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LC-MS based metabolomic profiling 
for renal cell carcinoma histologic 
subtypes
Lun Jing1,2, Jean-Marie Guigonis1,2, Delphine Borchiellini3, Matthieu Durand4, 
Thierry Pourcher1,2,6* & Damien Ambrosetti  5,6

Renal cell carcinomas (RCC) are classified according to their histological features. Accurate classification 
of RCC and comprehensive understanding of their metabolic dysregulation are of critical importance. 
Here we investigate the use of metabolomic analyses to classify the main RCC subtypes and to describe 
the metabolic variation for each subtype. To this end, we performed metabolomic profiling of 65 RCC 
frozen samples (40 clear cell, 14 papillary and 11 chromophobe) using liquid chromatography-mass 
spectrometry. OPLS-DA multivariate analysis based on metabolomic data showed clear discrimination 
of all three main subtypes of RCC (R2 = 75.0%, Q2 = 59.7%). The prognostic performance was evaluated 
using an independent cohort and showed an AUROC of 0.924, 0.991 and 1 for clear cell, papillary 
and chromophobe RCC, respectively. Further pathway analysis using the 21 top metabolites showed 
significant differences in amino acid and fatty acid metabolism between three RCC subtypes. In 
conclusion, this study shows that metabolomic profiling could serve as a tool that is complementary 
to histology for RCC subtype classification. An overview of metabolic dysregulation in RCC subtypes 
was established giving new insights into the understanding of their clinical behaviour and for the 
development of targeted therapeutic strategies.

Renal cell carcinoma (RCC) accounts for about 3% of malignancies in adults and 90–95% of all kidney cancers1,2. 
In its disseminated form, kidney cancer is an aggressive tumour and is one of the ten most frequent causes of 
cancer mortality3,4. RCCs are commonly classified according to the histologic features by which we distinguish 
three main subtypes: clear cell renal cell carcinoma (ccRCC) representing 70–75%, papillary renal cell carcinoma 
(papRCC) representing 10–15%, and chromophobe renal cell carcinoma (chroRCC) representing 5%5. This his-
tological classification provides a primary level of information on the evolutionary risk of these tumours, with 
ccRCC being the most aggressive and metastatic subtype, and chroRCC being the most indolent6,7. Thus, the 
accurate diagnosis of the histologic subtype is important for prognosis and theranostic orientation8. Moreover, 
understanding of the biological origin responsible for the differences in clinical behaviour between RCC subtypes 
is crucial for the identification of appropriate targeted therapeutic strategies9–11. Thus, all analyses complementary 
to histology, including cytogenetics, immunohistochemistry, or metabolomics – as we will present here – are 
invaluable in RCC classification.

Metabolomics is the large-scale study of virtually all small molecules present within a cell, a tissue or a whole 
organism, and which provides a snapshot of all biochemical events occurring at the moment of the sample collec-
tion12. One of the hallmarks of cancer cells is the metabolic reprogramming that fuels their high energy needs13. In 
the last decade, untargeted metabolomic profiling, using liquid chromatography combined with mass spectrom-
etry (LC-MS), has proven to be a promising tool in kidney cancer diagnostics and research. Previous MS-based 
metabolomic studies have already shown the possibility of discriminate RCC patients from healthy controls using 
tissue14–19, urine17,20–22 or serum23. Moreover, a recent study has also demonstrated the possibility of discrimina-
tion of different RCC stages, from 1 to 4, using combined metabolomic studies24. A RCC metabolic signature has 
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been proposed in some of these studies involving essential pathways of energy metabolism: glycolysis, amino acid 
metabolism and fatty acid metabolism25. However, the vast majority of these studies were focused solely on clear 
cell RCCs and only a few studies26,27 investigated other RCC subtypes such as chroRCC or papRCC.

In this study, we performed the first untargeted metabolomic profiling analysis using LC-MS on all three 
main RCC histologic subtypes. We demonstrated that RCC subtypes could be accurately classified by multivar-
iate analysis based on metabolomic data and we further identified the metabolic dysregulation in each subtype, 
with a focus on amino acids and acyl carnitines. These results provide new insights into the differences between 
oncogenesis mechanisms for different RCC subtypes and shows promise for the selection of efficient and adequate 
treatments and the discovery of new subtype-selective therapeutic targets.

Results
Metabolomic data analysis and metabolite identification. Thirty-seven randomly chosen frozen 
tissue samples (21 clear cell, 9 papillary and 7 chromophobe) were used as the training set for initial RCC sub-
type classification model development (Tables 1 and 2). The metabolites from each sample were extracted in 
parallel and analysed by LC-MS/MS. Raw spectrum data were then integrated in MZmine (Version 2.29) for 
chromatographic alignment and peak detection. 1591 and 898 peaks were isolated in positive and negative mode, 
respectively, and 852 (pos) and 469 (neg) could be identified in the human metabolome database. After elimina-
tion of the duplicates that were identified in both polarities, 1042 metabolites were selected for further analysis 
(Supplementary Dataset).

For 8 of these RCC tumours (5 ccRCC and 3 chroRCC), we also collected adjacent normal tissue from the 
same nephrectomy surgical specimen and performed the same metabolomic profiling in order to determine the 
baseline of metabolic levels in healthy controls.

Multivariate analysis for RCC subtype classification. Raw metabolic data were mean-centred, and 
Pareto scaled before multivariate analysis. The Pareto scaling reduces the relative importance of high-intensity 
metabolites but preserves the integrity of the data structure compared to the classic unit-variant scaling28. 
Principal component analysis (PCA) was then carried out to visualize the global variation in the observations 
and to detect possible outliers. The quality controls, which are the mix of all samples, were located in the mid-
dle of the PCA scatter plot demonstrating the reliable performance and reproducibility of the LC-MS analysis 
(Supplementary Fig. 1). None of the observations had to be removed as outliers. Supervised classification was per-
formed using the orthogonal projections to latent structures discriminant analysis (OPLS-DA) model. In addition 
to the classic PLS model, the orthogonal PLS model separates the dataset variation into two parts: predictive and 

Cohort

Training set Validation set

N % N %

Number of Patients 37 — 28 —

Age at Surgery (YR) 64.3 — 65 —

Gender

Male 27 73 19 68

Female 10 27 9 32

Surgical Procedure

Radical nephrectomy 27 73 16 57

Partial nephrectomy 10 27 12 43

Histology Subtype

Clear cell 21 57 19 68

Papillary 9 24 5 18

Chromophobe 7 19 4 14

pT

1 15 41 16 57

2 4 11 2 7

3 18 48 10 36

Table 1. Characteristics of the patients included in this study.

Isup Grade

Training set Validation set

N % N %

2 8 27 10 42

3 13 43 11 46

4 9 30 3 13

Table 2. Grade distribution for ccRCC and papRCC.
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orthogonal, and therefore allows improved interpretability29,30. The optimum OPLS-DA model for RCC histolog-
ical subtype classification was established with 2 predictive components and 1 orthogonal component, a R2X(cum) 
of 44.2% and a goodness-of-fit R2 of 75.0% (Fig. 1a). The model shows discrimination between all three main 
subtypes of RCC. Moreover, all 37 samples were classified correctly according to their corresponding subtype.

Cross-validation tests and permutation tests were performed to evaluate the predictive capability of this model. 
For cross-validation tests we withheld, by turns, 1/7 of the cohort as validation sets. The goodness-of-prediction 
Q2 estimated from these validation sets was 59.7%. The p-value of cross-validation ANOVA test at 7.516 × 10−8 
also showed the strong predictive power of the model. The permutation tests randomly transformed the class list 
of the cohort and compared the newly created models to the existing ones. All 100 permutation models presented 
lower predictive power Q2 than the initial model. The Q2-intercept was −0.4 (Fig. 1b). Both tests showed that this 
RCC subtype classification is statistically validated and of significant predictive power.

In order to evaluate the prognostic performance of the OPLS-DA model for RCC subtype classification, 28 
additional samples (19 clear cell, 5 papillary and 4 chromophobe) were collected as the validation set and analysed 
in the same manner as the training set (Tables 1 and 2). The RCC subtype determined by histology, and those 
predicted by the OPLS-DA model, were used to calculate the ROC curve. The area under curve (AUC) and 95% 
confidence interval was 0.924 (0.799–1.049), 0.991 (0.964–1.018), 1 (1–1), respectively, for ccRCC, papRCC and 
chroRCC (Fig. 1c). These results showed that, depending on the tumour subtype, at least 92% of the samples 
could be diagnosed accurately.

To better understand the most discriminative metabolites for RCC subtype classification, the weight of each 
metabolite on each component is visualized on a loading plot (Fig. 1d). Metabolites that contribute more to the 
discrimination will have a higher weight, and thus, tend to be the farthest away from the origin. The importance 
of each metabolite was summarized by the variable influence on projection (VIP) (Supplementary Table 1). For all 
metabolites with a VIP >3 in subtype classification, we compared their variation in each subtype and in healthy 
controls (Table 3).

In addition, an OPLS-DA model was constructed for the discrimination of RCC samples from paired normal 
tissues (Supplementary Fig. 2). The fitting and predictive parameters of the model are R2X(cum) of 55.5%, R2 of 

Figure 1. Renal cell carcinoma subtype classification based on untargeted metabolomics data. (a) OPLS-DA 
model of RCC subtype classification (N = 37). The model is composed of 2 predictive components and 1 
orthogonal component and presents an R2X(cum) of 44.2%, a goodness-of-fit R2 of 75.0%, a goodness-of-
prediction Q2 of 59.7% and a CV-ANOVA p-value of 7.516 × 10−8. (b) Validation plot obtained from 100 
permutation tests. (c) ROC (Receiver Operating Characteristic) curves obtained from an independent cohort 
(N = 28) showing the ability of OPLS-DA model to predict RCC subtypes. (d) Loading plot showing the 
most discriminative metabolites. The metabolites with VIP (Variable Importance for the Projection) >3 are 
highlighted with red circles; with VIP >2 are highlighted with orange circles. Variables with VIP >3 are used 
for further pathway analysis.
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93.2%, Q2 of 78.0%, CV-ANOVA p-value of 0.015 and Q2-intercept of the permutation test of −0.5. Our dataset 
demonstrated that the model is statistically valid despite the limited sample number.

Metabolic pathway analysis. For a better understanding of metabolic dysregulation among RCC sub-
types, we performed two types of pathway analysis. Metabolite Set Enrichment Analysis was performed using 
the Small Molecule Pathway Database (Fig. 2a) and Metabolic Pathway Analysis was performed using the KEGG 
database, which also calculates the impact of each pathway using topology analysis in addition to the classic 
enrichment analysis31,32 (Fig. 2b). Amino acid metabolism appeared to be the most frequently modified pathways 

Name m/z Mode VIP

Peak intensity Ratio Peak Intensity Ratio

Mean cc Mean pap Mean chro pap/cc chro/cc pap/chro Mean Healthy RCC/Healthy

Creatine 132.07694 POS 10.51 2.98E + 09 1.31E + 09 4.92E + 09 0.44 1.65 0.27* 2.06E + 09 1.26

L-Acetylcarnitine 204.12320 POS 10.43 4.50E + 09 1.91E + 09 3.13E + 09 0.42** 0.7 0.61 2.90E + 09 1.24

L-Carnitine 162.11262 POS 6.85 2.18E + 09 1.03E + 09 1.79E + 09 0.47* 0.82 0.58 1.34E + 09 1.82

L-Proline 116.07095 POS 6.45 1.39E + 09 2.06E + 09 8.66E + 08 1.48* 0.62 2.38*** 1.56E + 09 0.71*

L-Phenylalanine 166.08636 POS 6.07 1.44E + 09 2.07E + 09 1.09E + 09 1.43 0.76 1.90* 2.09E + 09 0.51*

Betaine 118.08658 POS 5.15 2.10E + 09 2.46E + 09 1.82E + 09 1.17 0.87 1.35 1.71E + 09 1.44

Hypoxanthine 137.04591 POS 5.11 1.21E + 09 1.95E + 09 1.79E + 09 1.61* 1.48 1.09 3.26E + 09 0.54**

L-Lactic acid 89.02295 NEG 5 3.45E + 09 3.87E + 09 3.55E + 09 1.12 1.03 1.09 2.16E + 06 0.8

L-Isoleucine 132.10212 POS 4.65 1.44E + 09 1.51E + 09 8.21E + 08 1.05 0.57 1.83* 1.26E + 09 0.56**

Glycerophosphocholine 296.06608 POS 4.03 4.80E + 08 5.79E + 08 8.33E + 08 1.21 1.73 0.7 2.86E + 08 2.06

L-Methionine 150.05848 POS 3.89 2.18E + 08 6.83E + 08 2.83E + 08 3.14** 1.3 2.41* 6.15E + 08 0.36**

L-Tyrosine 182.08135 POS 3.7 3.99E + 08 7.36E + 08 3.26E + 08 1.85** 0.82 2.26*** 9.71E + 08 0.49*

L-Palmitoylcarnitine 400.34272 POS 3.66 4.48E + 08 1.05E + 08 1.84E + 08 0.23** 0.41 0.57 1.17E + 08 0.96

Dimethylglycine 104.07109 POS 3.63 4.50E + 08 3.42E + 08 3.94E + 07 0.76 0.09*** 8.67* 1.28E + 08 1.01

L-Tryptophan 205.09736 POS 3.4 4.34E + 08 6.37E + 08 2.85E + 08 1.47 0.66 2.24* 7.77E + 08 0.41**

Hydroxybutyrylcarnitine 248.14922 POS 3.22 4.08E + 08 1.22E + 08 5.12E + 08 0.3 1.26 0.24 2.50E + 08 2.62*

N-Acetyl-L-aspartic acid 174.03976 NEG 3.21 3.81E + 07 8.15E + 07 3.57E + 08 2.14 9.37** 0.23* 5.97E + 08 0.29*

Adenosine 268.10419 POS 3.19 1.19E + 08 1.09E + 08 4.88E + 08 0.91 4.1 0.22 1.45E + 08 1.37

L-Malic acid 133.01299 NEG 3.19 4.93E + 08 2.53E + 08 2.23E + 08 0.51 0.45* 1.14 5.19E + 08 0.63

Isobutyryl-L-carnitine 232.15447 POS 3.14 4.66E + 08 3.39E + 08 6.25E + 08 0.73 1.34 0.54 4.82E + 08 1.39

L-Glutamic acid 148.06055 POS 3.07 1.09E + 09 7.98E + 08 5.56E + 08 0.73 0.51 1.43 7.57E + 08 1.26

Table 3. Levels of the most discriminative metabolites (VIP >3) for RCC subtype classification. p-values were 
calculated using a Mann-Whitney test for unpaired comparison and a Wilcoxon signed rank test for paired 
comparison. The level of significance was set at *for p < 0.05, **for p < 0.01 and ***for p < 0.001.

Figure 2. Pathway analysis of altered metabolites in RCC subtypes. (a) Metabolite set enrichment analysis using 
SMPDB (Small Molecule Pathway Database). (b) Metabolomic pathway analysis using the KEGG database.
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in both analyses. These included methionine, arginine and proline, phenylalanine, glycine, serine and threonine 
metabolism, among others. Enrichment and pathway analyses also showed modifications in fatty acid and pyru-
vate metabolism.

Heterogeneity within a tumour. For 6 ccRCC, several samples were collected from each surgical piece to 
evaluate the heterogeneity within the tumours using metabolomics. We performed a hierarchical cluster analysis 
(HCA) on each set of data. For 1 of the 6 tumours, within the same surgical specimen, we observed a necrosis 
zone, a sarcomatoid zone and a conventional ccRCC zone. The HCA classification clearly distinguishes the necro-
sis portion and the sarcomatoid portion from the conventional carcinoma portion. This classification correlates 
with the results observed from macro and micro analyses (Fig. 3a,b). Interestingly, when we integrated all these 
samples in our previous OPLS-DA RCC subtype classification model, despite the intra-tumour heterogeneity, all 
samples were correctly predicted to be clear cell subtype (Fig. 3c). It is important to note that we were also able to 
correctly classify all samples from the other 5 ccRCC tumours (data not shown).

Figure 3. Example of metabolic profiling in tumour heterogeneity. (a) Macroscopic observation. (b) Metabolic 
profiling. Dendrogram of hierarchical clustering analysis (HCA). (c) Predicted scores of the 7 in-tumour 
heterogeneity samples in the OPLS-DA RCC subtype classification model. All 7 samples (black stars) were 
correctly predicted according to their subtype, ccRCC.

Figure 4. Main metabolic dysregulation among clear cell (cc), papillary (pap) and chromophobe (chro) 
RCC. Data were shown as the mean ± SEM. p-values were calculated using a Mann-Whitney test. The level of 
significance was set at *for p < 0.05, **for p < 0.01 and ***for p < 0.001.
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Discussion
In this work, we show for the first time that untargeted metabolomics allows the classification of all three main 
RCC histologic subtypes. In addition, our results provide new insights into the molecular characteristics of each 
subtype.

Precise classification of RCC subtypes has important implications in kidney cancer treatment. It provides 
precious information, not only on the clinical tumour behaviour, but also on cancer prognosis and it could also 
help direct therapeutic strategies8. Furthermore, up to 5% of RCC cannot be classified using standard histologic 
observations33, therefore the development of complementary methods for RCC subtype classification is of crit-
ical importance to ensure the accuracy and robustness of cancer diagnoses. Recent technological progress with 
respect to the speed and resolution of LC-MS metabolomic analyses makes this approach particularly promis-
ing. Here, we present the first study showing the feasibility of the classification of all three main RCC subtypes 
using metabolomic profiling. Combining LC-MS with multivariate analyses, we were able to build an OPLS-DA 
model with a fit (R2) of 75.0% and a prediction (Q2) of 59.7%. The predictive power of the model was validated by 
cross validation tests (CV ANOVA p-value = 7.516 × 10−8) and permutation tests (Q2-intercept = −0.4). The high 
prognostic performance of the model was also demonstrated by an independent sample cohort using ROC anal-
yses showing that, depending on RCC subtype, at least 92% of samples were accurately predicted using metab-
olomic data. Thus, we have demonstrated that metabolic profiling could provide a new tool for RCC subtype 
diagnosis. Our study also indicates that limited tissue sample sizes (10–20 mm3) should be sufficient according to 
the LC-MS/MS analyses that were performed on a small aliquot of the extracted metabolites. In addition, most 
discriminative metabolites were detected at an intensity 102 to 104-fold higher than the noise level. Therefore, such 
analyses should work on more clinically accessible samples, as renal biopsies. Compared to commonly used anal-
yses (histologic, immunohistologic and genetic)34, metabolomic analyses give information about the molecular 
features of the tumour, and therefore provide additional information on tumour behaviour. Moreover, it presents 
the advantages of being fast, cheap and robust.

The second aim of this study was to elucidate differences between RCC subtypes at a molecular level. To date, 
the vast majority of clinical trials and drug development strategies have focused on clear cell RCC due to its high 
frequency (over 75% of RCCs). Subsequent therapeutic strategies are then similar for the treatment of the other 
subtypes. However, it is known that renal cell carcinoma is a very heterogeneous group of tumours that display 
different behaviours. The RCC subtypes differ in their histologic appearance, genetic profile and response to drug 
treatment. To develop new subtype-specific therapeutic approaches, it is essential to understand the differences 
and similarities between subtypes on a molecular level11. In this study we have established an extensive overview 
of the metabolic profiles of the main RCC subtypes. Over 1000 metabolites were identified and semi-quantified 
for each RCC subtype. Our data suggest that metabolic reprogramming mechanisms are different between RCC 
subtypes. Moreover, pathway analyses revealed significant differences between the RCC subtypes, mainly con-
cerning amino acid and fatty acid metabolism.

As previously shown by both Hakimi and Ganti and their collaborators16,35, we found that the levels of numer-
ous amino acids (tyrosine, tryptophan, isoleucine, methionine, proline, and phenylalanine) were decreased in 
RCC samples compared to control samples. Our results reveal that the levels of different classes of amino acids 
were differentially altered in each RCC subtype (Fig. 4). Consistent with the study of Schaeffeler and collabora-
tors26, we observed that multiple amino acid metabolic pathways were modified between ccRCC and chroRCC, 
such as glycine, serine and threonine metabolism and methionine metabolism. We also found that several amino 
acids or their derivatives, for example N-acetyl-L-aspartate, glutamate and alanine, had more similarities between 
chroRCC and healthy control samples compared to the other two subtypes. This aligns with a previous study26 
which showed that the metabolic coregulation network is more altered in ccRCC than chroRCC compared to 
non-tumorous tissue. Interestingly, the levels of all three listed amino acid-associated metabolites varied in a pro-
gressive way with the chroRCC being the most similar to the healthy sample, then the papRCC, with ccRCC being 
the most divergent. To the contrary, the level of aromatic amino acids, such as tryptophan, tyrosine and phenyla-
lanine, were significantly higher in papRCC compared to ccRCC and chroRCC. A similar profile was observed for 
methionine and proline. The dysregulation of amino acid metabolism is known to be a key event during cancer 
development36 and alterations in specific amino acid levels are emerging hallmarks of cancers. Amino acids serve, 
not only as basic building blocks in protein synthesis, but also as metabolic regulators in cancer cell growth37. Our 
results suggest that the different RCC histologic subtypes are each using very specific amino acids as energetic 
sources for cell proliferation.

Pathway analysis also revealed alterations in fatty acid metabolism. Several studies25–27,35 have found that 
ccRCC samples have increased fatty acid metabolism compared to healthy samples, which was not the case for 
chroRCC. Accordingly, our results showed that, compared to normal tissues, the level of acylcarnitines, such 
as carnitines, palmitoylcarnitines and acetylcarnitines, are only increased in ccRCC, whereas the papillary and 
chromophobe subtypes have a similar level of acylcarnitines as in normal tissues. It has previously been reported 
by Ganti and collaborators21 that acylcarnitine concentrations are increased in the urine of ccRCC patients. It is 
also known that only clear cell subtypes accumulate excessive intracellular lipid and glycogen, which accounts for 
their clear appearance in histological observations38. Thus, the elevated level of acylcarnitines in ccRCC relative 
to the other two subtypes is consistent with its increased fatty acid metabolism.

Another interesting difference is the variation in the levels of immune-suppressive metabolites in the tryp-
tophan pathway. As shown in Fig. 4, increases in kynurenine levels were frequently observed in ccRCC samples, 
whereas the majority of papRCC and chroRCC showed low kynurenine levels. Based on these observations, 
we could hypothesize that therapies targeting the kynurenine immune-suppressive effect (i.e. the indoleamine 
2,3-dioxygenase (IDO) inhibitor but also interferon-α-based, interlekin-2-based and more recently anti-PD1 
based immunotherapies)10,39 may have a lower success rate in papRCC and chorRCC than in ccRCC. However, 
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further research with a much higher number of patients is required to clearly demonstrate the efficiency of metab-
olomic analyses in the prediction of successful cancer treatment strategies.

It has to be noted that despite the significant differences in metabolite levels between the RCC subtypes, we 
could not identify any individual metabolite that independently allowed for correct and reliable classification. We 
show that the integration of complex metabolic profiling using multivariate analyses provides a more accurate and 
robust tool than the use of only one or several metabolites as a biomarker.

Finally, this study revealed that metabolomics also allows the characterization of different zones within a 
single tumour (necrosis, carcinoma or sarcomatoid). Importantly, this heterogeneity does not interfere with the 
overall subtype ccRCC classification, thus confirming the reliability of this metabolomics approach for subtype 
classification.

To conclude, this study demonstrated that all three main RCC subtypes can be discriminated using an untar-
geted metabolomics approach. Furthermore, we detected significant differences in metabolic profiles (amino acid 
and fatty acid metabolism) among RCC subtypes, which should be useful for the development of new specific 
treatments of papRCC and chroRCC. Our findings highlight the importance of metabolomic analyses, not only 
for RCC subtype classification, but also for elucidating the behaviour of different RCC subtypes.

Methods
Sample collection and histological subtype diagnosis. Tissue samples from 61 patients with 
non-metastatic RCC that had undergone surgery in the urology department of the Nice University Hospital 
between May 2016 and May 2018 were selected. As defined by the 2016 World Health Organization criteria40,41, 
diagnosis was based upon pathology and cytogenetic analysis. Initial management of surgical specimens was per-
formed according to a standardized protocol. The surgical specimens were obtained immediately after nephrec-
tomy. Fresh samples were collected and frozen in liquid nitrogen for further metabolomic analyses. We confirmed 
the identity of the examined tissue by microscopic examination of a mirror formalin-fixed paraffin-embedded 
(FFPE) sample. 51 patients having a tumour defined as ccRCC, papRCC or chroRCC were enrolled. The cohort 
was secondarily completed by including 14 patients with archived frozen tissue to complete the number in non 
ccRCC subtypes. All the tumours were managed in the same way, for both the initial macroscopic procedure and 
the diagnosis procedure. The detailed clinical pathological parameters for all the patients included in this study 
and their grade distribution are reported in Tables 1 and 2. Informed consent was obtained from all individual 
participants included in the study. The study included only the adult patients. All of the samples are the property 
of the tissue collection of the Pathology Department of the University Hospital of Nice and are declared annually 
to the French Health Ministry. The procedures followed were approved by the institutional review board of the 
University Hospital of Nice. This study was conducted in accordance with the Declaration of Helsinki.

Sample preparation. Frozen tissues (~200 mm3) were placed in microcentrifuge tubes and ground in 
1 mL cold methanol (LC-MS grade, Merck Millipore, Molsheim, France) using pestles. Homogenized samples 
were incubated overnight at −20 °C then centrifuged at 15 000 g for 15 minutes. The supernatants were removed 
and dried using a SpeedVac concentrator (SVC100H, SAVANT, Thermo Fisher Scientific, Villebon-sur-Yvette, 
France). The lyophilized samples were resuspended in 180 µL of 50:50 acetonitrile-H2O mix (LC-MS grade, 
Merck Millipore) prior to LC-MS/MS analyses.

LC-MS/MS analysis. Metabolic profiling was performed using LC-MS/MS. Liquid chromatographic anal-
ysis was performed using the DIONEX Ultimate 3000 HPLC system (Thermo Fisher Scientific). A 10 µL of each 
sample was injected onto a Synergi 4 µm Hydro-RP 80 Å, 250 × 3.0 mm column (Phenomenex, Le Pecq, France). 
The mobile phases were composed of 0.1% formic acid (Thermo Fisher Scientific) in water (A) and 0.1% formic 
acid in acetonitrile (B). The gradient was set as follows with a flow rate of 0.9 mL/min: 0% phase B from 0 to 
5 min, 0–95% B from 5 to 21 min, holding at 95% B to 21.5 min, 95–0% B from 21.5 to 22 min, holding at 0% B 
until 25 min for column equilibration. Mass spectrometry analysis was carried out on a Q Exactive Plus Orbitrap 
mass spectrometer (Thermo Scientific) with a heated electrospray ionization source, HESI II, operating in both 
positive and negative mode. High-resolution accurate-mass full-scan MS and top 5 MS2 spectra were collected 
in a data-dependent fashion at a resolving power of 70 000 and 35 000 at m/z 400, respectively. A quality control 
(QC) sample was prepared from an equal mix of all collected samples. It was injected at the beginning of the run 
and after every 9 samples in order to monitor the stability of the mass spectrometer performance.

Metabolomic profiling. Raw data files were converted to mzXML files using MSConvert (Version 2.1, 
ProteoWizard)42. The data obtained from positive and negative ionization mode were analysed separately using 
MZmine (Version 2.29)43. Isolated chromatograms were built for each mass with a noise threshold of 105. A 
local minimum search algorithm was used to select the validated peaks. Peaks were then aligned by RANSAC 
(random sample consensus) algorithm with a tolerance of 10 ppm in m/z and 1 min in retention time. Missing 
values were filled in using the same m/z and RT range as observed in detected samples, where possible. We kept 
only those peaks that had no missing values after gap-filling. Peaks were then identified using the Human metab-
olome database44 (HMDB, version 3.0) with 15 ppm of mass tolerance. All selected metabolites with VIP >3 were 
individually verified (MS and MS2 spectra). Only identified metabolites were kept for further analyses. Results 
obtained with each polarity were combined, and for metabolites that were identified in both modes, we kept the 
metabolites with higher intensity mean.

Multivariate analysis. For multivariate analysis, metabolomic data were introduced into the SIMCA soft-
ware (Version 14.1, Sartorius Stedim Biotech, Germany). Raw data were mean-centred and scaled with the square 
root of the standard deviation (Pareto scaling)45. At first, principal component analysis (PCA) was carried out 
using scaled data to visualize the overview of the dataset46. Outliers were eliminated if observed. Orthogonal 
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projections to latent structures discriminant analysis (OPLS-DA), a supervised model, was then established to 
relate the X data to the Y response29,30. In our case, the X is the metabolomic dataset and the Y is the histological 
classes allowing for the discrimination of different RCC subtypes. The OPLS-DA model was evaluated using 
R2X(cum): the variation of X explained by the model; R2: the goodness-of-fit that is represented by the percentage 
of the variation of Y explained by the model; Q2: the goodness-of-prediction. Q2 of the model was evaluated 
using a cross-validation test. 1/7 of the data were withheld during model development. The withheld portion 
was then predicted by the model that had been established using the remaining 6/7 of the data. The predictions 
for the excluded parts were compared with the actual values and these steps were repeated until all data had 
been withheld once. Q2 is the percentage of the variation of the dataset predicted by the model according to the 
cross-validation test. The significance of the cross-validation test was calculated by ANOVA using the predictive 
residuals. A significant model should have a CV-ANOVA p-value of less than 0.05. Additionally, response per-
mutation tests were performed for the model validation. To this end, the Y (classes) are permutated to appear in a 
different order while the X-dataset remains intact. A new model is fitted to the permutated data. The R2 and Q2 of 
the permutated model are compared to the real model. A validated model should have all permutated Q2 values 
lower than the original Q2 and the Q2-intercept below zero.

The influence of each metabolite on the classification was calculated by the variable influence on projection 
(VIP)30. Metabolites with VIP >1 have an above average influence. In our case, only metabolites with VIP values 
>3 were selected for further pathway analysis using free web-based software, MetaboAnalyst (Version 3.0)32. 
Additionally, annotation of metabolites with VIP >3 was verified manually using a reference MS/MS spectrum of 
the Metlin database. About 15% of identifiers were invalidated, mainly due to the confusion between isomers and 
the presence of contaminants from the mass spectrometer.

Statistical analyses. Univariate analyses were carried out using GraphPad Prism (Version 5.03, GraphPad 
Software Inc., USA). Differences between unpaired groups were compared using the two-tailed Mann-Whitney 
test. For paired data, the two-tailed Wilcoxon matched-pairs signed rank test was applied. Data were shown as 
the mean ± SEM. The level of significance was indicated by *for p < 0.05, **for p < 0.01 and ***for p < 0.001. 
Hierarchical cluster analyses (HCA) were performed by SIMCA software using Ward’s method47. The receiver 
operating characteristic (ROC)48 curves were calculated using GraphPad Prism. The prognostic performance of 
the metabolomic-based OPLS-DA model was evaluated using an independent sample cohort by computing the 
area under the ROC curve (AUROC) using the predicted Y values for each RCC subtype.
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