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the relevant range of scales for 
multi-scale contextual spatial 
modelling
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Karsten Schmidt  2, Juhwan Lee  3, Thomas Scholten  2 & A-Xing Zhu6,7

Spatial autocorrelation in the residuals of spatial environmental models can be due to missing covariate 
information. In many cases, this spatial autocorrelation can be accounted for by using covariates from 
multiple scales. Here, we propose a data-driven, objective and systematic method for deriving the 
relevant range of scales, with distinct upper and lower scale limits, for spatial modelling with machine 
learning and evaluated its effect on modelling accuracy. We also tested an approach that uses the 
variogram to see whether such an effective scale space can be approximated a priori and at smaller 
computational cost. Results showed that modelling with an effective scale space can improve spatial 
modelling with machine learning and that there is a strong correlation between properties of the 
variogram and the relevant range of scales. Hence, the variogram of a soil property can be used for a 
priori approximations of the effective scale space for contextual spatial modelling and is therefore an 
important analytical tool not only in geostatistics, but also for analyzing structural dependencies in 
contextual spatial modelling.

Environmental properties are the result of complex and non-linear interactions of physical, chemical and bio-
logical processes across space and time. Often, these interactions are so complex that the spatial variation of 
the environmental property cannot be explained deterministically. Geostatistical methods treat variation as if it 
were random in terms of spatially autocorrelated random fields or random processes1,2. This is why associations 
between the spatial patterns of kriged predictions and the physical processes that influence and control these 
patterns often remain hidden3.

The universal model of spatial variation introduced by Matheron4 describes the variation of a soil property 
Z(s) in terms of a deterministic component Z*(s) consisting of structural variation, a stochastic component ε′(s) 
consisting of (apparently) random variation that may be spatially correlated and ε′ consisting of spatially uncor-
related random noise:

ε ε= + ′ + ′⁎Z s Z s s( ) ( ) ( )

The structural variation of the deterministic component Z*(s) can be modelled by correlation between the 
target variable and other environmental variables following the concept of Jenny5. With such models, for example, 
soil properties are expected to be predictable in terms of their correlation to environmental covariates that repre-
sent the factors of soil formation: climate, organisms, relief, and parent material, as they influence the dominant 
soil forming processes at any location. The stochastic component ε′(s) consisting of spatially correlated variation 
is often modelled with kriging6.
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Recent studies have shown that the use of multiple scales of covariates in environmental correlation models 
can increase prediction accuracy7–15. Some of these contextual modelling approaches also facilitate pedologi-
cal interpretation10–12,16. The increase in prediction accuracy, compared to methods that are not multi-scale, is 
understood to be related to the fact that the spatial variation observed in soil properties occurs simultaneously 
at many scales3,9,16,17 in response to soil-forming processes that themselves vary across multiple scales and are 
captured and described at multiple spatial resolutions9,16. It has been shown that modelling can directly, as well as 
indirectly, account for relevant spatial contextual influences stemming from interacting, nested, hierarchical and 
scale dependent processes9–11,16,18,19. However, it remains challenging to efficiently unravel the effective scale space 
for modelling20. Moreover, being able to estimate the effective scale space in advance of the modelling would be 
advantageous to help determine if multi-scale modelling is necessary and to improve the parsimony, accuracy and 
interpretability of the modelling16.

The aims of this paper are to (i) present a method that derives the effective scale space, with defined lower and 
upper scale space limits, for contextual spatial modelling with machine learning and (ii) derive an a priori approx-
imation of the effective scale space, using the variogram. Our hypothesis is that using covariates that encompass 
only the effective scale space is economic in terms of computational cost and provides parsimonious and inter-
pretable models with prediction accuracies that are at least as good as a model that uses all scales.

To analyze the influence of environmental covariates that operate over multiple scales, terrain derivatives com-
puted from Gaussian pyramid octaves of a Digital Elevation Model (DEM) were used11,12. The analysis is based 
on four different soil datasets.

Methods
Gaussian pyramid mixed scaling. Gaussian mixed scaling11,12 was used to prepare the multi-scale ter-
rain derivatives used for modelling. The Gaussian pyramid is a multi-scale signal processing method based on 
Gaussian filtering and down-sampling21. It can be used to decompose the scales of environmental covariates11. 
Each down-sampling step reduces the cell size by half while the Gaussian filter helps to reduce associated arti-
facts. During each down-sampling step every second row and every second column is removed from the raster 
dataset. The output of a down-sampling step is called an octave. For environmental modelling these octaves are 
ultimately up-sampled, i.e. interpolated, back to the original resolution, to ensure that all covariates used possess 
the same cell size as the original covariate11. In mixed scaling, the DEM is down-sampled to all possible octaves. 
Then, the terrain attributes are calculated for each octave and finally the terrain derivatives are up-scaled back to 
the resolution of the original DEM. Compared to other scaling approaches, mixed scaling has been demonstrated 
to produce the best prediction accuracy while still being interpretative12.

The following terrain attributes were calculated at each scale of a Gaussian pyramid based on the equations 
presented by Zevenbergen and Thorne22:

•	 elevation
•	 slope
•	 sine transformed aspect
•	 cosine transformed aspect
•	 average curvature
•	 profile curvature
•	 planform curvature

Machine learning and validation. The Random Forests approach, as implemented in R23,24, was used as 
the machine learning model. Random Forests have been used in various pedometric studies over the past dec-
ade9,25–29 as well as in many other environmental assessments30,31. The modelling accuracy was evaluated with 10 
times, 10-fold cross-validation using the caret package for R32.

Extracting the relevant range of scales based on contextual modelling. We developed additive 
and subtractive multi-scale models based on mixed scaling to analyze the influence of different scales on the 
spatial modeling12. This approach is exhaustive in that it iterates successively with the covariates from individual 
scales. For the additive models, coarser scale covariates were successively included in models and the prediction 
accuracy of each model, described by the coefficient of determination (R2), was computed. For the subtractive 
models, finer scale covariates were removed in succession from the entire set of scales, starting from the finest, 
and the R2 was computed after each step. Previous studies, including multi-scale analyses, have shown that, with 
the additive approach, the maximum prediction accuracy is achieved only after multiple coarser scales have been 
added8–12. With the subtractive approach, prediction accuracy is expected to be good at the start, because, at first, 
all scales are included in the model. But accuracy can be seen to decrease only slightly if finer scale covariates, 
which can represent noise rather than signal, are removed. Consequently, the maximum effective scale required 
for modeling can be identified when the accuracy in the additive approach no longer improves. Similarly, the 
minimum scale can be identified when prediction accuracy in the subtractive approach first begins to show a 
significant decrease. For a given data set, a combination of both the additive and subtractive analyses should make 
it possible to identify and select the most relevant range of scales of the covariates.

Variography. In geostatistics, the variogram is used to develop a theoretical model from empirical data that 
describes the degree of spatial autocorrelation of an environmental property. The parameters of the variogram 
model are the nugget, sill and range. The nugget describes the small-scale variability of the data and measurement 
errors33,34 that appear spatially random at the scale of investigation and is the y-intercept of the variogram. The 
maximum variability between point pairs is represented by the sill. The nugget:sill ratio therefore represents the 
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degree of spatial dependency. Smaller nugget:sill ratios indicate greater proportions of spatially dependent varia-
tion. The range of the variogram is the maximum distance up to which a soil property is spatially autocorrelated. 
Hence, it may be considered an indicator for the maximum scale of the contextual environmental processes rel-
evant to soil formation. Several studies have suggested investigating the relationship between the variogram and 
structural dependencies of environmental covariates3,9,20,35,36.

Extracting the relevant range of scales based on the variogram. We used the range of the vario-
gram of a soil property of interest to define the upper limit of the relevant range of scales and the nugget:sill ratio 
multiplied by the range to approximate the lower limit of the relevant range of scales. This lower limit approxi-
mation is based on the assumption that the variability of the soil property at the short-scale, as represented by the 
nugget effect34, can be approximately converted into a spatial scale. i.e. if the nugget is relatively large, resulting 
in weak spatial dependence, then the influence of fine-scale covariates should also be small. Conversely, if the 
nugget is relatively small, i.e. there is strong spatial dependence, then the fine-scale covariates should improve the 
prediction accuracy of spatial models. If they were absent, the small-scale differences could not be accounted for 
in the modelling.

The separation distance up to which point pairs are included in semivariance estimates of the variogram 
(cutoff) was extended, from the length of the diagonal of the box spanning the data divided by three (the default 
used by gstat37), to 85% of the diagonal length. We did this because the scales analyzed with the machine learning 
approach are relatively large and partially exceed the extent of the area covered by samples, for the study sites.

To optimally describe the relevant range of scales by properties of the variogram, we used anisotropic vario-
grams based on eight different directions. The smallest and the largest values from all estimates of the lower and 
upper limit of the effective scale space were used to define the relevant range. The following angles were used to 
derive the anisotropic variograms: 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135° and 157.5°. Variograms that could not be 
fitted automatically, which might be due to a too small set of samples or singularities in the model, were ignored.

The variogram properties strongly depend on the theoretical variogram model. Here the spherical model was 
used for all cases in order to increase interpretability. In this respect, the spherical model shows the most mean-
ingful and interpretable values for nugget, sill and range. The variogram models were automatically fitted with the 
gstat package37 in R to avoid any subjective influences on fitting.

Moran’s I. We used Moran’s I (MI)12,38 to test the efficacy of contextual modelling for reducing or eliminating 
spatial auto-correlation in the residuals at all steps of the additive and subtractive modelling. The MI ranges from 
−1 to 1, where full dispersion is indicated by −1, randomness by 0, and clustering by 1, respectively.

Correlating lag and scale. The scale in the Gaussian scale space is described by the pixel size, which is 
halved with each step when creating the pyramid. In contrast, the lag of the variogram represents a radius. A lag 
distance of e.g. 10 m corresponds to a spatial support of 20 m and thus twice the pixel size of a pyramid octave of 
10 m. Therefore, the lag distances of the variogram were divided by a factor of 2 to obtain a common basis for the 
analysis of scales. These converted values are shown in Fig. 1 for the empirical variogram, while the variograms in 
Fig. 2 are based on the original lag distance.

Datasets. Meuse. Heavy metal distribution across the Meuse floodplain is driven by polluted sediments 
carried by the river and preferentially deposited close to the river bank and in areas with lower elevation. The 
Meuse dataset consists of 155 samples from the River Meuse floodplain (The Netherlands)39,40. In this study 
log-transformed zinc concentration and a 40 m DEM were used.

Lachlan. The Lachlan dataset comes from an agricultural production and grazing area on the Lachan River 
Catchment in central western New South Wales, Australia. The climate ranges from sub-alpine to semi-arid con-
ditions with rainfall ranging from 280 mm to over 1000 mm, while the geology in the catchment area is complex 
and has a significant impact on the soil. Modelling was based on using 300 samples of bulk density and terrain 
covariates computed from an SRTM DEM with 90 m resolution.

Rhine-Hesse. The Rhine-Hesse (Germany) data set is an example of a dataset with a strongly autocorrelated 
distribution of soil properties9,12. Samples (n = 342) of the top-soil silt content (0–10 cm) were used. The spatial 
distribution of silt content is influenced by wind erosion and loess translocation from the Rhine-Main lowlands 
to the surrounding heights of Rhine-Hesse. The silt content was transformed using sqrt(max(silt) - silt) and a 
20 m DEM was used.

Piracicaba. The Piracicaba study area describes a sugarcane growing region in Brazil10,12. Soil samples (n = 321) 
of topsoil clay content (0–10 cm) were used for modelling. Soil formation patterns strongly reflect those of the 
underlying rock formations, strike and dip and subsequent erosion due to a relatively high precipitation. The clay 
content was transformed using sqrt(clay). An SRTM DEM with a resolution of 90 m was used.

Results
Contextual multiscale modeling. For all four study sites, successive addition of coarser scales of DEM-
based covariates (additive) to a random forest model generally increased prediction accuracy, while successive 
removal of finer scales (subtractive) from the model generally decreased prediction accuracy after a certain point 
(Fig. 1, first two columns). The increase, as well as the decrease, in prediction accuracy is not linear and shows 
some discontinuities. In the additive approach, the Lachlan data set shows a decrease in the explained variance 
(R2) when the predictors representing the second scale are added to the predictors of the original (finest) scale. 
For the Piracicaba data set, adding the largest scale covariates results in a decrease in prediction accuracy. With 
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Figure 1. The first and second columns show the contextual machine learning results for the scale in meters 
and the respective Gaussian pyramid octaves, while the third column shows the corresponding Morans’I values. 
The green line represents the additive and the blue line the subtractive approach. The relevant scale range 
determined by the contextual machine learning method is marked by orange and red vertical lines representing 
the lower and upper limits of the effective scale space. The corresponding variographically determined limits are 
displayed in light and dark grey. The dashed lines show the octave closest to these values which were used for 
modeling. The normalized (0–1) experimental variograms are also shown for both the scales and the octaves in 
the respective transformations.
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the subtractive approach, the R2 generally starts to decrease at a certain scale, when relevant information repre-
sented by fine to medium scale covariates is excluded from the model. In all examples, however, it was noted that 
the R2 increases when the finest scales, containing irrelevant and noisy information, were removed.

Compared to modeling using only the original (finest) scale covariates, the average increase in the explained 
variance when all scales were included is 33% (Figs 1 and 3). The smallest increase is for the Piracicaba data (26%) 
and the largest for the Rhein-Hesse data (42%). The decrease of R2 for the subtractive model is considerably 
smaller for all study areas, with an average decrease of 5.2% (Fig. 1).

Moran’s I. The diagrams of Moran’s I are based on the residuals of the additive and subtractive models. They 
show that the continuous addition of coarser scales ultimately leads to complete disappearance of autocorrelation 
in the residuals (Fig. 1, right column). However, when the very coarsest scales were included, negative autocorre-
lation was sometimes observed to occur. This effect is pronounced for the subtractive approach, where fine scales 
are removed from the dataset.
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Figure 2. Spherical isotropic variograms of the soil properties for the four study sites. The properties of the 
isotropic variograms are shown in Table 1.

Dataset Nugget Sill Range
Nugget/sill * 
range

Meuse 0.075 0.454 1026 169

Lachlan 0.006 0.015 47926 18516

Rhine-Hesse 0.792 2.257 9966 3497

Piracicaba 0.003 0.014 3334 805

Table 1. Properties of the isotropic spherical variograms of the soil properties of the different datasets.
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Similar to the analysis of the modelling accuracy, some discontinuities are visible, especially at the finer scales, 
i.e. with the addition of a coarser scale, the spatial autocorrelation can increase as revealed for the Lachlan and 
Piracicaba data sets.

Variography. Figure 2 shows variograms of the soil properties for the different study sites and Fig. 1 shows 
the empirical variograms overlaid on the results of the additive and subtractive models. The figure highlights the 
good correspondence between the variogram and the effective scale space derived with the additive and subtrac-
tive approach.

The variogram parameters are shown in Table 1, while the nugget:sill ratio is shown in Fig. 4. The nugget:sill 
ratio is largest for the Lachlan and Rhine-Hesse data sets. The anisotropic variograms are shown in the third col-
umn of Fig. 2 and are based on the default cutoff value, for better interpretation of the finer scales.

Table 2 compares the minimum and maximum scales derived using the isotropic and anisotropic vario-
grams. The range of the anisotropic variogram can be more than double the range of the isotropic variogram 
(Piracicaba). The minimum scale of the isotropic variogram is up to 23 times larger than the minimum scale of 
the anisotropic variogram. The smallest value of the minimum scale and the largest value of the range of the ani-
sotropic variograms were used to define the relevant range of scales.

Figure 3. Increase in cross-validated prediction accuracy using all scales compared to the covariates only at the 
original (finest) scale.

Figure 4. Nugget:sill ratio of the isotropic variograms for the four study sites.

Dataset

Minimum scale Maximum scale

isotropic anisotropic isotropic anisotropic

Meuse 84 30 513 677

Lachlan 9258 395 23963 34041

Rhine-Hesse 1748 299 4983 7660

Piracicaba 402 246 1667 4175

Table 2. Lower and upper boundaries of the effective scale space based on isotropic and anisotropic variograms 
of the soil properties. The minimum scale is calculated by multiplying the nugget:sill ratio with the range of the 
variogram and the maximum scale equals the range of the variogram. For the anisotripic variograms the overall 
minimum and maximum scales were selected. The orgininal variogram distances were divided by a factor of 2 
to obtain a common basis for the analysis of scales with the Gaussian scale space (see Methods).
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The relevant range of scales. For most study sites, the minimum scale estimated using variography is sim-
ilar to the minimum relevant range established using the subtractive modelling approach (on average, about one 
scale different). The maximum anisotropic scale, estimated from the variograms, corresponds well with the point 
at which the curve of the additive approach begins to flatten out, which is close to the maximum scale derived 
from the additive approach. This can also be seen when comparing the experimental variogram to the additive 
and subtractive approach (Fig. 1). Although, on average, the maximum range derived with variography is about 
2 scales smaller than the results of the additive and subtractive approach, there is relatively good and consistent 
agreement between the effective scale space determined with both approaches.

In all cases, the first two or three scales (octaves) of DEM derived covariates seem to contain noisy or irrel-
evant predictors. For the Piracicaba data set, the coarsest investigated scale is also irrelevant (Fig. 1). Figure 5 
compares the prediction accuracies across the entire range of scales, the relevant range of scales derived using 
the machine learning models, as well as the relevant range estimate based on variography. Although the increase 
is relatively small, in all cases, prediction accuracy was best when only covariates representing the effective scale 
space were used. Except for the Piracicaba site, using the variogram to estimate the effective scale space a priori 
leads to an increase in the explained variance compared to using data from all scales.

Discussion
It is important to identify the appropriate scale space in spatial modelling to improve parsimony, computational 
efficiency, and to remove noise and augment interpretability. We presented two approaches by which the relevant 
range of scales for spatial modelling may be identified. One is exhaustive and derives the relevant range using 
data-driven machine learning with different sets of multi-scale DEM-based covariates added and removed incre-
mentally. The second approach is based on an analysis of the properties of the variogram derived from point data 
of the soil property being modelled. The first is accurate but computationally demanding, while the latter allows 
for the relevant range of scales to be approximated a priori and is relatively rapid to derive. Using the variogram, 
one could determine if multi-scale modelling is necessary. Depending on the size of the dataset this can therefore 
reduce modelling time with machine learning by hours or even days.

Although there is a good correspondence between the two approaches to identify the relevant range of scales, 
the range of scales as determined by the variogram does not lead to an increase in the explained variance in all 
cases. This effect can be traced back to the generally longer-range scales identified by the Gaussian pyramid 
compared to the lower cutoff value determined by variogram. Additionally, non-linear interactions of covariates 
at very coarse scales may lead to non-stationary effects that cannot be explained by variography. If, however, one 
considers the empirical variograms, i.e. the raw data from the sample set and not the fitted variogram function, 
the optimum range could well be greater, in many cases, compared to the automatically fitted values. The latter 
would lead to larger, and more appropriate, maximum ranges for some datasets. For this reason, we recommend 
that the empirical variogram should also be considered when trying to determine the relevant range from the 
variogram for the soil property.

The non-linearities observed towards the endpoints of the additive and subtractive models (Fig. 1) may be 
due to either noise, irrelevant information or effects of multicollinearity, which reduces the accuracy of the mod-
els. With successive removal of finer scales, the R2 generally drops, while the MI increases above the value of 
the entire data set. This shows that the fine scales contain noise, which is the reason why selecting a reduced 
range of scales can lead to higher prediction accuracies. Interestingly, when including the very coarsest scales, 
negative autocorrelation can occur. Generally, little is known about negative spatial autocorrelation and espe-
cially the consequences of negative spatial autocorrelation for regression-based inference41. What can be seen 
from the subtractive model, is that the negative spatial autocorrelation effect gets stronger when fine scales are 
removed. This could be an effect of missing fine to medium scale information, which, when approximated from 
non-linear combinations of the coarser scale covariates in the machine learning models, leads to the negative 
spatial autocorrelation.

The considerably smaller decrease of R2 in the subtractive models, compared to larger increases in the additive 
models, confirms that coarser scales are often more informative than those of finer scale covariates. This effect 

Figure 5. Comparison of the influence of selecting the relevant range based on the contextual machine learning 
method (green) and the variography method (yellow) with the results for the full range of scales (blue).
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has also been observed in previous studies10,11, including the multi scale analyses of soil spectra42. The minimum 
scales required to achieve the most accurate model results are often coarser than the original (finest) scale of the 
selected (DEM) environmental predictors. This also supports similar findings from previous studies8,10,15,42. This 
is related to the effective scales of the physical processes which influence the development of soil properties, but 
may also be related to sampling density and sampling error. Higher density samples, taken at shorter distances 
apart, and covariates with finer resolutions may extend the relevant range of scales and thus help to better estimate 
the pedologically relevant range of scales.

Finally, the significance of our work is that we have shown that there is a good relationship between spatial 
dependence, as described by the variogram of a soil property, and the relevant scale space (maximum and min-
imum effective resolutions) in contextual spatial modelling with machine learning. Thus, the variogram of a 
soil property can be used as an analytical tool to inform multiscale contextual spatial modelling using machine 
learning. This method should have a broader appeal as it can also be used to describe the appropriate scales for 
modelling other environmental phenomena, for example in land-management20, or in ecology to, describe animal 
habitat relationships43.

Data Availability
The Meuse data set that supports the findings of this study is available through the R package sp40. The other data-
sets were used under license for the current study, and thus are not publicly available. Data are however available 
from the corresponding author upon request depending on the permission of the licensors.
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