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Large nearshore storm waves off 
the Irish coast
Francesco Fedele1, James Herterich   2, Aziz Tayfun3 & Frederic Dias   2,4*

We present a statistical analysis of nearshore waves observed during two major North–East Atlantic 
storms in 2015 and 2017. Surface elevations were measured with a 5-beam acoustic Doppler current 
profiler (ADCP) at relatively shallow waters off the west coast of Ireland. To compensate for the 
significant variability of both sea states in time, we consider a novel approach for analyzing the non-
stationary surface-elevation series and compare the distributions of crest and wave heights observed 
with theoretical predictions based on the Forristall, Tayfun and Boccotti models. In particular, the 
latter two models have been largely applied to and validated for deep-water waves. We show here that 
they also describe well the characteristics of waves observed in relatively shallow waters. The largest 
nearshore waves observed during the two storms do not exceed the rogue thresholds as the Draupner, 
Andrea, Killard or El Faro rogue waves do in intermediate or deep-water depths. Nevertheless, our 
analysis reveals that modulational instabilities are ineffective, third-order resonances negligible and 
the largest waves observed here have characteristics quite similar to those displayed by rogue waves 
for which second order bound nonlinearities are the principal factor that enhances the linear dispersive 
focusing of extreme waves.

Recent studies1,2 reveal that rogue waves can arise from a combination of the process of constructive interference 
and nonlinear effects specific to the complex dynamics of ocean waves. Under relatively rare conditions, waves 
locally propagate in an organized way or nearly in phase, resulting in an unusual case of constructive interference 
that generates waves with large amplitudes. However, this mechanism still cannot fully explain the sizes of rogue 
waves observed under actual oceanic conditions. Various discrepancies observed between theoretical models and 
actual observations can be attributed to the nonlinear nature of waves: they are not sinusoidal but vertically asym-
metric, displaying shallower more rounded troughs, and higher sharper crests that result from the water surface 
being pushed upward against the pull of gravity. Thus, the nonlinearity of the ocean surface manifest in the lack 
of symmetry between wave crests and troughs needs to be accounted for3–5. Such nonlinearities do contribute 
to the effects of constructive interference noticeably. Indeed, recent studies1,4 suggest that nonlinear effects due 
to second-order bound harmonics play a predominate role in this process and can cause an increase of 15 to 20 
percent in crest height, i.e. the vertical distance from the mean sea level to the top of the wave.

The formation of a rogue wave at a given point of the ocean is simply a random or chance event1. Several 
cases of extreme wave occurrences of practical and theoretical interest such as the Andrea, Draupner and Killard 
waves1 and the sinking of El Faro2 have been studied in detail by way of higher order spectral wave simulations 
and validated with probabilistic wave models. These studies have shown that second-order statistical distributions 
of crests, in particular those often referred to as Tayfun3,4,6,7 and Forristall8 models, both describe rogue statistics 
reasonably well in intermediate to deep waters.

In this work, we will show that the Tayfun and Boccotti9,10 models for wave heights, previously validated for 
both simple4,10 and mixed seas11–13 in deep water, describe the statistics of large waves in intermediate to relatively 
shallow waters reasonably well also. For comparison, we also consider the Forristall’s Weibull regression model8 
because of its frequent application and popularity in engineering design14. Our results here and several others 
elsewhere indicate that it does work quite well in describing the distribution of observed data. For example, 
Gibson et al.14 use the Forristall’s model to explain their statistics of oceanic wave crests, but they do not use the 
Tayfun3 or Tayfun-Fedele4 models on the grounds that they require the calculation of a key parameter from the 
time trace of water surface elevations, not readily available from hindcast models. However, they were able to use 
the Boccotti9 wave-height model with two parameters specifically dependent on the frequency spectrum or the 

1School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA. 
2University College Dublin, School of Mathematics and Statistics, Earth Institute, Belfield, Dublin 4, Ireland. 3Burak 
Sitesi 75/1, Bitez, Bodrum, 48400, Mugla, Turkey. 4CMLA, ENS Paris-Saclay, CNRS, Université Paris-Saclay, 94235, 
Cachan, France. *email: frederic.dias@ucd.ie

OPEN

https://doi.org/10.1038/s41598-019-51706-8
http://orcid.org/0000-0001-6399-1487
http://orcid.org/0000-0002-5123-4929
mailto:frederic.dias@ucd.ie


2Scientific Reports |         (2019) 9:15406  | https://doi.org/10.1038/s41598-019-51706-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

time trace of surface elevations. The Forristall crest-height model likewise requires two parameters that depend 
on the spectral moments. Similarly, recent work by Katsardi et al.15 indicates that various regression models fitted 
to observed data are not universally applicable nor do they provide an adequate description of waves in shallow 
water, as large waves are overestimated. However, only unidirectional laboratory waves propagating on rather 
mild impermeable slopes are explored, and neither the Tayfun crest-height model3,4 nor the Boccotti wave-height 
models9,10 are tested on the grounds that second-order models cannot describe highly nonlinear shallow-water 
waves affected by intense wave-breaking. Nonetheless, they consider the Forristall crest-height model in their 
comparisons. That model is also second-order, and all second-order models break down in shallow water where 
waves are highly nonlinear, prone to intense breaking and affected by various dissipative effects of the seabed. 
Nevertheless, all these models are equally applicable to some of their data representative of the relatively shallower 
waters of the transitional water depths.

In the present study, we consider all the aforementioned models and test them against directional waves 
observed in relatively shallow waters within the shoaling zone. In particular, we consider two wave data sets from 
ADCP measurements taken off the west-coast of Ireland near Killard Point in 2015 and near the Aran Islands 
in 2017 (see Fig. 1). In particular, the two locations are nearshore at a water depth of approximately 37 meters 
(Killard) and 45 meters (Aran). They are well-known high-energy coastlines where storm waves overtop cliffs, 
fracture bedrock, and move large rocks weighing 100 tons or more16–19. We then analyze wave statistics in rel-
atively shallow waters during storm events. In particular, we examine data observed in two storms, namely the 
storm of 25–27 Feb 2015, hereafter referred to as Feb 2015, and Doris of 21–26 Feb 2017. Wave measurements 
carried out during these storms are described in the Methods section. Monochromatic waves propagating on a 
water depth d and characterized with a wave number k feel the presence of the bottom, and start being modified 
whenever the dimensionless depth parameter kd < π. The wave regime is classified as deep water if kd > π, as 
intermediate or transitional depth for π/10 < kd < π, and as shallow water if kd < π/10. This classification has 
significance both practically and theoretically in establishing how wave characteristics are modified and what 
processes need be included and modeled in their theoretical predictions. Obviously, defining the depth regime of 
a wind-wave field as a whole in a similarly precise fashion is impossible due to the wide range of wave numbers 
observed. As a compromise, we will define the depth regime for the two storms based on the dominant wave-
number kp at the spectral peak, thus focusing our attention on the most energetic components with wave num-
bers at and near the spectral peak. On this basis, both storms are in the transitional water-depth regimes since 
0.5 < kpd < 2.5, as seen in the right panel of Fig. (2). Further, characteristics of both storms vary considerably over 
their durations of 70 hours, approximately. As a consequence, we propose novel probability models appropriate 
to non-stationary processes so as to be able to analyze the surface-elevation time series gathered during the two 
storms.

Results
This section is structured as follows. First, we discuss the characteristics of the sea states generated by the two 
storms as they pass by the west coast of Ireland. The descriptions of various wavefield characteristics, associated 
principal statistical parameters and probability models employed in the analyses are described in the Methods 
section. Subsequently, we present the analysis of extreme waves. In particular, in order to be able to predict ration-
ally the occurrence of extreme waves in a time-dependent storm, we first present the theoretical formulation of 
a non-stationary model for describing the sequences of sea states in a storm. On this basis, an optimal sea state 
duration is determined based on the rationale that variation of key statistics is minimal between two consecutive 
sea-state sequences. We then explore the occurrence frequency of rogue waves observed at a fixed point at sea. 
The largest waves observed at the peak of the storms and their characteristics are then compared to those of the 

Figure 1.  (Left) Map of Ireland: ADCP location off the Aran Islands in 2017 (upper Inset) and off Killard Point 
in 2015 (lower Inset). (Right) ADCP deployment with (blue-capped) instruments in a protective frame. The 
map was generated from data via OpenStreetMap and its contributors. Photo by F. Dias.
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Draupner and Andrea rogue waves, observed at different oil platforms in the North Sea in 1995 and 2007, respec-
tively, the Killard rogue wave observed off the coast of Ireland in 20151 and the simulated El Faro rogue wave2. The 
metocean parameters of the six sea states are summarized in Table 1.

Our statistical analysis of large waves focused on the study of the time sequence of changing sea states during 
the two storms. An optimal sea state duration Tsea of 50 minutes for both storms was determined so as to min-
imize the degree of difference between waves of consecutive sea states. Drawing on Boccotti9, this is measured 
by the standard deviation of the random variable V = σ2/σ1 − 1, where σj

2 are the variances of two successive sea 
states in the storm sequence as shown in Fig. (2). Sampled values of V are obtained by dividing the non-stationary 
time series into N = Ds/Tsea successive sea states of the same duration Tsea and variances σ1

2,σ2
2, ..., σj

2,σj + 1
2, ..., 

where Ds is the storm duration (70 hours). Then, N − 1 sampled values of V follow as Vj = σj + 1/σj − 1 for j = 1, ..., 
N − 1, from which the standard deviation of V can be estimated. Obviously, the mean of V tends to zero as Tsea 
approaches smaller values.

This process ensured that resulting statistics are robust to variations in Tsea up to ±20 min once the total pop-
ulation of surface elevations from each sea state in a storm sequence are normalized by the respective significant 
wave height.

Metocean parameters.  Both storms generated directional sea states in transitional water depths. This is 
clearly seen in the right panel of Fig. (2), displaying the hourly variations of the depth coefficient kpd during the 
two storms. Surface spectra observed were broadbanded so that ωp ≈ 0.8ωm, while kp ≈ 0.7km.

Metocean parameters of both storms and how these vary are shown below in the top and bottom panels of Fig. 
(3) respectively. In particular, the left panels of Fig. (3) depict the hourly variation of the significant wave height 
Hs = 4σ. For comparison, the variation of actual significant height H1/3 representing the mean of the highest 1/3 
of wave heights observed is also shown in the same panels. It is seen that it is about 5% smaller than Hs. The actual 
mean zero-up-crossing wave period T0 is also shown in the center panels of the same figure, whereas the right 
panels depict the wave spectra measured at the storm peaks. We observe that the high-frequency behavior in both 
cases is described by a logarithmic f−4 decay in conformity with Zakharov’s wave turbulence20.

The two states analyzed here do not present any characteristics typical of mixed or crossing seas such as swell 
waves overlapping with wind seas because the frequency spectra S(f) displays a unimodal structure, as depicted in 
the right panels of Fig. (3). In particular, an examination of the directional spectrum Sd(ω, θ)/σ2 estimated using 
the Bayesian direct method (BDM) at the peak of Doris storm and shown in the left panel of Fig. (4) clearly dis-
plays a unimodal broad-banded wind-wave field, also confirmed by the attendant unimodal directional spreading 
function D(θ) in the right panel of the same figure.

Figure (5) displays the scatter diagrams of crest heights h/Hs versus corresponding wave periods T/T0 for both 
storms. Large crest heights (and similarly wave heights, not reported here) do not violate the Miche-Stokes limits. 
These are depicted in the same figure by two bold red lines representing the Miche-Stokes limits for the most 
intense and weakest sea states of the storms. In seas generated by intense storms, nonlinear wave dispersion is 
effective in limiting wave growth as a precursor to breaking21–23. Thus, the onset of wave-breaking can occur well 
below the Miche-Stokes upper limit22,24–27.
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Figure 2.  (Left) Variations of difference between consecutive sea states of Doris and Feb 2015 storms, measured 
in terms of the standard deviation of observed values of σ2/σ1 − 1 between two consecutive sea states in a storm 
sequence. (Right) Hourly variations of the depth factor kpd and (dashed line) theoretical threshold above which 
plane waves are modulationally unstable in unidirectional seas30,31.
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In Table 1 we compare the metocean parameters observed during the peak states of the two storms with those 
of the El Faro, Draupner, Andrea and Killard rogue sea states1. Clearly, all six sea states have similar metocean 
characteristics. Killard, Doris and Feb 2015 are in shallower waters and the last two have a greater steepness 
than the other four sea states. Indeed, the observed values of skewness λ3 and excess kurtosis λ40 are larger than 
those observed in the other four cases (see also Fig. (6)). This suggests that the largest waves observed were near 
the onset of incipient breaking or already breaking, thus lessening the likelihood of occurrence of larger rogue 
events21,22,28.

Modulational instability in intermediate or transitional water depths.  In the Feb 2015 storm, the 
depth coefficient kpd, depicted in the right panel of Fig. (2), was below the critical depth threshold 1.363 whereas 
not so in Doris. Above the threshold, plane waves are modulationally unstable29 in the one-dimensional (1-D) 
wave dynamics described by the Nonlinear Schrödinger (NLS) equation30,31. However, the wave fields analyzed 
here are directional sea states, and according to the 2-D hyperbolic NLS equation, plane waves are modulationally 
unstable even at depths below that critical value, if they are perturbed by appropriate oblique disturbances29,32–34. 
Nevertheless, it is also recognized that instabilities ensuing from such disturbances are not likely to occur for 
values of kpd < 0.532. So, it is plausible that rogue waves could be generated by modulational instability, as in uni-
directional seas35,36 during both of the storms analyzed here. The kurtosis statistics is often used as an indicator 
if any rogue waves are present in a sea state. In sea states where third-order nonlinearities are significant, excess 
kurtosis λ40 = λ40

d + λ40
b comprises a dynamic component37–40 λ40

d due to nonlinear quasi-resonant wave-wave 
interactions and a Stokes bound harmonic contribution40,41 λ40

b, given in the Methods section. As for the dynamic 
component, drawing on Janssen40, Fedele’s39 one-fold integral formulation is extended to narrowband (NB) waves 
in intermediate waters as
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In the preceding expression, BFI k2 /pσ ν=  defines the Benjamin-Feir index in deep water at the spectral 
peak, ν the spectral bandwidth, i 1= −  and Im(x) denotes the imaginary part of x, ωp and kp the dominant 
spectral frequency and wavenumber. Depth effects on wave directionality, measured by R, are represented by 
RS = βSR by way of the factor βS, and αS is the depth factor. The latter two depend on the dimensionless depth kpd 
(see Methods section). In the deep-water limit, both αS and βS become 1. The maximum of dynamic excess kur-
tosis is well approximated by39
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Doris Feb 2015 El Faro Andrea Draupner Killard

Significant wave height Hs [m] 6.4 12.6 9.0 10.0 11.2 11.4

Dominant wave period Tp [s] 10.0 14.1 10.2 14.3 15.0 17.2

Mean zero-crossing wave period T0 [s] 8.8 13.3 9.2 11.6 12.1 14.0

Mean wavelength L0 [m] 120 216 131 209 219 268

Depth d [m], k0d with k0 = 2π/L0 45, 2.35 37, 1.08 4700, 225 74, 2.23 70, 2.01 39, 0.91

Spectral bandwidth ν 0.46 0.51 0.49 0.35 0.36 0.37

Angular spreading σθ [rad] 0.90 1̃.07 0.79 0.37 0.39 0.34

Parameter R = σθ
2/2ν2 37 1.90 2.2 1.34 0.56 0.59 0.42

Benjamin Feir Index BFI38 0.18 0.22 0.36 0.24 0.23 0.18

Narrow-band (NB) skewness λ3,NB
49 0.190 0.221 0.262 0.159 0.165 0.145

Observed skewness λ3 0.144 0.441 0.162 0.141 0.146 0.142

Maximum NB dynamic excess kurtosis λ40,max
d 39 −10−3 −10−1 10−3 2.3 · 10−3 2.1 · 10−3 2.7 · 10−4

NB bound excess kurtosis λ40,NB
d 41 0.094 0.229 0.049 0.065 0.074 0.076

Observed excess kurtosis λ40 0.098 0.263 0.042 0.041 0.032 −0.011

Actual maximum crest height h/Hs 1.11 1.23 1.68 1.63 1.55 1.44

Actual maximum crest-to-trough (wave) height H/Hs 2.06 1.93 2.6 2.30 2.10 2.00

Table 1.  Wave parameters and various statistics of Doris and Feb 2015 at the storm peak in comparison to the 
El Faro2, Andrea, Draupner and Killard rogue sea states1. Note that the Killard rogue wave occurred on a water 
depth of 39 m, however the hincast input spectrum used by Fedele et al.1 could only be computed at an averaged 
water depth of 58 m. We refer to the Methods section for the definitions of wave parameters.
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Figure 3.  History of metocean parameters in (top panels) Doris and (bottom panels) Feb 2015 storms: (left) 
hourly variations of significant wave height Hs = 4σ compared to actually observed H1/3, (center) variation of 
mean zero-up-crossing period T0, and (right) surface spectra at peak stage of storms and their high-frequency 
saturation compared to a logarithmic f−4 type decay.

Figure 4.  Doris: (left panel) Estimated normalized directional spectrum Sd(ω,θ)/σ2 [Hz−1rad−1] at the storm 
peak using the Bayesian direct method (BDM) and (right panel) associated angular spreading function 

∫θ ω θ ω σ=
∞D S( ) ( , )d /d0

2.
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Figure 5.  Scatter diagrams of crest heights h/Hs versus wave periods T/T0 observed in Doris and Feb 2015 
storms compared with Miche-Stokes limits for the weakest (upper red curves) and the most intense (lower red 
curves) sea states, respectively.

Figure 6.  Histories of statistical parameters in (top panels) Doris and (bottom panels) Feb 2015 storms: (left) 
hourly variation of observed values of μ = λ3/36 compared to theoretical NB steepnesses3,4 μm and μp; (right) 
hourly variation of observed Λ and Λappr = 8λ40/3 implied by NB theory41 compared to NB estimates Λm and Λp. 
Note that Λ is practically the same as Λappr. Subscripts m and p refer to definitions of parameters based on the 
mean and dominant wavenumbers km and kp, respectively.
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where π=R 3 3 /40
3 (which corrects a misprint in39) and b = 2.48.

In the focusing regime (0 < RS < 1 and αS > 0) the dynamic excess kurtosis of an initially homogeneous 
Gaussian wave field grows, reaches a maximum at the intrinsic time scale τ ν ω= =t R1/ 3c p c S

2  and then monot-
onously decreases and eventually vanishes over longer times. Such a regime is typical of unidirectional narrow-
band waves on water depths kpd < 1.363. Indeed, in 1-D waves modulational instability disappears below that 
critical threshold and αS < 0. As a result, wave dynamics becomes of defocusing type and excess kurtosis is nega-
tive. In particular, it reaches a minimum at tc and then tends to zero over larger times. The kurtosis formulation in 
Eq. (1) extends Fedele’s39 stochastic approach to NB waves at intermediate water depths, and it indicates that in 
directional seas such as those analyzed in this study, modulation instability can also occur at depths below the 
critical threshold 1.363 for αS > 0 (see also Alber42). Further, for waves propagating over a broad range of direc-
tions in the open sea, Fedele et al.1 show that such instabilities are ineffective in triggering rogue waves as excess 
kurtosis becomes negative, provided that RS > 1. A rogue wave regime is a more likely occurrence only if the 
surface spectrum is sufficiently narrow-banded (RS < 1) as well as characterized by a relatively large positive 
excess kurtosis.

Both storms analyzed here are in transitional water depths and prone to potential rogue occurrences induced 
by modulational instability since αS > 0. However, all their sea states are directionally spread and character-
ized with mostly negative excess kurtosis since RS > 1. This can clearly be seen in Fig. (7). Thus, the potential 
recurrence or focusing of large waves as observed in unidirectional seas is largely attenuated or suppressed1,2,7,39. 
Indeed, our statistical analysis indicates that the effects of third-order resonance or modulational instabilities 
are negligible, and that second-order bound nonlinearities are the dominant factor in shaping the large waves 
observed. We also point out that the NB predictions based on the mean wavenumber km yield similar negligible 
estimates of the dynamic excess kurtosis.

In summary, our analysis indicates that fourth order cumulants are essentially trivial to begin with, implying 
that the analyzed sea states are ordinary: nothing specially rogue about them. The present analyses of the two 
storm wave datasets discussed in the following section confirm all this and show that there is hardly anything 
beyond second-order nonlinearities to explain their statistics.

Nonlinear wave statistics.  The relative importance of nonlinearities in a sea state can be assessed by way 
of various integral statistics. These include the observed values of the wave steepness μ = λ3/3 6 and the coefficient 
Λ = λ40 + 2λ22 + λ04 4, where λ3 is skewness and λij are fourth-order cumulants of the zero-mean surface elevation 
η(t) and its Hilbert transform. In particular, λ40 is the excess kurtosis of surface elevations. Skewness is a measure 
of vertical asymmetry, and it describes the effects of second-order bound nonlinearities on the geometry and 
statistics of the sea surface with higher sharper crests and shallower more rounded troughs3,4,6. Excess kurtosis 
indicates whether the tail of the distribution of surface elevations is heavier or lighter relative to a Gaussian dis-
tribution. It comprises a dynamic component λ40

d measuring third-order quasi-resonant wave-wave interactions 
and a bound contribution λ40

b induced by both second- and third-order bound nonlinearities3–6,37,43.
In describing wave statistics, the theoretical NB predictions based on the mean wavenumber km, rather than 

kp, tend to yield more favorable comparisons with deep-water observations or theories6,44. Definitions based on 
kp lead to predictions that noticeably underestimate the observed and/or theoretical statistics of broadband waves 
since kp < km

44. Nonetheless, the sea states analyzed here are in intermediate water depths and characterized with 
broad-banded spectra both in frequency and direction. Describing the statistics in such cases based on either km 
or kp is neither very reliable nor realistic.

Figure 7.  Variations of hourly estimates in (top panel) Doris and (bottom panel) Feb 2015 storms of the 
maximum of dynamic excess kurtosis λ40

d (thin line) and significant wave height Hs (thick line).
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In Table 1 we compare the statistical parameters of the most intense sea states of Doris and Feb 2015, and 
also the Draupner, Andrea and Killard rogue sea states1,2. The maximum dynamic excess kurtosis is negative and 
negligible. Thus, third-order quasi-resonant interactions, including NLS-type modulational instabilities, should 
not play any significant role in the formation of large waves in comparison to bound nonlinearities1,39 especially as 
the wave spectrum broadens21 in agreement with oceanic observations available so far4,45,46. The values of excess 
kurtosis λ40 and Λ are mostly due to bound nonlinearities7,47,48.

In the top panels of Fig. (6), we compare the hourly variations of (left) the observed values of μ = λ3/3 6 ver-
sus the theoretical NB approximations3,49 μm and μp based on the mean and dominant wavenumbers km and kp, 
respectively, and (right) the observed fourth–order Λ coefficient, its approximation Λappr and the NB predic-
tions37,41 Λm and Λp based on km and kp for Doris. The same comparisons are also reported in the bottom panels 
for Feb 2015. Clearly, the two NB predictions μm overestimate and μp slightly underestimate the observed values 
of μ for Doris. In contrast, both NB predictions underestimate the observed steepness for Feb 2015. Similarly, 
the actual Λ is mostly overestimated by both the NB estimates. Moreover, Λ is practically the same as Λappr (see 
Methods section). In the final analysis, the sea states analyzed here are characterized by broadband spectra both 
in frequency and direction and the NB assumption is unrealistic. Thus, hereafter we use the observed values of μ 
and Λ to evaluate wave statistics.

Occurrence frequency of extreme waves in storms.  We now describe a novel approach for the statis-
tics of extreme waves encountered by an observer at a fixed point of the ocean surface during a storm of duration 
Ds. Drawing on9,50–52, the storm is modeled as a non-stationary continuous sequence of sea states of duration dt, 
and dt/T0(t) is the number of waves in the sea state, where T0(t) is the time-changing mean zero-crossing wave 
period. Consider now a wave of the storm and define the probability Pns(ξ) that its crest height C exceeds the 
threshold h = ξHs as observed at a fixed location where Hs = 4σ. Equivalently, this is the probability of randomly 
picking a wave crest whose height C exceeds the threshold ξ = h/Hs from the non-stationary time series observed 
at a fixed point of the storm. Then,
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where P(ξ, t) = Pr[C > ξHs(t)] stands for the probability that a wave crest height C exceeds the threshold ξHs(t) in 
the sea state occurring in the time interval [t, t + dt]. This probability depends on wave parameters around time t. 
The definition of Pns is consistent with the way wave crests are sampled from non-stationary wave measurements 
during storms. In particular, a storm is partitioned into a finite sequence of Ns sea states of duration Tsea = Ds/Ns. 
In each sea state Sj centered at t = tj, waves are sampled and their crest elevations (h) are normalized with the local 
significant wave height as h/Hs(tj) and put all in the same population . Then, the empirical exceedance probability 
Pns(ξ) is estimated as the ratio of the number of waves that exceed ξ to the total number of waves in the popula-
tion. This is consistent with the way Eq. (4) is formulated. Indeed, N t dt EX t dt dt( , ) ( )w T t

1
( )0

= =  is the expected 
number of waves during a sea state in [t, t + dt] and P(ξ, t)EX(t)dt is the number of waves whose crest heights 
exceed the threshold h = ξHs(t) in the same sea state. Then, Pns in Eq. (4) follows by cumulating (integrating over 
time) the number of waves of all the sea states whose crest heights exceed h. In practice, the non-stationary Pns is 
estimated from data as the weighted average
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where Nw(tj) is the number of waves sampled in the sea state Sj. Equation (4) also implies that the threshold ξHs 
is exceeded on average once every Nh(ξ) = 1/Pns(ξ) waves. Thus, Nh can be interpreted as the conditional return 
period of a wave whose crest height exceeds ξ. For weakly nonlinear seas, the probability P(ξ, t) is hereafter 
described by the third-order Tayfun-Fedele4 (TF), second-order Tayfun3 (T), Forristall8 (F) and the Rayleigh (R) 
distributions (see Methods section). Note that we are now able to estimate the probability Pns(ξ) that a wave of the 
storm has a crest height C larger than ξ = h/Hs. However, we still need to find in what sea state (of significant wave 
height Hs) such a wave most likely occurs.

To do so, we draw on9,51,52 and express the probability density function (pdf) describing the time at which a 
wave crest C exceeds a specified or given level h in the interval [t, t + dt] as
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The preceding pdf is estimated from data as
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where Tsea is the sea state duration. As an example, consider the Feb 2015 storm. The largest wave with also 
the largest crest height of h = hmax = 1.23Hs = 14 m (see Table 1) is observed in the sea state at the storm 
peak (Hs = 12.6m). The pdf p(t|h) estimated for that crest amplitude, and shown in Fig. 8, is very narrow and 
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concentrated around its absolute maximum coincident with the storm peak in agreement with what is expected 
intuitively. Instead, waves whose crest height exceeds the smaller threshold h = hmax/2 = 7 m have a pdf that still 
has its maximum at the storm peak, but it is broader indicating that crest heights exceeding 7 m likely occur also 
before or after the storm peak.

Similarly, the nonstationary occurrence frequency of a wave of the storm whose crest-to-trough wave height 
exceeds the threshold H as well as the pdf p(t|H) of the sea state in which such waves occur can be both described 
by the same Eqs ((4), (6)) by simply replacing P(h) with the exceedance probability P(H) appropriate for wave 
heights of stationary seas. This is hereafter described by the generalized Boccotti (B), Tayfun (T) and linear 
Rayleigh (R) distributions (see Methods section).

Finally, the second-order nonstationary pdf pns(z = η/σ) of wave surface elevations η for storms is defined as
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where p(z = η/σ) is the Tayfun approximation3,44 for nonlinear stationary sea states, described by
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where μ μ= + + −F z1 2 12  and μ = λ3/3, valid for the observed values of skewness coefficient λ3 < 0.6, 
approximately.

Note that the probability structure of storm-wave characteristics depends upon the time history of wave 
parameters, say α(t), such as significant wave height, skewness and excess kurtosis. The analyses of the data sets 
here indicate that the non-stationary distributions are well approximated by the corresponding stationary models 
of an equivalent sea state with duration equal to that of the actual storm (as if Hs does not vary in time) evaluated 
using the weighted average parameters
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This follows from modeling the actual storm as if it had an ‘equivalent’ rectangular shape and assuming that 
the average parameters of the Tayfun and Boccotti models are the same in both the actual and equivalent storms. 
However, such approximations do not have general validity, and they may not work for other models or data sets. 
Thus, hereafer we will only consider the non-stationary models based on (4).

The empirical distributions of surface wave elevations for both storms Doris and Feb 2015 are shown in Fig. 
(9). These are for the most part well described by the non-stationary Tayfun pdf pns, which is practically the 
same as the stationary approximation estimated using the weighted average steepness μ based on Eq. (10). This 

Figure 8.  Probability density function p(t|h) [1/min] of a wave whose crest elevation exceeds the maximum 
observed height h = hmax = 1.23Hs = 14 m in the Feb 2015 storm. Hourly variations (bold line) of significant 
wave height Hs are also shown. The vertical dashed line indicates the sea state in which the largest crest was 
observed. For comparison, the pdf for h = hmax/2 = 7 m is also shown.
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indicates the dominance of second-order nonlinearities in shaping the sea surface, especially for the more intense 
Feb 2015 storm.

Figure (10) summarizes the wave statistics for Doris. In particular, the left panel of the figure depicts the 
empirical distribution for crest heights h/Hs observed in the total wave population plotted versus the number of 
waves Nh(ξ). This is compared against the theoretical predictions of the nonstationary second-order Tayfun (T), 
third-order Tayfun-Fedele (TF), Forristall (F) as well as the Rayleigh (R) distributions. Although the associated 
confidence bands on the empirical probabilities noticeably widen over the large waves, the theoretical predictions 
nonetheless still lie mostly within the same confidence bands. Note that TF is practically the same as T and F as an 

Figure 9.  Probability density function of scaled surface wave elevations η/σ in (left) Doris and (right) Feb 2015 
storms. The empirical distributions (□) derived from the total wave population are compared with the non-
stationary second-order Tayfun (T) distribution for storms. Dashed curves (G) describe the probability density 
for a standard unit Gaussian variable.

Figure 10.  Doris: (left) crest heights h/Hs and (right) crest-to-trough wave heights H/Hs versus number of 
waves Nh(ξ). Empirical distributions (□) of total population of waves observed in comparison with non-
stationary models (T = Tayfun, TF = Tayfun-Fedele, F = Forristall, B = generalized Boccotti and R = Rayleigh 
distributions). (Light gray lines) approximate confidence bands on observational estimates and (horizontal 
dashed lines) rogue thresholds58 for crest (1.25Hs) and wave heights 2.2Hs, respectively.
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indication that second-order effects are dominant, whereas the linear R model underestimates the return periods. 
Similarly, the right panel of the same figure shows the empirical distribution for crest-to-trough wave heights 
H/Hs. The observed statistics is well described by both the non-stationary generalized Boccotti (B) and Tayfun (T) 
models. The small differences among the various models are magnified in Fig. (11), which shows the plots of the 
normalized crest height h/hR and wave height H/HR versus the number of waves Nh. Here, hR and HR are the crest 
and crest-to-trough-thresholds exceeded with probability 1/Nh in a Gaussian sea in accord with the Rayleigh law.

Similar conclusions also hold for the wave statistics for the Feb 2015 storm, summarized in Figs (12) and (13). 
As regard to crests, TF slightly exceeds T, again as an indication that second-order effects are dominant.

The wave profiles η with the largest wave crest height observed during Doris and Feb 2015 are shown in the left 
panel of Fig. (14). In the other panels, we display the El Faro, Draupner, Andrea and Killard rogue wave profiles 
for comparison1,2. In the same figure, the mean sea level (MSL) below the crests is also shown. The estimation of 
the MSL follows by low-pass filtering the time series of zero-mean surface elevations with a frequency cutoff 
f f /2c p~ , where fp is the frequency at the spectral peak53.

All six wave profiles are similar, suggesting a common generation mechanism for rogue events. In particular, 
all cases have sharper crests and rounded troughs and they do not display any secondary maxima or minima. 
They appear more regular and behave as narrow-banded waves do45. In essence, this means that the temporal 
profile of a relatively large wave observed over a complete phase cycle of 2π displays a single dominant crest or 
a ‘global’ maximum with no local maxima or minima. In other words, the wave phase monotonously increases 
over the cycle without any reversals associated with local minima and maxima45. These characteristics typical of 
truly narrow-band waves in every wave cycle are similarly observed but locally in the largest group of waves in 
a wind-wave field although they are not in the least described by a narrow-banded spectrum. In narrow-band 
waves, the constructive interference is the primary mechanism for the generation of large displacements in the 
underlying first-order linear field. The second-order corrections are phase-locked to the linear field such that they 
always tend to enhance wave crests and flatten the troughs, leading to the basic vertical asymmetry observed in 
oceanic waves. The process is similar for relatively large waves in a wind-wave field45.

Further, Doris and Feb2015 both display the characteristics of a dominant wind wave field and show no 
evident characteristics typical of mixed or crossing seas such as swell overlapping with local wind waves (see 
e.g. Fig. 4). That may explain the minor set-down observed below the largest waves observed. On the con-
trary, a set-up below the simulated El Faro and actual Draupner rogue waves is observed, most likely due to 
the multidirectionality of the respective sea states2. Indeed, recent studies showed that Draupner occurred in 
mixed seas consisting of swell waves propagating at approximately 80 degrees to wind seas54–56. Instead, the El 
Faro sea state showed a very broad directional spreading of energy typical of strong hurricane conditions. The 
multi-directionality of the two sea states may explain the set-up observed under the large wave53 instead of the 
second-order set-down normally expected57.

Figure 11.  Doris: (top) crest heights h/hR and (bottom) crest-to-trough wave heights H/HR versus number 
of waves Nh(ξ). Empirical distributions (□) of total population of waves observed in comparison with non-
stationary models (T = Tayfun, TF = Tayfun-Fedele, F = Forristall, B = generalized Boccotti and R = Rayleigh 
distributions). (Light gray lines) approximate confidence bands on observational estimates. Amplitude hR (HR) 
refers to Rayleigh-distributed crest (crest-to-trough) heights exceeded with probability P(ξ) in Gaussian seas.
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Figure 12.  Feb 2015: (left) crest heights h/Hs and (right) crest-to-trough wave heights H/Hs versus number 
of waves Nh(ξ). Empirical distributions (□) of total population of waves observed in comparison with non-
stationary models (T = Tayfun, TF = Tayfun-Fedele, F = Forristall, B = generalized Boccotti and R = Rayleigh 
distributions). (Light gray lines) approximate confidence bands on observational estimates and (horizontal 
dashed lines) rogue thresholds58 for crest (1.25Hs) and wave heights 2.2Hs, respectively.

Figure 13.  Feb 2015: (top) crest heights h/hR and (bottom) crest-to-trough wave heights H/HR versus number 
of waves Nh(ξ). Empirical distributions (□) of total population of waves observed in comparison with non-
stationary models (T = Tayfun, TF = Tayfun-Fedele, F = Forristall, B = generalized Boccotti and R = Rayleigh 
distributions). (Light gray lines) approximate confidence bands on observational estimates. Amplitude hR (HR) 
refers to Rayleigh-distributed crest (crest-to-trough) heights exceeded with probability P(ξ) in Gaussian seas.
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Discussion
There is at present no consistent crest-height or wave-height model that works effectively at shallow water 
depths where kd < π/10 and recent comparisons15 simply serve to demonstrate this. The wave regime in such 
shallow waters can only be described by stochastic formulations of highly nonlinear shallow-water equations. 
Second-order theories or approximations tend to become ineffective at such depths. Our work does not overlap 
with or extend to such water depths where the second-order theory breaks down. Indeed, we have shown that 
the theoretical Tayfun3,6 and Boccotti9,10 models for crest and wave heights, largely applied to and validated for 
deep-water waves4,10 and more recently for mixed/crossing seas11–13, describe waves reasonably well in intermedi-
ate shallow waters also (π/10 < kd < π). So does the second order Forristall model8.

In particular, we have analyzed actual wave data from ADCP measurements gathered during the passages of 
two major storms nearshore off Killard Point at the intermediate water depth of approximately 37 m (kpd = 0.6–
2.5) in 2015 and off the Aran Islands at 45 m depth (kpd = 1.36–2.2) in 2017 (see Fig. 1). The observed sea states at 
the storm peak present the characteristics of a main dominant wind wave field. No evident crossing sea character-
istics of overlapping swell and wind components are observed. We have observed time-dependent wave statistics 
and proposed a novel approach to rationally analyze the non-stationary surface series.

The large wave characteristics measured do not exceed the conventional rogue thresholds58 h/Hs = 1.25 and 
H/Hs = 2.2 observed in laboratory experiments15. In contrast, Draupner, Andrea or Killard rogue waves1,2, all 
observed in intermediate water depths, did attain crest heights of approximately 1.6Hs (see Table 1). Nevertheless, 
our analysis reveals that the largest waves observed here have characteristics quite similar to those displayed by 
the El Faro, Andrea, Draupner and Killard rogue waves1,2 for which second order bound nonlinearities constitute 
the dominant factor enhancing the linear dispersive focusing of extreme waves.

Moreover, most observed values of the dimensionless depth kpd were slightly above (Doris) and below (Feb 2015) 
the threshold 1.363 above which unidirectional waves are expected to become modulationally unstable30,31. The sea 
states analyzed here were multidirectional, and a carrier wave is modulationally unstable even at depths below that 
critical value if they are perturbed by appropriate oblique disturbances32–34. This type of instabilities are not very 
likely to appear in theory32 if kpd < 0.5. Nonetheless, rogue waves can be generated by modulational instability, as in 
unidirectional seas35,36. However, in directional seas such as the two considered here, energy can spread directionally 
and the recurrence of large waves as observed in unidirectional seas is largely attenuated or suppressed1,2. Indeed, our 
statistical analysis indicates that modulational instabilities are ineffective, third-order resonant effects are negligible 
and second order bound nonlinearities are the dominant factor in shaping the large waves observed.

Our results here also indicate that in shallower water depths, nonlinear dispersion effects intensify2,21, induc-
ing waves to break more rapidly than in deep waters. As a result, waves cannot breathe as they do not have time to 
grow and reach higher amplitudes above 1.25Hs as in deep water. Therefore, whereas the standard rogue thresh-
olds are based on the Rayleigh law appropriate to linear non-breaking Gaussian seas, it makes sense to consider 
more realistic thresholds and models that account for wave breaking since the latter limits wave growth and 
impedes the occurrence of rogue waves2,21,22.

Finally, large waves with higher and sharper crests do not display any secondary maxima or minima. They 
appear more regular or “narrow banded” than relatively low waves, and their heights and crests do not often 
violate the Miche–Stokes type upper limits59. Our results also suggest that third-order resonant nonlinearities do 
not affect the surface statistics in any discernable way, in agremeent with recent rogue wave studies1,2. Indeed, our 
analysis reveals that fourth order cumulants are negligible. As a consequence, the sea states analyzed here have 
nothing specially rogue about them.

Figure 14.  Observed wave profiles η/ηmax (thick solid) and mean sea levels (MSL) (thick dashed) versus t/Tp 
for (first panel from the left) Doris and Feb 2015, and (following panels from left to right) El Faro, Andrea, 
Draupner and Killard simulated waves (thin solid) and MSL (thick dashed). Actual measurements (thick 
solid) and MSLs (thick solid) are also shown for Andrea, Draupner and Killard. Note that the Killard MSL is 
insignificant and the Andrea MSL is not available. ηmax is the maximum crest height and Tp is the dominant 
wave period (see Table 1 and Methods section for definitions).
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Methods
ADCP measurements.  A Teledyne Sentinel V acoustic Doppler current profiler (ADCP) was deployed off 
Killard Point, Ireland (upper inset of Fig. 1) during Spring 2015 and off the Aran Islands, Ireland (lower inset 
of Fig. 1) during Spring 2017, to measure wave events. The instrument itself was secured in a frame to ensure it 
stayed in position and to prevent damage (see right panel of Fig. 1). The frame and instrument were placed at rest 
at the sea bottom, at an average depth of 37 m (Killard Point) and 45 m (Aran Islands). The four slant beams made 
a 25° angle with the vertical, so that at the surface, the maximum distance between beams was approximately 
35 m (Killard Point) and 42 m (Aran). This ADCP operates by emitted sound pulses in five beams (four slanted 
and one vertical) and using the Doppler effect to measure the movement of sound scatterers such as plankton and 
small particulates, within these beams60. Each beam divides the water column into 38 bins, separated by 122 cm. 
Because of hardware limitations, data were sampled at 2 Hz similarly to standard wave measurements gathered at 
oil platforms14. Drawing on61, the sampling error on estimating crest and wave heights, the so-called quantization 
error62,63, is approximately 1–2%. This is mitigated by correcting for crest amplitudes by quadratically interpolat-
ing the sampled crests, as in recent stereo-measurements of the ocean surface62,63.

We correct the resulting data sets of echo intensity and velocity measurements for pitch, roll, and heading of 
the instrument in the water, and convert from instrument coordinates (a radial set) to geographical coordinates 
(North, East, Up) using standard transformations64,65. We interpolate the data to find the position of maximum 
intensity, corresponding to the location of the free surface64.

Directional spectrum.  We estimate the directional spectrum from the free-surface profiles of the four 
slanted beams using the DIWASP toolbox66. Consequently, we are able to determine angular spreading and 
directionality of a sea state. DIWASP uses a number of methods to estimate the directional spectrum from 
the cross-power spectrum of the data: direct Fourier transform method (DFTM), extended maximum likeli-
hood method (EMLM), iterated maximum likelihood method (IMLM), extended maximum entropy principle 
(EMEP), and Bayesian direct method (BDM)66.

However, the estimations are not perfect due to limited information and unknown factors. The EMLM spec-
trum is often more directionally-diffused with a lower peak. The EMEP spectrum produces a good directional 
spreading. However, although the peak is higher than EMLM, it is below the desired result67. EMEP and BDM 
can give very similar spreading results, but their peak values often differ significantly68,69. EMEP can calculate 
bi-directionality, while BDM is less sensitive to probe layout and more robust against errors68. In our analysis, we 
consider the BDM spectrum.

Wave parameters.  The significant wave height Hs is defined as the mean value H1/3 of the highest one-third 
of wave heights. It can be estimated either from a zero-crossing analysis or more easily but approximately from the 
omnidirectional surface spectrum S f S f d( ) ( , )d0

2
∫ θ θ=

π  as Hs ≈ 4σ, where σ = m0  is the standard deviation 
of surface elevations, ∫=m S f f f( ) dj

j  denotes spectral moments. Further, Sd(f,θ) is the directional wave spectrum 
with θ as the direction of waves of frequency f, and the cyclic frequency is ω = 2πf. In this paper, we use the 
spectral-based estimate, which is 5–10% larger than the actual H1/3 estimated from the actual time series.

The dominant wave period Tp = 2π/ωp follows from the cyclic frequency ωp of the spectral peak and T0 is the 
observed mean zero-crossing wave period. For Gaussian seas, this is equal to 2π/ω0, with m m/0 2 0ω = . The 
associated wavelength L0 = 2π/k0 follows from the linear dispersion relation gk k dtanh( )0 0 0ω = , with d the 
water depth. The ‘mean’ or central frequency ωm of the spectrum is defined as ωm = m1/m0 3 and the associated 
mean period Tm is 2π/ωm. Theoretical NB steepness3,49 is defined as μm = kmσ, where km is the mean wavenumber 
corresponding to ωm via the linear dispersion relation
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Statistical parameters.  The normalized covariance function of zero-mean surface displacement η(t) is 
defined as t t( ) ( ) ( )/ 2ψ τ η η τ σ= + . An alternative measure for the spectral bandwidth is given by the Boccotti 
parameter ψ* = |ψ(τ*)|, which is the absolute value of the first minimum of ψ at τ = τ* 9 and ̈ ̈⁎ ⁎( )ψ ψ τ=  the cor-
responding second derivative with respect to τ.

Skewness coefficient λ3 and excess kurtosis λ40 of the zero-mean surface elevation η(t) are given by

/ , / 3 (11)3
3 3

40
4 4λ η σ λ η σ= = − .

Here, overbars imply statistical averages and σ is the standard deviation of surface elevations. Clearly, the wave 
steepness μ = λ3/3 6 relates to the skewness coefficient λ3 of surface elevations. For third-order nonlinear (NB) 
random seas the excess kurtosis37,38

λ λ λ= + (12)d b
40 40 40

comprises a dynamic component λ40
d due to nonlinear quasi-resonant wave-wave interactions39 and a Stokes 

bound harmonic contribution λ40
b 41. Drawing on40 and using parameters based on ωm, km and qm = kmd, wave 

skewness and bound excess kurtosis for narrowband (NB) waves in intermediate water are given by

λ μ α λ μ β γ α λ β γ
α

= + Δ = + + + Δ =
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2 2 α
Δ =
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− + ω

contributes positively to the wave induced setdown40 due to the directional spread of waves. Assuming that the 
linear crest heights (ξ0) scaled with surface rms are Rayleigh-distributed, the mean wave-induced setdown in the 
still water level is given by 〈ξ0

2〉μmΔ = 2μmΔ, where brackets denote statistical average.
When ΔST = 0, some algebra shows that λ3,NB is the same as the original Marthinsen-Winterstein formula-

tion49,71, developed nearly three decades ago in the form:

λ μ= +D D3 ( ), (15)NB m3, 1 2

where
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g m

g m m m

m m
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1 2 2 3

The coefficients D1 and D2 arise from the frequency-difference and frequency-sum terms of second-order 
wave-wave interactions. Note that D1 = 2Δ and D2 = 2α exactly in unidirectional waves for which ΔST = 0. 
Unfortunately, Eq. (13) are not valid in relatively shallow water depths as second and third-order terms of the 
associated Stokes expansion can be larger than the linear term (see Eq. (A18) in41) because of the divergent nature 
of α and β. Thus, the relative validity of the preceding results essentially assumes the constraints αμm ≤ 1 and 
βμm/α ≤ 1. These are satisfied for all seas states of both storms studied here.

Miche-Stokes upper limit.  In Gaussian seas, surface displacements and thus wave and crest heights 
have unbounded ranges. In reality, surface elevations are neither exactly Gaussian nor unbounded. And, the 
crest-to-trough height of a large wave whose steepness approaches the Stokes limiting steepness is unlikely to 
exceed an upper bound. For long-crested waves in transitional water depths, Miche59 approximated this upper 
bound as

σ
π
σ

=
H

k
kd2

7
tanh( ), (17)

lim

where σ is the standard deviation of the sea state, k is the wavenumber and d the water depth. Following Tayfun45 
the corresponding Miche-Stokes limit for crest heights is estimated as

σ
σ

ψ
λ σ

ψ
=

+
+




 +






.⁎ ⁎
h H H/

1 6
/

1 (18)
lim lim 3 lim

2

The Miche-Stokes limit can be rewritten as a function of wave period T via the linear dispersion relation. Finally, 
note that in realistic oceanic seas, nonlinear wave dispersion is effective in limiting the wave growth as a precursor 
to breaking21–23. Thus, in wave fields generated by intense storms, the onset of breaking can occur well below the 
preceding Miche-Stokes type upper bounds22,24,25.

The Tayfun-Fedele model for crest heights.  We define P(ξ) as the probability that a wave crest observed 
at a fixed point of the ocean in time exceeds the threshold ξHs. For weakly nonlinear nonlinear seas, this proba-
bility can be described by the third-order Tayfun-Fedele model4,

P h H( ) Pr[ ] exp( 8 )[1 (4 1)], (19)TF s 0
2 2 2ξ ξ ξ Λξ ξ= > = − + −

where ξ0 follows from the quadratic equation ξ = ξ0 + 2μξ0
2. Here, μ = λ3/3 is the Tayfun steepness: it represents 

an integral measure of wave steepness and relates to second-order bound nonlinearities. The parameter 
Λ = λ40 + 2λ22 + λ04 is a relative measure of third-order nonlinearities expressed in terms of the fourth-order 
cumulants λnm of surface elevation η and its Hilbert transform η̂4. In particular, ˆλ η η σ= −/ 122

2 2 4  and 
ˆλ η σ= −/ 304

4 4 . In this study, Λ is approximated solely in terms of the excess kurtosis as Λappr = 8λ40/3. This 
approximation follows from the NB relations between cumulants43,72 λ22 = λ40/3 and λ04 = λ40, valid as the spec-
tral bandwidth ν tends to zero. Numerical computations1 indicate that Λ ≈ Λappr with an error of about 3% in wave 
fields where second-order nonlinearities are dominant, in agreement with observations35,73.

For second-order seas, Λ = 0 and PTF in Eq. (19) leads to the Tayfun wave-crest distribution3,6

ξ ξ= −P ( ) exp( 8 ), (20)T 0
2

where ξ = ξ0 + 2μξ0
2. For Gaussian seas, ξ0 = ξ since μ = 0 and Λ = 0, and PTF reduces to the Rayleigh distribution

ξ ξ= − .P ( ) exp( 8 ) (21)R
2

Note that the Tayfun distribution represents an exact theoretical result for large second-order wave crest 
heights and it depends solely on the steepness parameter defined as μ = λ3/36.

The Forristall’s Weibull model for crest heights.  The exceedance probability for crest heights is given 
by8

ξ ξ ξ α= > = − βP h H( ) Pr[ ] exp( ( / ) ), (22)F s

where α = 0.3536 + 0.2561S1 + 0.0800Ur, β = 2 − 1.7912S1 − 0.5302Ur + 0.284Ur
2 for multi-directional 

(short-crested) seas. Here, S1 = 2πHs/(gTm
2) is a characteristic wave steepness and the Ursell number Ur = Hs/

(km
2d3), where km is the wavenumber associated with the mean period Tm.

The generalized Boccotti and Tayfun models for crest-to-trough wave heights.  The third-order 
nonlinear statistics for crest-to-trough wave heights is described in terms of the generalized Boccotti distribution10
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B s

2 2 2

and the Boccotti parameters9 ψ* and ψ⁎̈ are defined above in the section where statistical parameters are 
described. For Gaussian seas (Λ = 0), the original Boccotti9 model is recovered

P y H y H y( ) Pr[ ] 1
2 (1 )
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The Tayfun model for wave heights is given by4,74
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where rm = r(Tm/2) is the value of the envelope r(t) of the covariance ψ(t) at t = Tm/2. Finally we note that as spec-
tral bandwidth ν tends to zero, all three parameters ψ*, ⁎̈ψ  and rm tend to unity, and the Boccotti and Tayfun dis-
tributions both reduce to the Rayleigh distribution given by

= − .P y y( ) exp( 2 ) (26)R
2
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