10 (83.3) 25 (62.5)

Table 2. Phylotypic and virulence gene distribution of UTI bacteria in 40 children. Note: No Group A or B1 
genes were found.

CRP < 30 (n = 18) CRP ≥ 30 (n = 22) All (n = 40) p-value

Median age, mo (Max-Min) 3.7 (0.5–7.9) 5.5 (0.4–18.0) 4.7 (0.4–18.0) 0.004

Girls, n (%) 6 (33.3) 5 (22.7) 11 (27.5) 0.498

WBC, /mm³ (Max-Min) 13927 (4470–24580) 16438 (7610–25090) 15279 (4470–25090) 0.235

CRP, mg/L (Max-Min) 12.5 (0.9–29.4) 70.7 (32.8–189.5) 44.5 (0.9–189.5) 0.000

Cortical defect in DMSA, n (%) 0/18 (0.0) 8/22 (36.3) 8/40 (20.0) 0.005

VUR, n (%) 2/13 (15.5%) 3/10 (30.0) 5/23 (21.7) 0.39

Abnormal findings on sonography

Hydro, n 2/18 3/20 5/38 1.00

APN, n 2/18 0/20 2/38 0.21

Cystitis, n 4/18 5/20 9/38 1.00

Table 1. Characteristics of study population with urinary tract infections. Note: APN, acute pyelonephritis; 
CRP, C-reactive protein; DMSA, dimercaptosuccinic acid; Hydro, hydronephrosis D; Max, maximum; Min, 
minimum; VUR, vesicoureteral reflux; WBC, white blood cells.
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Results
Subject characteristics. We analyzed 40 E. coli isolates from individual children. The median age of the 
participants was 4.7 months (range, 0.4–16.7) and 27% (11/40) were girls. The mean white blood cell (WBC) 
count of these patients was 15,279/mm³. All had fever ≥38 °C, pyuria, and E. coli identified in urine cultures. 
Mean CRP levels were 44.5 mg/L (range, 0.9–189.5). Twenty-two children had CRP levels ≥30 mg/L. A DMSA 
(dimercaptosuccinic acid) scan showed cortical defects in 8 of the 40 patients. Children with CRP levels ≥30 mg/L 
were more likely to have defects shown by DMSA (36.3% vs. 0%, p = 0.005). Vesicoureteral reflux (VUR) was 
found in 5 of 23 patients who underwent a voiding cystourethrogram (VCUG). Ultrasonography (USG) revealed 
5 patients with hydronephrosis, 9 with cystitis, and 2 with acute pyelonephritis (Table 1).

Phylotype and pathotypic distribution of UPEC isolates. All isolates were identified as E. coli by phoA 
gene-specific amplification (Supplementary Table 1). Confirmed strains were used to infect bone marrow-derived 
macrophage (BMDM) for further studies, including phylotypic and pathotypic analysis. When phylotyping was 
performed34, among 40 isolates, 28 (70%) were group B2 E. coli while 12 (30%) were group D. No group A or B1 
strains were isolated (Table 2).

To determine pathotypic characteristics of UPEC isolates, we investigated the presence of seven virulence 
genes by polymerase chain reaction (PCR). Of these, papC were found in 25 (62.5%), sfa/focDE in 6 (15%), afaC 
in 7 (17.5%), fimH in 31 (44.5%), cnf in 3 (7.5%), hlyCA in 4 (10%), and iucC in 25 (62.5%). All virulence genes 
were more prevalent in group B2 E. coli. Six of 7 afaC-positive strains were group B2 while sfa/focDE, cnf, hlyCA 
genes were only detected from group B2 (Table 2).

Cytokine secretion profile and viability of BMDM upon infection of UPEC strains. To examine 
cytokine secretion by BMDM co-cultured with UPEC isolates, we performed ELISA on culture medium 12 h 
after stimulation. Because P. mirabilis can efficiently induce IL-1β and TNF-α production in BMDM17, we used 
this strain as a positive control. Among 40 isolates, 5 exhibited more than two-fold higher IL-1β secretion than 
P. mirabilis (Fig. 1a). In many instances, TNF-α levels did not differ significantly among isolates. However, three 
strains were reduced by more than half compared with P. mirabilis (Fig. 1b). IL-1β can induce pyroptosis, a type of 
cell death that results in membrane rupture and release of inflammatory components35. Therefore, we investigated 
cell viability of infected BMDMs to examine cell death (Fig. 2a). Co-culture of BMDM with five isolates resulted 
in reduced cell viability. When we assessed the correlation between cytokine production and cell viability, the top 
five IL-1β-secreting isolates had obvious reduction (p = 0.015) in cell viability (Fig. 2b). These five strains also 
showed reduced production of TNF-α (Fig. 1a,b). However, the correlation between TNF-α and cell viability did 
not reach statistical significance (Fig. 2c). These data suggest that UPEC strains with more cytotoxicity can induce 
more IL-1β secretion in vitro.

Figure 1. UPEC isolates induce IL-1β from BMDM at different levels. BMDMs were co-cultured with UPEC 
isolates for 12 h. Levels of (a) IL-1β and (b) TNF-α in culture supernatants were measured. Amounts of 
cytokines induced by UPEC isolates were normalized against cytokines produced by P. mirabilis stimulation. 
Values represent mean ± SD from six samples from two separate experiments.
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Group B2 UPEC is associated with IL-1β induction in vitro and patient’s serum CRP level. We 
then sought to determine which UPEC group might be more associated with IL-1β induction. We also tried to 
determine the relationship between IL-1β induction potential and patient inflammatory status using the serum 
CRP level. When the amount of IL-1β secreted by UPEC-treated BMDM was compared between groups B2 and 
D, group B2 induced significantly more IL-1β secretion (p = 0.018) than group D (Fig. 3a). However, we could 
not detect any significant difference in TNF-α secretion (Fig. 3b). We then divided patients into “high” and “low” 
inflammation groups (CRP > 30 and <30 mg/L, respectively). UPEC isolates from the high inflammation group 
induced more IL-1β secretion in vitro (Fig. 4a; not statistically significant). Likewise, we found no significant 
correlation between TNF-α secretion and CRP level (Fig. 4b). We then further analyzed IL-1β secretion between 
UPECs isolated from the high and low CRP groups after subdividing patients by phylotype. The group B2 UPECs 
from patients in the high CRP group had significantly more IL-1β induction (p = 0.045); however, there was no 
significant difference in group D UPECs from high and low CRP patients (Fig. 4c). These data suggest that some 
group B2 UPEC, but not group D UPEC, can augment inflammation, probably by enhancing IL-1β induction 
during infection.

Figure 2. Cytotoxic UPEC induces higher IL-1β and lower TNF-α levels than other UPEC strains. (a) BMDMs 
were co-cultured with UPEC isolates for 12 h and cell viability was measured. Isolates were divided into lower 
and higher viability groups (<50% and >50%, respectively) and their induced secretion of (b) IL-1β and  
(c) TNF-α from BMDM after co-culture was compared. Cytokine levels were normalized against those of a 
P. mirabilis stimulated group. Each dot represents a mean of six samples from two independent experiments. 
*p < 0.05.

Figure 3. Group B2 UPECs are more likely to induce IL-1β from BMDM than are group D UPECs. Phylotypes 
of UPEC isolates were determined. (a) IL-1β and (b) TNF-α induction data were re-grouped and analyzed 
based on phylotypes. Each dot represents a mean of six samples from two independent experiments. *p < 0.05.
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Selective virulence genes are involved in IL-1β induction by group B2 UPEC. It is clear that group 
B2 UPECs have greater ability to induce IL-1β in macrophages than group D UPECs. However, the amount of IL-1β 
secretion varied within group B2 (Fig. 4c). We hypothesized that genetic differences in this group might be linked 
to the observed variation and performed experiments to detect virulence genes from group B2 UPEC isolates. We 
tested the presence of seven virulence genes by PCR and counted the number of positive genes for each isolate. 
When group B2 UPECs were divided into high (CRP > 30 mg/L) and low inflammation groups, more virulence 
genes were detected (p = 0.015) in the patients with high CRP levels (Fig. 5a). To further define the virulence gene 
directly involved in IL-1β induction, we divided UPEC isolates from patients with CRP >30 mg/L based on the 
presence of each virulence gene and compared in vitro IL-1β secretion. Statistical analysis revealed that five isolates 
(EC1768, EC2689, EC393, EC640, EC759) that possessed at least one cnf (p = 0.038), hlyCA (p = 0.075), or sfa/focDE 
(p = 0.026) gene induced higher IL-1β secretion than the other isolates (Fig. 5b). However, the presence of the afaC, 
fimH, iucC, or papC genes did not significantly affect the amount of IL-1β secreted by macrophages (Fig. 5b). Of 
note, all five isolates were dual or triple positive for cnf, hlyCA, and sfa/focDE genes. In addition, they induced sig-
nificantly higher levels of IL-1β secretion (p = 0.017) than the other isolates (Fig. 5c). Overall, our data suggest that 
patients infected with group B2 UPECs that express hemolysin (hly), cytotoxic necrotizing factor (cnf), S fimbrial 
adhesion (sfa), and F1C fimbriae (foc) have stronger inflammatory potential.

Discussion
Previous research mainly investigated the correlation between cytokine profile and clinical findings, including 
CRP to assess the contribution of inflammatory components (i.e., inflammatory cytokines) during UTI pathogen-
esis36–38. Although UPECs are the most frequent causative agents of UTI and therefore closely related to disease 
outcome, most studies did not examine the genetic characteristics of UPECs to link their viral properties with the 
host’s inflammatory responses. We believe our study is the first to identify genes associated with IL-1β induction 
in UPECs isolated from young children with UTIs (age < 24 months) and to phylotypically characterize genetic 
correlation with each child’s serum CRP level. E. coli strains belonging to groups B2 and D are considered to be 
more pathogenic34,39. Group B2 UPECs are known to more prevalent than group D UPECs in different age groups 
and harbor virulence genes including hlyCA, cnf, and sfa/focDE39–42. These virulence genes were exclusively found 
in group B2 isolates in our study. Our data suggest that phylotypic distribution and pathotypic characteristics of 
UPEC isolated from Korean patients are similar to those of previous reports39–42.

We also pathotyped DH5α, a non-pathogenic group A E. coil strain that is commonly used in the laboratory 
(data not shown). Although DH5α contained fimH, it failed to induce IL-1β production by BMDM. However, 
similar levels of TNF-α were detected upon stimulation, comparable to that of TNF-α induced by group B2 
UPEC isolates (data not shown). Consistent with a previous report17, IL-1β induction in macrophages was more 
selective and virulence factor-dependent compared to TNF-α induction. IL-1β, but not TNF-α, showed signif-
icant correlation with patient CRP levels. Thus, increased inflammation by group B2 UPEC might be partially 
attributed to virulence genes related to IL-1β.

Figure 4. IL-1β induction by group B2 UPEC strains is correlated with patient serum CRP level. (a) IL-1β 
and (b) TNF-α induction levels by UPEC isolates were grouped by patient CRP values. (c) Two CRP groups 
were subdivided by phylotype to compare IL-1β induction by UPEC isolates. Each dot represents a mean of six 
samples pooled from two independent experiments. *p < 0.05.
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Production of IL-1β via caspase-1 signaling can induce a unique type of cell death called ‘pyroptosis’43. 
Pyroptosis can stimulate exfoliation of epithelial cells in urinary tract tissue and possibly give UPECs a chance 
to reach the inner part of the urothelial layer44. During in vitro stimulation of BMDM by a UPEC isolate, IL-1β 

Figure 5. Multiple virulence genes in group B2 UPEC contribute to IL-1β induction in BMDM. (a) Virulence 
gene numbers of UPEC isolates were grouped based on serum CRP level. (b) Seven virulence genes were 
examined in UPECs isolated from patients with serum CRP concentration >30 mg/L (high CRP). (c) Strains 
that possessed hlyCA, cnf, and sfa/focDE were grouped and compared with other isolates from the high CRP 
group (CRP > 30 mg/L) for IL-1β induction. Each dot represents a mean of six samples from two independent 
experiments. *p < 0.05.
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production induces pyroptosis, which may lead to reduced cell survival. Indeed, BMDM treated with group B2 
UPEC isolates that expressed hlyCA, cnf, and sfa/focDE genes showed markedly reduced cell survival. Generally, 
severe UTI results in overall elevation of inflammatory cytokines12,28. However, we observed reduced TNF-α 
production by BMDM in response to UPECs that induced higher levels of IL-1β. This was probably due to rapid 
cell death by pyroptosis of BMDM, limiting TNF-α accumulation in culture medium.

Results of our study suggest that UPECs harboring multiple IL-1β-inducible genes are more inflammatory and 
pathogenic. Three specific genes (i.e., hlyCA, cnf, sfa/focDE) were found in the five most IL-1β-inducible strains. 
Many previous studies have shown the important role of hemolysin and CNF in IL-1β secretion by macrophages 
upon infection via pathways that include activation of Rho GTPase, NF-κB, inflammasomes, and pyroptosis20,45–48. 
Hemolysin encoded by various organisms is well known to activate NLRP3 inflammasome to produce the active 
form of IL-1β49. However, we could not rule out other virulence genes associated with IL-1β induction because 
minor differences were observed in IL-1β levels from the other 35 UPEC isolates.

We also found that S and F1C fimbriae were associated with IL-1β induction by macrophages. S and F1C fim-
briae are known to recognize and bind to sialic acid moieties or gangliotriaosylceramide present on the cell surface 
of macrophages50–52. Bacterial interaction with the urinary tract is an important step to colonization in the bladder. 
Such interaction is mediated by different types of fimbriae53. Some studies have highlighted a pro-inflammatory role 
of fimbriae27,54. Further study is needed to determine the role of S and F1C fimbriae in inflammatory modulation.

Collection bag specimen urine is associated with higher contamination than clean-catch urine or catheter 
specimen urine55. The specimens used in this study were collected between 2010 and 2014 before our laboratory 
discontinued this practice in 201656. Therefore, some samples were collected with sterile and sealed urine collec-
tion bags from febrile infants. Because collection bags have increased contamination risk, the samples used in 
this study all had a single uropathogenic organism isolated with a colony-forming unit (cfu) count >100,000. We 
believe this selection criteria helped us to exclude contaminated specimens.

Overall, our results indicate that group B2 UPECs have a greater potential to induce IL-1β. Our data also suggest 
that IL-1β-inducible genes may play a significant role in the pathogenesis of UTI. However, some patients with group 
B2 or group D UPECs without noticeable induction of IL-1β in vitro also had CRP levels of >30 mg/L. Moreover, 
many E. coli in urinary organs are avirulent57. Thus, we suggest that virulence genes need to be examined in addition 
to detection of bacteria. As multiple virulence factors may synergistically affect disease prognosis, we cannot easily 
define which virulence factors are important for the pathogenesis of UTI58,59. Further studies are required to under-
stand the relationship between underlying mechanisms and the interactions of multiple viral pathways.

Methods
Mice. Six- to ten-week-old female WT C57BL/6 (B6) mice were bred and kept under specific pathogen-free 
conditions in the animal facility of Wide River Institute of Immunology, Seoul National University College of 
Medicine (Hongcheon, Korea). Animal studies were conducted under protocols approved by the Seoul National 
University Institutional Animal Care and Use Committee (approval No. SNU-180108-2). All experiments were 
performed in accordance with relevant guidelines and regulations.

Purpose Target Primer Sequence (5’ to 3’)
Annealing 
(°C/sec)

Denaturation 
(sec)

Extension 
(sec)

Size 
(bp) Reference

E. coli identification E. coli alkaline 
phosphatase (PhoA)

PhoA-F GTCACAAAAGCCCGGACACCATAAATGCCT
56/60 60 60 903 61

PhoA-R TACACTGTCATTACGTTGCGGATTTGGCGT

Phylotyping

Outer membrane hemin 
receptor (chuA)

ChuA-F GACGAACCAACGGTCAGGAT
55/30 30 30 279 34

ChuA-R TGCCGCCAGTACCAAAGACA

Conserved stress-induced 
protein (yjaA)

YjaA-F TGAAGTGTCAGGAGACGCTG
55/30 30 30 211 34

YjaA-R ATGGAGAATGCGTTCCTCAAC

TspE4.C2 fragment
TspE4.C2-F GAGTAATGTCGGGGCATTCA

55/30 30 30 152 34

TspE4.C2-R CGCGCCAACAAAGTATTACG

UPEC pathotyping

Type 1 fimbriae (fimH)
FimH-F AACAGCGATGATTTCCAGTTTGTGTG

65/30 120 60 465 63

FimH-R ATTGCGTACCAGCATTAGCAATGTCC

P fimbriae (papC)
PapC-F GACGGCTGTACTGCAGGGTGTGGCG

65/30 120 60 328 64

PapC-R ATATCCTTTCTGCAGGGATGCAATA

S and FIC fimbriae (sfa/
focDE)

Sfa-F CTCCGGAGAACTGGGTGCATCTTAC
65/30 120 60 410 64

Sfa-R CGGAGGAGTAATTACAAACCTGGCA

Afa adhesins (afaC)
Afa-F CGGCTTTTCTGCTGAACTGGCAGGC

65/30 120 60 672 64

Afa-R CCGTCAGCCCCCACGGCAGACC

Hemolysin (hlyCA)
Hly-F AGATTCTTGGGCATGTATCCT

65/30 120 60 556 65

Hly-R TTGCTTTGCAGACTGTAGTGT

Cytotoxic necrotizing 
factor (cnf)

Cnf-F TTATATAGTCGTCAAGATGGA
58/30 120 60 693 66

Cnf-R CACTAAGCTTTACAATATTGA

Aerobactin (iucC)
Aer-F AAACCTGGCTTACGCAACTGT

60/30 120 60 269 65

Aer-R ACCCGTCTGCAAATCATGGAT

Table 3. List of primers and PCR conditions used in this study.
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Subjects and bacterial strains. P. mirabilis was kindly provided by Dr. Harry Mobley, University of 
Michigan, Ann Arbor, USA. E. coli strains were isolated from patient urine samples and susceptibility to anti-
microbials was tested by Vitek-2 system (BioMérieux, Durham, NC, USA). The clinical samples were then col-
lected and banked at Gyeongsang National University Hospital Branch of the National Culture Collection for 
Pathogens (GNUH-NCCP, Jinju, Korea). The GNUH Institutional Review Board approved this study (2018-
09-012). We retrospectively analyzed data for the 40 pediatric patients under age 24 months with febrile UTI. 
All had been admitted to Gyeongsang National University Hospital between January 2010 and December 
2014. The criteria for diagnosis of a first-time febrile UTI for inclusion in this study have been described60. In 
brief, each child had the following findings: (1) temperature ≥ 38 °C, (2) pyuria (≥5 WBC/high-power field), 
(3) bacteria-positive urine culture, and (4) no previous history of UTI, kidney, or bladder disease. Renal USG, 
VCUG, or DMSA scan were used for patient evaluation. Clinical data including age, gender, and WBC counts 
were recorded. Peripheral venous blood was collected to measure CRP levels by the latex-enhanced turbidi-
metric assay method (cobas 8000 analyzer; Roche, Indianapolis, IN, USA). Urinary examinations were per-
formed at hospital admission before antibiotic administration or fluid therapies. UTI, USG, and DMSA scan 
data were collected within 5 days of hospitalization, and VCUG was performed within 4 weeks following 
antibiotics therapy. The 40 non-duplicate E. coli isolates studied were obtained from the GNUH-NCCP and 
the E. coli was identified using PCR with primers specific for E. coli alkaline phosphatase gene61. Bacteria count 
was determined by CFU assay on Luria-Bertani (LB) agar plates; optical density (OD) was measured by Epoch 
spectrophotometer (Bio-Tek, Winooski, VT, USA).

Bacterial DNA extraction. E. coli strains were grown in Müller’s LB broth (BD Difco, Franklin Lakes, NJ, 
USA) at 37 °C for 18 h. DNA extraction was performed by optimized heat shock method. Bacteria were pelleted 
from 200 μl of broth, suspended in 200 μl of sterile distilled water, and incubated at 95 °C for 5 min followed by 
10 min on ice and centrifugation. We stored 150 μl of the supernatant at −20 °C as a template DNA stock.

Identification of phylotype and virulence gene distribution by PCR. Specific primers were used 
to amplify phoA61, chuA, yjaC, and TSPE4.C2 genes34 and fimH, papC, sfa/focDE, afaC, hlyCA, cnf, and iucC 
operons62. Additional information on PCR primers and conditions is summarized in Table 3. For phylotyping, 
three genes (chuA, yjaC, TSPE4.C2) were amplified by multiplex PCR. Phylotype group was categorized accord-
ing to the combination of these three genes: phylogenetic group A (−/−/+; −/+/−), group B1 (−/−/+), group 
B2(+/+/−; +/+/+), and group D (+/−/−; +/−/+)34. All PCR reactions were carried out by using a 20-μl 
mixture containing 2 μl of DNA, 10 μl of Topsimple nTaq-Hot premix (Enzynomics, Daejeon, Korea), and 50 
pmol of the selected primers in a Veriti thermal cycler (Applied Biosystems, Foster City, CA, USA). The PCR con-
ditions for phylotyping, phoA identification, and pathotyping were as follows: (1) for phylotyping, denaturation 
for 10 min at 94 °C; 35 cycles of 30 s at 94 °C, 30 s at 55 °C, and 30 s at 72 °C; and a final extension step of 10 min 
at 72 °C; (2) for phoA identification, denaturation for 10 min at 94 °C; 35 cycles of 60 s at 94 °C, 60 s at 56 °C, and 
60 s at 72 °C; and a final extension step of 10 min at 72 °C; (3) for pathotyping, denaturation for 10 min at 94 °C; 
35 cycles of 120 s at 94 °C, annealing s shown in Table 3, and 60 s at 72 °C; and a final extension step of 10 min at 
72 °C. Then 10 μl of PCR product was mixed with 1 μl of Midori Green Direct (Nippon Genetics Europe, Dueren, 
Germany) and followed by 2% agarose gel electrophoresis. Imaging was performed using a Gel-doc XR+ gel 
documentation system (Bio-Rad, Hercules, CA, USA). Sizes of amplicons were assessed by comparing them with 
a 1 kb plus DNA ladder (Enzynomics, Daejeon, Korea) on the same gel.

In vitro BMDM stimulation. Bone marrow cells were isolated from femurs and tibias of 6- to 10-week-old 
female B6 mice and cultured for 7 days with macrophage differentiation medium containing RPMI 1640 
(Hyclone, South Logan, UT, USA) supplemented with 80 ng/ml M-CSF (BioLegend, San Diego, CA, USA), glu-
tamine, sodium pyruvate, 10% heat-inactivated FBS (Hyclone), 1% 100 × penicillin-streptomycin and 15 mM 
HEPES (Gibco BRL, Gaithersburg, MD, USA). Differentiated macrophages were detached by cell lifter and 
2.0 × 105 of BMDMs were seeded into a 48-well plate followed by incubation overnight for attachment. Cells were 
then treated with P. mirabilis or E. coli isolates in RPMI 1640 without antibiotics at an MOI of 1 for 3 h followed by 
the addition of 100 µg/ml gentamicin (Gibco BRL) and additional culture for 9 h. Culture supernatants of infected 
cells were harvested and stored in −80 °C until use in an ELISA.

ELISA. Levels of IL-1β and TNF-α in culture supernatants were measured using Duoset mouse ELISA kits 
(R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s directions. The amounts of cytokine 
produced by E. coli stimulation were normalized to the same cytokine produced by P. mirabilis (positive control) 
and shown as relative cytokine induction.

Cell viability assay. BMDMs were washed twice with DPBS supplemented with penicillin-streptomycin and 
100 µg/ml gentamicin (Gibco BRL) and then treated with EZ-Cytox Enhanced Cell Viability Assay reagent (Daeil 
Lab Service, Seoul, Korea) at 37 °C for 30 min. Cell culture supernatants were then placed on 96-well plates and 
absorbance was measured at a wavelength of 450 nm by Epoch microplate spectrophotometer (Bio-Tek).

Statistical analysis. Data were analyzed using prism 5 software (GraphPad Software, La Jolla, CA, USA). 
Student’s t-test was performed to determine significance for most data, including experiments investigating any 
relationship between IL-1β and patient clinical data. We used the Chi-square test to investigate relationships 
between CRP value in patient serum and patient VUR, DMSA, and sonography data. Significance was defined as 
a p value < 0.05.
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