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State-independent contextuality in 
classical light
tao Li1,2, Qiang Zeng1, Xiong Zhang1, Tian chen1 & Xiangdong Zhang1*

State-independent contextuality is a fundamental phenomenon in quantum mechanics, which has 
been demonstrated experimentally in different systems in recent years. Here we show that such 
contextuality can also be simulated in classical optical systems. Using path and polarization degrees of 
freedom of classical optics fields, we have constructed the classical trit (cetrit), here the term ‘cetrit’ is 
the classical counterpart of a qutrit in quantum systems. Furthermore, in classical optical systems we 
have simulated the violations of several Yu-Oh-like noncontextual inequalities in a state-independent 
manner by implementing the projection measurements. Our results not only provide new physical 
insights into the contextuality and also show the application prospects of the concepts developed 
recently in quantum information science to classical optical systems and optical information processes.

Quantum contextuality is an important feature of quantum mechanics, and shows the discrepancy between quan-
tum phenomenon and classical cognition. For a classical measure, the object measured has a determined value 
regardless of how the measurement is implemented. In contextuality case, the value of observable depends on its 
measurement together with its compatible observable. This phenomenon exhibits the violation of noncontextual 
inequality. In recent years, the contextuality has attracted great attention, because the investigation on contextu-
ality is not only related to fundamental physics1,2, but also to practical quantum information processes3.

The quantum contextuality was first proposed by Kochen and Specker (KS)4,5 and Bell6 in 1960s. The original 
theory needs 117 vectors in dimension d = 3 (in fact, there are 192 vectors, some vectors that share one edge have 
been dropped for the figure simpler7), thus it is complex and nearly impossible to demonstrate experimentally. 
Afterwards the theory is simplified by many researchers7–12. Klyachko, Can, Binicioglu and Shumovsky (KCBS) 
proposed an inequality that involves 5 variables in three-level system13, but this inequality is state-dependent. 
Yu and Oh proposed a state-independent contextual inequality that just 13 variables and 24 correlation pairs are 
involved14. Pavičić pointed out that Yu-Oh’s scenario possesses 25 variables (corresponding to vectors containing 
in 16 edges), of which 12 (whose corresponding vectors share only edge) were omitted15. Pavičić also pointed out 
that the Yu-Oh’ set is not the KS set and is a new kind of contextuality15. It has been proven that in three-level 
system Yu-Oh’s scheme possesses the least variables for a state-independent contextuality. Subsequently, the 
improved and optimal forms of Yu-Oh inequality have been given16,17. The various contextual theories have been 
testified experimentally, for instance, in photon18–26, neutron27,28, trapped ion29,30, nuclear magnetic resonance31, 
and superconducting circuit systems32.

On the other hand, recent investigations have also shown that many quantum phenomena, which are con-
sidered as the unique properties of quantum system, can also be simulated in classical systems, such as the 
violations of Clauser-Horne-Shimony-Holt (CHSH) Bell inequality in classical wave systems33–43, the Hardy’s 
thought experiment in classical light44, violating the Leggett-Garg inequality in classical optical systems45, the 
violation of Mermin’s inequality in classical nonseparability systems46, and so on. Recently, the state-dependent 
contextuality involving 5 variables has been studied in classical optical systems, and violations of the 
Klyachko-Can-Binicioglu-Shumovski (KCBS) inequality and its geometrical form (Wright’s inequality) have been 
demonstrated experimentally47. The two-bit state-independent contextuality has also been explored in classical 
microwave systems48. However, the state-independent contextualities in three-level system (Yu-Oh inequality14, 
its improved form16, and its optimal forms17) have not been discussed in classical systems. The problem is whether 
the violations of these similar contextual inequalities can be simulated in classical optical systems?

In this work, we use the path and polarization degrees of freedom of classical optical beam to establish the 
classical trit (cetrit, corresponding to the qutrit in quantum system), and explore the violations of several non-
contextual inequalities in a state-independent manner by implementing the projection measurements. By meas-
uring the intensities at the output ports, which then are normalized by the total intensity, the average values of 
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the observables and observable pairs are obtained. Furthermore, the violations of original Yu-Oh inequality, its 
improved and optimal forms have been observed experimentally in classical optical systems. Our study not only 
provokes deep thought on the contextuality in the classical and quantum systems, but also enriches the concep-
tual issues in optical coherence theory and suggests potential applications in the wave information process.

Results and Discussions
Theoretical description on state-independent contextuality in classical optical systems.  
According to refs14,16,17, the state-independent contextuality are presented in three-level system. In the three-level 
system, there are qutrit and 13 observables. The 13 observables Ai correspond to 13 unit vectors ai (i = 1, ..., 13), 
and these unit vectors are expressed as
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where the symbols behind ai in the parentheses are the expressions of unit vectors in various inequality 
forms14,16,17. For the 13 operators a ai i , their eigenvalues are 0 or 1. Here we make a transform, which is 

= −A I a a2i i i , where I is the identity matrix, so the observables Ai have two eigenvalues +1 or −1. If the 
measurement outcomes of Ai (or Aj) are the noncontextual value +1 or −1, the original Yu-Oh inequality14 is 
obtained. It is listed in the middle column of the second row in Table 1, where Γi,j are the coefficients. If the 
observables Ai and Aj are compatible (the corresponding vectors are orthogonal), the value of Γi,j is 1. If Ai and Aj 
are not compatible, the value of Γi,j is 0. The Yu-Oh inequality can be obtained by the exhaustive check of the value 
+1 or −1 of Ai and Aj or an elegant analytic demonstration14. But in the case of quantum mechanics, for any qutrit 
state, the Yu-Oh inequality is violated14, namely ∑ − ∑ ∑ Γ == = = ≠A A Ai i i j j i i j i j1

13 1
4 1

13
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13
,
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, where Ai  denotes 
the mean value of the operator Ai and A Ai j  denotes the mean value of the produce Ai Aj of measurement out-
come. In Yu-Oh’s scenario, the inequality can be violated through 13 observables and 24 observable pairs14, so that 
the 12 additional observables corresponding to the 12 discarded vectors15, need not be involved. The inequality 
and its quantum violation are all listed in the second row of Table 1.

In ref.16, the original Yu-Oh inequality is improved and its coefficients are changed, and a new inequality 
obtained is listed in middle column of the third row in Table 1. Here the requirement for Γm,n is the same as the 
requirement for Γi,j, and its value corresponds to the compatible relation between Am and An. In the case of quan-
tum mechanics16, for any qutrit state the result 29

3
 can be obtained, and the inequality shows the violation.

In addition, Kleinmann et al. proposed two other optimal inequalities opt2 and opt3 17 corresponding to the 
original Yu-Oh inequality, but the coefficients before the observables are given in tabular form in original litera-
ture, which are not intuitive. After our sorting out, the two inequalities are showed in the middle columns of the 
fourth and fifth row in Table 1. However, their quantum violations are 52

3
 and 83

3
, respectively17, these are also 

listed in the Table 1.
The above descriptions are about the original Yu-Oh inequality, its improved and optimal forms in quantum 

mechanics. Now we give the corresponding descriptions in classical optical systems. We rewrite the correspond-
ing unit vectors ′A i in the classical optical system as
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Table 1. The various noncontextuality inequalities and their quantum violations (refs14,16,17).
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These unit vectors ′a i are showed in Fig. 1, and the 13 corresponding operators are expressed as | ′ ′ |a a)(i i . Here 
a slightly modified version of the familiar bra-ket notation of quantum mechanics is taken to express the vectors 
in classical optical fields. Similarly, the dichotomic observables are ′ = − | ′ ′ |A I a a2 )(i i i , and the eigenvalues of ′A i 
are +1 or −1.

As shown in Eq. (2), the expressions of the vectors in classical case are similar to the vectors in quantum case. 
For any cetrit state |χ), we can write

χ| = |→ + |→ + |→E E E) e ) e ) e ), (3)0 0 1 1 2 2

where E0, E1 and E2 are the amplitudes of the classical optical fields, and |→e )0 , |→e )1  and |→e )2  are the cetrit bases cor-
responding to quantum bases 0 , 1  and 2 . In order to give the classical analogy of Yu-Oh original form, the 
corresponding operators in the left-hand side of Yu-Oh inequality are expressed as the multiples of identity 
matrix14, namely ∑ ′ − ∑ ∑ Γ ′ ′ == = = ≠
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. When these operators corresponding to the observ-
ables project onto any cetrit states, the average values of the operators can be obtained, namely, 
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age values of the observable ′A i and ′ ′A Ai j in classical case, respectively. When E0, E1 and E2 are normalized, the 
average value is 25

3
, namely
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The noncontextuality inequalities are violated.
Similarly, for the improved form in ref.16 and the optimal forms opt2 and opt3 in ref.17, the operators in the 

left-hand side of inequalities in Table 1 are also expressed as the multiples of the identity matrix, namely, I29
3

, I52
3

 
and I83

3
. When the operators project onto any cetrit states, the inequalities are violated. That is
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Figure 1. The illustration of the 13 unit vectors in classical optical system. The 13 unit vectors correspond to 13 
observables. In order to testify the state independent contextuality, the 13 observables and their correlation pairs 
need to be measured in the experiment.
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Similarly, the symbols with the horizontal lines in Eqs (5–7) denote the average values of the observables. In 
the following, we test experimentally the above inequalities in classical light systems.

Experimental demonstration of state-independent contextuality for the original Yu-Oh ine-
quality in classical optics systems. In this section, we describe the experimental demonstration of 
state-independent contextuality for the original Yu-Oh inequality. In order to test the state-independent contex-
tuality in classical optical systems, the constructed experimental setup is shown in Fig. 2. It is divided into two 
stages: state preparation and measurement. In the state preparation stage, because it is state-independent contex-
tuality, several different cetrit input states need to be prepared. The laser beam from He-Ne laser transmits 
through the polarizing beam splitter (PBS) (is not shown in Fig. 2) and the Glan lens, and then the horizontal 
polarization beam can be obtained. There the central wavelength of He-Ne laser is 633 nm. After the horizontal 
polarization beam transmits through the half wave plate 1 (HWP1) and a PBS1, it is divided into two beams. One 
of the beams transmits through a HWP2 and a PBS2, thereupon three beams of light are obtained. The horizontal 
polarization field in the first path is coded as |→e )0 , the vertical polarization field in the second path is coded as |→e )1 , 
and the horizontal polarization field in the third path is coded as |→e )2 . The polarization fields in the three paths are 
taken as the basis vectors to constitute the input cetrit states. With tuning the angles of HWP1 and HWP2, any 
composition of the optical fields for the three paths can be obtained, thus the desired input state can be prepared. 
Here seven different cetrit input states are prepared. The seven input states and the setting angles of HWP1 and 
HWP2 for the input state preparations are listed in the table (see Methods section: The setting angles of HWPs for 
the different input state preparations).

In the measurement stage, the projection measurement method is adopted. The input state projects onto the 
eigenstates of the observable, and the probabilities of eigenvalues can be gotten. When we sum the product of 
each eigenvalue and its probability, the average value of the observable can be calculated. This is 

χ χ χ χ χ= | | = | ∑ | | | = ∑ | | | = ∑ˆM M m m m m m m p( ) ( [ )( ] ) ( )i i i i i i i i i i
2 , where M  is the average value of the observ-

able M̂, |mi) is the eigenstate of M̂ with the eigenvalue mi, χ= | | |p m( )i i
2 is the probability of eigenvalue mi, |χ) is 

the input state. For the measurement of single observable, we only need to establish its eigenstates, and map the 
basis vectors of input cetrit state to the three eigenstates to obtain the probabilities of eigenvalues. For the meas-
urement of two compatible observables ′ ′A Ai j, we use joint measurement method21,49, which is that the input 
state projects onto the mutual eigenstate of the two compatible observables.

Corresponding to the joint measurement of two compatible observables, the establishment of the mutual 
eigenstate of the observables is a key task. As shown in the measurement stage of Fig. 2, we use the HWPs and 
PBSs to construct the desirable eigenstates. Taking the measurement of the compatible observables ′ ′A A9 10 as an 
example, we appropriately arrange the experiment devices and set up the angles of HWP5 and HWP6, and the 
required mutual eigenstates can be established. With assuming that the input base vectors all are unit vectors, 
under the setting angles 22.5° for HWP5 and 0° for HWP6, the state vectors at output ports PD1, PD2 and PD3 
are expressed as |→ + |→e ) e )2

2 0
2

2 1 , − |→ + |→e ) e )2
2 0

2
2 1  and |→e )2 , respectively. Thus, the state vector at the output 

port PD1 is the eigenstate of ′ = −A 19  and ′ = +A 110 ; the state vector at the output port PD2 corresponds to the 
eigenstate of ′ = +A 19  and ′ = −A 110 ; the state vector at the output port PD3 describe the eigenstate of 

′ = +A 19  and ′ = +A 110 . Where ′ = + −A 1 ( 1)9  indicates that its eigenvalue is +1 (−1). These eigenstates meet 
the requirement of the above-mentioned joint measurement.

When the input state projects onto the eigenstates at the three output ports, namely the input base vectors are 
mapped to the polarization mode at the three output ports, we measure the optical intensities at these output ports. 
Then the optical intensities are normalized, namely, the optical intensity at each output port is divided by the total opti-
cal intensities, the probabilities of these eigenvalues can be obtained47. The probabilities at output port PD1, PD2 and 
PD3 are expressed as ′ = − ′ = +P A A( 1, 1)9 10 , ′ = + ′ = −P A A( 1, 1)9 10  and ′ = + ′ = +P A A( 1, 1)9 10 , respec-
tively. Based on these probabilities, the average value of the correlation pair ′ ′A A9 10 can be calculated by 

′ ′ = − ′ = − ′ = + − ′ = + ′ = − + ′ =A A P A A P A A P A( 1, 1) ( 1, 1) (9 10 9 10 9 10 9  + ′ = +A1, 1)10 . Meanwhile, the 
average value of ′a 9 can also be obtained. At this moment, we do not need to consider ′a 10, and only ′A 9 is considered. 

Figure 2. The diagram of experimental setup. The experiment consists of two stages, the state preparation 
stage and the measurement stage. GL: Glan lens. HWP(i): half wave plate (i = 1, …, 6). PBS(i): polarizing beam 
splitter (i = 1, …, 5). PD(i): photoelectric detector (i = 1, …, 3). The angles of HWP3 and 4 are set as 0° for path-
length compensation.
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The probabilities of ′A 9 at the output ports PD1, PD2 and PD3 are ′ = −P A( 1)9 , ′ = +P A( 1)9  and ′ = +P A( 1)9 , 
respectively. Thus, we can obtain ′ = − ′ = − + ′ = + + ′ = +A P A P A P A( 1) ( 1) ( 1)9 9 9 9 . Here the optical intensi-
ties are detected by the photoelectric detectors (PDs).

For all other compatible observables ′ ′A Ai j, their mutual eigenstates can be obtained when the angles of the 
HWP5 and HWP6 are set up appropriately. Following the projection joint measurement, the probabilities 

′ = − ′ = +P A A( 1, 1)i j , ′ = + ′ = −P A A( 1, 1)i j , and ′ = + ′ = +P A A( 1, 1)i j  can also be obtained by meas-
uring the optical intensities at the output ports. Thereupon the average values of ′ ′A Ai j can be calculated by 

′ ′ = − ′ = − ′ = + − ′ = + ′ = − + ′ = + ′ = +A A P A A P A A P A A( 1, 1) ( 1, 1) ( 1, 1)i j i j i j i j , and the average 
values of 13 single observables can be also obtained. The setting angles of HWP5 and HWP6 for all the observable 
measurements (13 observables and 24 compatible observable pairs) are listed in the table (see Methods section: 
The setting angles of HWPs for the observable measurements and the measurement methods for all 
observables).

In fact, the all 25 vectors (contain the dropped 12 vectors) and 48 orthogonalities shown in ref.15 are involved 
in the experiment. For simplicity, we only give an example ′a 9 and ′a 10 (the measurement for ′ ′A A9 10), but all 16 
triplets of mutually orthogonal vectors and all 25 vectors are given and are listed in the tables (see Methods sec-
tion: The setting angles of HWPs for the observable measurements and the measurement methods for all observ-
ables). They can be obtained by appropriately setting the angles of HWP5 and HWP6. For instance, for the triplets 
(unnormalized) {(1, 1, −1), (2, −1, 1), (0, 1, 1)}, {(0, 1, −1), (1, 0, 0), (0, 1, 1)}, {(0, 1, −1), (2, 1, 1), (−1, 1, 1)}15, 
they correspond to (unnormalized) { ′ ′ = −a h( ) (1, 1, 1)3 3 ,  ′ = −A (2, 1, 1)hc3 ,  ′ =′+a y( ) (0, 1, 1)5 1 }, 
{ ′ = −′−a y( ) (0, 1, 1)6 1 , ′ ′ =a z( ) (1, 0, 0)11 11 , ′ =′+a y( ) (0, 1, 1)5 1 }, { ′ = −′−a y( ) (0, 1, 1)6 1 , ′ =A (2, 1, 1)hc1 , 
′ ′ = −a h( ) ( 1, 1, 1)1 1 }. For the additional 12 vectors, they act as the eigenstates of observables and observable 

pairs and also contribute to data used to form the statistics. In our experiment the optical intensity is the square 
of the vector product of the input state and the eigenstate47. Thus, after the projection measurements are imple-
mented, the probabilities of eigenvalues are just the normalized optical intensities.

Terms
Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction

′A 1 0.777 (1) 0.778 ′ ′A A1 6 0.704 (7) 0.778 ′ ′A A5 6 −0.370 (5) −0.333

′A 2 0.742 (2) 0.778 ′ ′A A1 7 −0.524 (5) −0.556 ′ ′A A5 11 −0.842 (4) −1

′A 3 0.770 (12) 0.778 ′ ′A A1 9 −0.503 (1) −0.556 ′ ′A A6 11 0.212 (1) 0.333

′A 4 −0.892 (1) −1 ′ ′A A2 5 −0.529 (1) −0.556 ′ ′A A7 8 −0.337 (18) −0.333

′A 5 −0.212 (1) −0.333 ′ ′A A2 8 0.703 (2) 0.778 ′ ′A A7 12 −0.916 (6) −1

′A 6 0.842 (4) 1 ′ ′A A2 9 −0.599 (11) −0.556 ′ ′A A8 12 0.253 (12) 0.333

′A 7 −0.253 (12) −0.333 ′ ′A A3 5 −0.561 (21) −0.556 ′ ′A A9 10 −0.366 (14) −0.333

′A 8 0.916 (6) 1 ′ ′A A3 7 −0.543 (26) −0.556 ′ ′A A9 13 −0.920 (6) −1

′A 9 −0.286 (11) −0.333 ′ ′A A3 10 0.702 (3) 0.778 ′ ′A A10 13 0.286 (11) 0.333

′A 10 0.920 (6) 1 ′ ′A A4 6 −0.919 (2) −1 ′ ′A A11 12 −0.308 (1) −0.333

′A 11 0.342 (2) 0.333 ′ ′A A4 8 −0.926 (1) −1 ′ ′A A11 13 −0.350 (2) −0.333

′A 12 0.350 (2) 0.333 ′ ′A A4 10 −0.935 (6) −1 ′ ′A A12 13 −0.342 (2) −0.333

′A 13 0.308 (1) 0.333

Original Yu-Oh ∑ ′ − ∑ ∑ Γ ′ ′ = . ± .= = = ≠A A A 8 289 0 073i i i j j i i j i j1
13 1

4 1
13

1,
13

,

Table 2. Experimental average values and theoretical results of observables for the input state 
|→ + |→ + |→( e ) e ) e ))1

3 0 1 2 , and the experimental contextuality results for the original Yu-Oh form. The dates in 
the parentheses behind the experimental averages are standard deviations.

Input states Experimental value Errors

|→e )0 8.287 ±0.089

|→e )1 8.275 ±0.072

|→e )2 8.314 ±0.086

|→ + |→( e ) e ))1
2 0 1 8.246 ±0.086

|→ + |→( e ) e ))1
2 0 2 8.189 ±0.068

|→ + |→( e ) e ))1
2 1 2 8.205 ±0.082

|→ + |→ + |→( e ) e ) e ))1
3 0 1 2 8.289 ±0.073

Table 3. Experimental results and the errors for the original form14 of the Yu-Oh inequality for the seven input 
states. The theoretical predictions for all input states are 25

3
, and the noncontextual results are 8.
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According to the above-mentioned measurement method, the experimental average values of 13 observables 
and 24 correlation pairs for seven different input states can be obtained. Therefore, the result of contextuality for 
the original Yu-Oh form in Eq. (4) can be calculated. The observable values for the input state 

|→ + |→ + |→( e ) e ) e ))1
3 0 1 2  are listed in Table 2. The observable values for the six other input states are listed in the 

tables (see Methods section: The experimental values and theoretical results of observables for the different input 
states), and the experimental contextuality results for the seven input states are summarized in Table 3. After these 
results for the different input states are obtained, we can compare them with the noncontextual results and theo-
retical maximum predictions.

It can be seen from Table 3 that the original Yu-Oh inequality shows the violations for seven different input 
states. The experimental average result for seven different input states is . ± .8 258 0 079, which exceeds the non-
contextual bound 8 by 3.2%, and the results show the favorable state-independent contextuality phenomenon. But 
they have some deviations from the theoretical maximum prediction 25

3
. These are caused by the experimental 

imperfections, such as the imperfect PBS and HWP. Despite existence of these imperfections, the results in clas-
sical optical experiment still show the large violations of the noncontextual inequality, which are agreement with 
the theoretical prediction.

Experimental demonstration of state-independent contextuality for the improved and optimal 
forms of Yu-Oh inequality in classical light systems. In this section, the experimental demonstration of 
state-independent contextuality for the improved and optimal forms of Yu-Oh inequality is given in classical light. 
Based on the experimental setup in Fig. 2, the violations of the improved and optimal forms of Yu-Oh inequality can 

Input states Experimental value Errors

|→e )0 9.630 ±0.087

|→e )1 9.622 ±0.057

|→e )2 9.653 ±0.068

|→ + |→( e ) e ))1
2 0 1 9.660 ±0.072

|→ + |→( e ) e ))1
2 0 2 9.580 ±0.055

|→ + |→( e ) e ))1
2 1 2 9.619 ±0.064

|→ + |→ + |→( e ) e ) e ))1
3 0 1 2 9.591 ±0.063

Table 4. Experimental results and the errors for the improved form16 of the Yu-Oh inequality for the seven 
input states. The theoretical predictions for all input states are 29

3
, and the noncontextual results are 9.

Input states Experimental value Errors

|→e )0 17.260 ±0.106

|→e )1 17.245 ±0.078

|→e )2 17.305 ±0.093

|→ + |→( e ) e ))1
2 0 1 17.320 ±0.090

|→ + |→( e ) e ))1
2 0 2 17.161 ±0.071

|→ + |→( e ) e ))1
2 1 2 17.238 ±0.094

|→ + |→ + |→( e ) e ) e ))1
3 0 1 2 17.181 ±0.087

Table 5. Experimental results and the errors for the optimal form opt2
17 of the Yu-Oh inequality for the seven 

input states. The theoretical predictions for all input states are 52
3

, and the noncontextual results are 16.

Input states Experimental value Errors

|→e )0 27.523 ±0.139

|→e )1 27.489 ±0.081

|→e )2 27.510 ±0.105

|→ + |→( e ) e ))1
2 0 1 27.518 ±0.100

|→ + |→( e ) e ))1
2 0 2 27.349 ±0.087

|→ + |→( e ) e ))1
2 1 2 27.564 ±0.088

|→ + |→ + |→( e ) e ) e ))1
3 0 1 2 27.582 ±0.091

Table 6. Experimental results and the errors for the optimal form opt3
17 of the Yu-Oh inequality for the seven 

input states. The theoretical predictions for all input states are 83
3

, and the noncontextual results are 25.
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also be testified in classical optical systems. Similarly, the experiment processes require the input states preparations and 
observable measurements. We can prepare the different input states by using the method in the state preparation stage. 
For the measurements of the single observable and compatible observable pairs, the methods are also the same to the 
measurements of observables in original Yu-Oh form, namely, establishing the eigenstates, implementing the projec-
tion measurements, measuring optical intensities to obtain the probabilities of eigenvalues, and calculating the average 
values of observables. However, in inequality Eq. (7) three compatible observables ′ ′ ′A A Ai j k are involved. Their mutual 
eigenstates can be also established, thus the joint probabilities ′ = − ′ = + ′ = +P A A A( 1, 1, 1)i j k , 

′ = + ′ = − ′ = +P A A A( 1, 1, 1)i j k  and ′ = + ′ = + ′ = −P A A A( 1, 1, 1)i j k  can be measured at the three output 
ports. Similarly, the average value of ′ ′ ′A A Ai j k can be calculated by ′ ′ ′ = − ′ = − ′ = +A A A P A A( 1, 1,i j k i j   
A 1)k′ = +  − ′ = + ′ = − ′ = +P A A A( 1, 1, 1)i j k  − ′ = + ′ =P A A( 1,i j  + ′ = −A1, 1)k . All observables are meas-
ured, thus the contextuality results in Eqs (5–7) can be obtained. For example, using the equation 
∑ ′ + ∑ ′ + ∑ ′ − ∑ ∑ Γ ′ ′= = = = =A A A A A2 3i i j j k k i j i j i j1

6
7

11
12

13
1

4
5

10
,  − ∑ ′ ′ − ∑ ∑ Γ ′ ′ − ∑= = > =A A A A2m m m n m m n m n n5

6
11 7

10 13
, 12

13

A A A A2n11 12 13′ ′ − ′ ′  and measured data shown in Table 2, we obtain the contextuality result . ± .17 181 0 087 corre-
sponding to the input state |→ + |→ + |→( e ) e ) e ))1

3 0 1 2  for the optimal form opt2. Of course, for the six other input states, 
we can also obtain the contextuality values by using the data shown in the tables (see Methods section: The experimen-
tal values and theoretical results of observables for the different input states).

Following the similar method, the contextuality results of the improved form, and the optimal forms opt2 and opt3 
for the different input states can also be obtained. For these modified contextuality forms, the concrete calculations are 

Input state HWP1 θ1 HWP2 θ2

|→e )0 0° 0°

|→e )1 −45° 0°

|→e )2 45° 45°

|→ + |→( e ) e ))1
2 0 1 22.5° 90°

|→ + |→( e ) e ))1
2 0 2 22.5° 45°

|→ + |→( e ) e ))1
2 1 2 −45° −22.5°

|→ + |→ + |→( e ) e ) e ))1
3 0 1 2 −27.37° −22.5°

Table 7. The setting angles of HWPs for the preparations of seven different input states.

Observables PD1 PD2 PD3 HWP5 HWP6

′ ′A A1 9 ( ′a 9) ( ′a 1) [ ′A h1 ] 22.5° 17.6°

′ ′A A2 9 ( ′a 9) ( ′a 2) [ ′A h2 ] 22.5° −17.6°

′ ′A A3 10 ( ′a 10) ( ′a 3) [ ′A h3 ] 67.5° 17.6°

′ ′A A4 10 ( ′a 10) ( ′a 4) [ ′A h4 ] −22.5° 17.6°

′ ′A A5 6, ′ ′A A5 11, ′ ′A A6 11 ( ′a 11) ( ′a 5) ( ′a 6) 0° 22.5°

′ ′A A7 8, ′ ′A A7 12, ′ ′A A8 12 ( ′a 12) ( ′a 8) ( ′a 7) 45° 22.5°

′ ′A A9 10, ′ ′A A9 13, ′ ′A A10 13 ( ′a 9) ( ′a 10) ( ′a 13) 22.5° 0°

′ ′A A11 12, ′ ′A A11 13, ′ ′A A12 13 ( ′a 11) ( ′a 12) ( ′a 13) 0° 0°

Table 8. The setting angles of HWP5 and 6 for the observable measurements. The observables (vectors) in 
parentheses are the observables in Yu-Oh’s scenario, and the vectors in square brackets are the additional vectors 
in ref.15.

Observables PD1 PD2 PD3 HWP5 HWP6

e ) e )0 2
→ ↔ →

′ ′A A3 5 ( ′a 5) ( ′a 3) [ ′A hc3 ] 22.5° 17.6°

′ ′A A2 5 ( ′a 5) ( ′a 2) [ ′A hc2 ] 22.5° −17.6°

′ ′A A1 6 ( ′a 6) ( ′a 1) [ ′A hc1 ] 67.5° 17.6°

′ ′A A4 6 ( ′a 6) ( ′a 4) [ ′A hc4 ] −22.5° 17.6°

→ ↔ →e ) e )1 2

′ ′A A1 7 ( ′a 7) ( ′a 1) [ ′A hd1 ] 22.5° 17.6°

′ ′A A3 7 ( ′a 7) ( ′a 3) [ ′A hd3 ] 22.5° −17.6°

′ ′A A2 8 ( ′a 8) ( ′a 2) [ ′A hd2 ] 67.5° 17.6°

′ ′A A4 8 ( ′a 8) ( ′a 4) [ ′A hd4 ] −22.5° 17.6°

Table 9. The exchanges of the input basis vectors for the measurement of the other correlation pairs. The 
meanings of parentheses and square brackets are same as Table 8.
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not given, and here we only list the final experimental results. For the improved form of Yu-Oh inequality in ref.16, the 
experimental results of contextuality are showed in Table 4. The experimental average result for the seven input states is 
. ± .9 622 0 067, which exceeds the noncontextual bounds 9 by 6.9%. The large noncontextual violations are revealed. 

For the optimal forms opt2 and opt3 in ref.17, the experimental results of contextuality are showed in Tables 5 and 6, 
respectively. The average values of the experiment results for opt2 and opt3 are . ± .17 244 0 088 and . ± .27 505 0 099, 
respectively, and they exceed the noncontextual bounds 16 by 7.8% and 25 by 10.0%. These results show the clear-cut 
noncontextual violations. This means that the state-independent contextualities for the different Yu-Oh forms are tes-
tified in classical optical systems. In addition, the violation degrees for the optimal forms are larger than those for the 
original form and the improved form, which shows that the optimal forms are tighter.

conclusions
In summary, we have simulated experimentally the state-independent contextuality in the classical optical sys-
tems. Based on the path and polarization degrees of freedom of classical optics fields, we have constructed the 
cetrit. Furthermore, the different input states have been established. Using projective measurement, the average 
values of the observables and observable correlation pairs have been obtained, and the results of contextuality for 
different Yu-Oh forms have been calculated. The violation of the original form of Yu-Oh inequality has not only 

Terms
Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction

′A 1 0.335 (24) 0.333 ′ ′A A1 6 0.355 (8) 0.333 ′ ′A A5 6 0.960 (2) 1

′A 2 0.316 (12) 0.333 ′ ′A A1 7 −0.696 (7) −0.667 ′ ′A A5 11 −0.991 (1) −1

′A 3 0.353 (15) 0.333 ′ ′A A1 9 −0.665 (27) −0.667 ′ ′A A6 11 −0.969 (1) −1

′A 4 0.311 (18) 0.333 ′ ′A A2 5 0.364 (14) 0.333 ′ ′A A7 8 −0.979 (0) −1

′A 5 0.969 (1) 1 ′ ′A A2 8 −0.683 (15) −0.667 ′ ′A A7 12 −0.009 (6) 0

′A 6 0.991 (1) 1 ′ ′A A2 9 −0.652 (25) −0.667 ′ ′A A8 12 −0.013 (7) 0

′A 7 0.013 (7) 0 ′ ′A A3 5 0.363 (6) 0.333 ′ ′A A9 10 −0.982 (1) −1

′A 8 0.009 (6) 0 ′ ′A A3 7 −0.635 (16) −0.667 ′ ′A A9 13 −0.033 (1) 0

′A 9 −0.015 (2) 0 ′ ′A A3 10 −0.686 (8) −0.667 ′ ′A A10 13 0.015 (2) 0

′A 10 0.033 (1) 0 ′ ′A A4 6 0.353 (5) 0.333 ′ ′A A11 12 −0.991 (1) −1

′A 11 −0.973 (1) −1 ′ ′A A4 8 −0.684 (4) −0.667 ′ ′A A11 13 −0.982 (1) −1

′A 12 0.982 (1) 1 ′ ′A A4 10 −0.683 (22) −0.667 ′ ′A A12 13 0.973 (1) 1

′A 13 0.991 (1) 1

Original Yu-Oh ∑ ′ − ∑ ∑ Γ ′ ′ = . ±= = = ≠A A A 8 287 89i i i j j i i j i j1
13 1

4 1
13

1,
13

,

Table 10. Experimental average values and theoretical results of observables for the input state |→e )0 . The dates 
behind the experimental average values in the parentheses are standard deviations.

Terms
Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction

′A 1 0.322 (8) 0.333 ′ ′A A1 6 −0.644 (1) −0.667 ′ ′A A5 6 −0.986 (4) −1

′A 2 0.327 (3) 0.333 ′ ′A A1 7 0.314 (8) 0.333 ′ ′A A5 11 −0.021 (21) 0

′A 3 0.326 (4) 0.333 ′ ′A A1 9 −0.668 (9) −0.667 ′ ′A A6 11 0.007 (22) 0

′A 4 0.330 (2) 0.333 ′ ′A A2 5 −0.647 (3) −0.667 ′ ′A A7 8 0.963 (1) 1

′A 5 −0.007 (22) 0 ′ ′A A2 8 0.320 (2) 0.333 ′ ′A A7 12 −0.975 (0) −1

′A 6 0.021 (21) 0 ′ ′A A2 9 −0.662 (15) −0.667 ′ ′A A8 12 −0.988 (1) −1

′A 7 0.988 (1) 1 ′ ′A A3 5 −0.651 (5) −0.667 ′ ′A A9 10 −0.977 (2) −1

′A 8 0.975 (0) 1 ′ ′A A3 7 0.319 (3) 0.333 ′ ′A A9 13 −0.006 (7) 0

′A 9 −0.017 (8) 0 ′ ′A A3 10 −0.640 (12) −0.667 ′ ′A A10 13 −0.017 (8) 0

′A 10 0.006 (7) 0 ′ ′A A4 6 −0.654 (5) −0.667 ′ ′A A11 12 −0.980 (1) −1

′A 11 0.989 (1) 1 ′ ′A A4 8 0.322 (2) 0.333 ′ ′A A11 13 0.969 (1) 1

′A 12 −0.969 (1) −1 ′ ′A A4 10 −0.648 (4) −0.667 ′ ′A A12 13 −0.989 (1) −1

′A 13 0.980 (1) 1

Original Yu-Oh ∑ ′ − ∑ ∑ Γ ′ ′ = . ±= = = ≠A A A 8 275 72i i i j j i i j i j1
13 1

4 1
13

1,
13

,

Table 11. Experimental average values and theoretical results of observables for the input state |→e )1 . The dates 
behind the experimental average values in the parentheses are standard deviations.
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been observed, the violations of the improved and optimal forms of Yu-Oh inequality for different input states 
have also been observed in the classical optical experiments. In our opinion, Maxwell’s equations in the paraxial 
ray approximation describing classical optical field have a form similar to the Schrodinger equation describing 
quantum mechanics, and such a correspondence leads to the analogy between quantum mechanics and classical 
optics to be made. Thus, our results not only provide new physical insights into the contextuality, but also enrich 
the theory of classical optical coherence and show the application prospect of the concepts developed recently in 
quantum information science to classical optical systems and optical information processes.

Methods
The setting angles of HWPs for the different input state preparations. In order to test the ine-
quality (4), namely the original Yu-Oh inequality, the operations about the state preparations and the observable 
measurements are implemented. The setting angles of HWPs and some details for the observable measurements 
are given as follow. Of course, these operations for the different forms of Yu-Oh inequality are the same basically. 
In the state preparation stage, the setting angles of HWP1 and HWP2 for the seven different input states are 
summarized in Table 7.

Terms
Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction

′A 1 0.325 (4) 0.333 ′ ′A A1 6 −0.655 (15) −0.667 ′ ′A A5 6 −0.965 (0) −1

′A 2 0.329 (19) 0.333 ′ ′A A1 7 −0.676 (11) −0.667 ′ ′A A5 11 −0.025 (11) 0

′A 3 0.335 (6) 0.333 ′ ′A A1 9 0.356 (5) 0.333 ′ ′A A6 11 −0.010 (11) 0

′A 4 0.333 (4) 0.333 ′ ′A A2 5 −0.667 (6) −0.667 ′ ′A A7 8 −0.961 (1) −1

′A 5 0.010 (11) 0 ′ ′A A2 8 −0.663 (1) −0.667 ′ ′A A7 12 −0.021 (16) 0

′A 6 0.025 (11) 0 ′ ′A A2 9 0.364 (10) 0.333 ′ ′A A8 12 −0.017 (17) 0

′A 7 0.017 (17) 0 ′ ′A A3 5 −0.655 (9) −0.667 ′ ′A A9 10 0.960 (1) 1

′A 8 0.021 (16) 0 ′ ′A A3 7 −0.667 (4) −0.667 ′ ′A A9 13 −0.969 (0) −1

′A 9 0.992 (1) 1 ′ ′A A3 10 0.313 (11) 0.333 ′ ′A A10 13 −0.992 (1) −1

′A 10 0.969 (0) 1 ′ ′A A4 6 −0.664 (5) −0.667 ′ ′A A11 12 0.961 (1) 1

′A 11 0.992 (0) 1 ′ ′A A4 8 −0.650 (11) −0.667 ′ ′A A11 13 −0.968 (1) −1

′A 12 0.968 (1) 1 ′ ′A A4 10 0.349 (15) 0.333 ′ ′A A12 13 −0.992 (0) −1

′A 13 −0.961 (1) −1

Original Yu-Oh ∑ ′ − ∑ ∑ Γ ′ ′ = . ±= = = ≠A A A 8 314 86i i i j j i i j i j1
13 1

4 1
13

1,
13

,

Table 12. Experimental average values and theoretical results of observables for the input state |→e )2 . The dates 
behind the experimental average values in the parentheses are standard deviations.

Terms
Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction

′A 1 0.953 (4) 1
′ ′A A1 6 0.408 (9) 0.5 ′ ′A A5 6 0 (25) 0

′A 2 0.938 (1) 1 ′ ′A A1 7 0.506 (1) 0.5 ′ ′A A5 11 −0.499 (9) −0.5

′A 3 −0.344 (5) −0.333 ′ ′A A1 9 −0.962 (2) −1 ′ ′A A6 11 −0.501 (21) −0.5

′A 4 −0.375 (7) −0.333 ′ ′A A2 5 0.433 (14) 0.5 ′ ′A A7 8 0.032 (7) 0

′A 5 0.501 (21) 0.5 ′ ′A A2 8 0.468 (3) 0.5 ′ ′A A7 12 −0.505 (5) −0.5

′A 6 0.499 (9) 0.5 ′ ′A A2 9 −0.968 (1) −1 ′ ′A A8 12 −0.527 (10) −0.5

′A 7 0.527 (10) 0.5 ′ ′A A3 5 −0.799 (3) −0.833 ′ ′A A9 10 −0.991 (0) −1

′A 8 0.505 (5) 0.5 ′ ′A A3 7 −0.826 (4) −0.833 ′ ′A A9 13 −0.917 (2) −1

′A 9 −0.907 (2) −1 ′ ′A A3 10 −0.334 (12) −0.333 ′ ′A A10 13 0.907 (2) 1

′A 10 0.916 (2) 1 ′ ′A A4 6 −0.823 (14) −0.833 ′ ′A A11 12 −0.990 (0) −1

′A 11 0 (9) 0 ′ ′A A4 8 −0.836 (11) −0.833 ′ ′A A11 13 −0.010 (9) 0

′A 12 0.010 (9) 0 ′ ′A A4 10 −0.334 (11) −0.333 ′ ′A A12 13 0 (9) 0

′A 13 0.990 (0) 1

Original Yu-Oh ∑ ′ − ∑ ∑ Γ ′ ′ = . ±= = = ≠A A A 8 246 86i i i j j i i j i j1
13 1

4 1
13

1,
13

,

Table 13. Experimental average values and theoretical results of observables for the input state |→ + |→( e ) e ))1
2 0 1 . 

The dates behind the experimental average values in the parentheses are standard deviations.
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The setting angles of HWPs for the observable measurements and the measurement methods 
for all observables. In order to test these observables ′A i and observable pairs ′ ′A Ai j, the angles of HWP5 
and HWP6 need to be set up appropriately. In Table 8, the setting angles of HWP5 and HWP6 for the observable 
measurements are listed.

As shown in Table 8, there are extra state vectors ′A h1 , ′A h2 , ′A h3  and ′A h4  at the output port PD3. They are the 
eigenstates with the eigenvalue +1 of the two observables, whose corresponding vectors are located at the output 
ports PD1 and PD2, and these extra state vectors are expressed as ′ = |→ − |→ + |→A e ) e ) e )h1

6
6 0

6
6 1

6
3 2 , 

′ = − |→ + |→ + |→A e ) e ) e )h2
6

6 0
6

6 1
6

3 2 , ′ = |→ + |→ + |→A e ) e ) e )h3
6

6 0
6

6 1
6

3 2  and ′ = − |→ − |→ +A e ) e )h4
6

6 0
6

6 1  
|→e )6

3 2 . We can see that all 13 observables are contained in Table 8, but the 24 correlation pairs are not contained 
entirely. For the rest of correlation pairs, the additional experimental designs are needed. It is implemented by 
changing the first four columns in Table 8. The concrete methods are that the basis vectors are exchanged. 
Following this operation, |→e )0  and |→e )2  are exchanged, and a parts of correlation pairs can be obtained. Exchanging 
the basis vectors →e )1  and |→e )2 , the other parts of correlation pairs can also be obtained. As a result, all correlation 
pairs (24 pairs) can be gotten, and these exchange processes are showed in Table 9.

Because of the exchanges of the basis vectors for the input states, the sate vectors at the output port PD3 are also 
changed. For the exchange → ↔ →e ) e )0 2 , the exchange of the basis vectors |→e )0  and |→e )2  of ′A h1 , ′A h2 , ′A h3  and ′A h4  in 
Table  8 is only needed, and the corresponding state vectors ′ ′ = |→ − |→ + |→A A( e ) e ) e ))hc hc3 3

6
3 0

6
6 1

6
6 2 , 

Terms
Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction

′A 1 0.939 (1) 1 ′ ′A A1 6 0.475 (7) 0.5 ′ ′A A5 6 −0.008 (3) 0

′A 2 −0.343 (14) −0.333 ′ ′A A1 7 −0.953 (1) −1 ′ ′A A5 11 −0.498 (1) −0.5

′A 3 0.951 (6) 1 ′ ′A A1 9 0.483 (11) 0.5 ′ ′A A6 11 −0.495 (5) −0.5

′A 4 −0.330 (24) −0.333 ′ ′A A2 5 −0.823 (4) −0.833 ′ ′A A7 8 −0.997 (0) −1

′A 5 0.495 (5) 0.5 ′ ′A A2 8 −0.339 (5) −0.333 ′ ′A A7 12 −0.892 (4) −1

′A 6 0.498 (1) 0.5 ′ ′A A2 9 −0.826 (5) −0.833 ′ ′A A8 12 0.889 (4) 1

′A 7 −0.889 (4) −1 ′ ′A A3 5 0.499 (19) 0.5 ′ ′A A9 10 −0.004 (2) 0

′A 8 0.892 (4) 1 ′ ′A A3 7 −0.948 (5) −1 ′ ′A A9 13 −0.490 (3) −0.5

′A 9 0.505 (3) 0.5 ′ ′A A3 10 0.453 (6) 0.5 ′ ′A A10 13 −0.505 (3) −0.5

′A 10 0.490 (3) 0.5 ′ ′A A4 6 −0.822 (6) −0.833 ′ ′A A11 12 −0.038 (3) 0

′A 11 0.017 (4) 0 ′ ′A A4 8 −0.334 (1) −0.333 ′ ′A A11 13 −0.945 (0) −1

′A 12 0.945 (0) 1 ′ ′A A4 10 −0.827 (8) −0.833 ′ ′A A12 13 −0.017 (4) 0

′A 13 0.038 (3) 0

Original Yu-Oh ∑ ′ − ∑ ∑ Γ ′ ′ = . ±= = = ≠A A A 8 189 68i i i j j i i j i j1
13 1

4 1
13

1,
13

,

Table 14. Experimental average values and theoretical results of observables for the input state 
|→ + |→( e ) e ))1

2 0 2 . The dates behind the experimental average values in the parentheses are standard deviations.

Terms
Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction Terms

Experimental 
value

Theoretical 
prediction

′A 1 −0.355 (8) −0.333 ′ ′A A1 6 −0.342 (5) −0.333 ′ ′A A5 6 −0.985 (0) −1

′A 2 0.871 (2) 1 ′ ′A A1 7 −0.822 (4) −0.833 ′ ′A A5 11 −0.897 (5) −1

′A 3 0.891 (1) 1 ′ ′A A1 9 −0.799 (3) −0.833 ′ ′A A6 11 0.882 (5) 1

′A 4 −0.235 (8) −0.333 ′ ′A A2 5 −0.953 (1) −1 ′ ′A A7 8 −0.028 (10) 0

′A 5 −0.882 (5) −1 ′ ′A A2 8 0.427 (19) 0.5 ′ ′A A7 12 −0.494 (11) −0.5

′A 6 0.897 (5) 1 ′ ′A A2 9 0.408 (8) 0.5 ′ ′A A8 12 −0.479 (0) −0.5

′A 7 0.479(0) 0.5 ′ ′A A3 5 −0.959 (0) −1 ′ ′A A9 10 −0.017 (5) 0

′A 8 0.494 (11) 0.5 ′ ′A A3 7 0.457 (3) 0.5 ′ ′A A9 13 −0.504 (16) −0.5

′A 9 0.479 (18) 0.5 ′ ′A A3 10 0.434 (2) 0.5 ′ ′A A10 13 −0.479 (18) −0.5

′A 10 0.504 (16) 0.5 ′ ′A A4 6 −0.339 (5) −0.333 ′ ′A A11 12 −0.005 (6) 0

′A 11 0.996 (1) 1 ′ ′A A4 8 −0.816 (11) −0.833 ′ ′A A11 13 0 (7) 0

′A 12 0 (7) 0 ′ ′A A4 10 −0.820 (5) −0.833 ′ ′A A12 13 −0.996 (1) −1

′A 13 0.005 (6) 0

Original Yu-Oh ∑ ′ − ∑ ∑ Γ ′ ′ = . ±= = = ≠A A A 8 205 82i i i j j i i j i j1
13 1

4 1
13

1,
13

,

Table 15. Experimental average values and theoretical results of observables for the input state 
|→ + |→( e ) e ))1

2 1 2 . The dates behind the experimental average values in the parentheses are standard deviations.
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′ ′ = |→ + |→ − |→A A( e ) e ) e ))hc hc2 2
6

3 0
6

6 1
6

6 2 ,  ′ ′ = |→ + |→ + |→A A( e ) e ) e ))hc hc1 1
6

3 0
6

6 1
6

6 2  and ′ ′ =A A(hc hc4 4  

|→ − |→ − |→e ) e ) e ))6
3 0

6
6 1

6
6 2  at the output port PD3 can be obtained. They are shown in Table 9. For the exchange 

|→ ↔ |→e ) e )1 2 , the exchange of the basis vectors |→e )1  and |→e )2  of ′A h1 , ′A h2 , ′A h3  and ′A h4  is only needed, the correspond-

ing state vectors ′ ′ = |→ + |→ − |→A A( e ) e ) e ))hd h1 1 d
6

6 0
6

3 1
6

6 2 , ′ ′ = − |→ + |→ + |→A A( e ) e ) e ))hd h3 3 d
6

6 0
6

3 1
6

6 2 , 

′ ′ = |→ + |→ + |→A A( e ) e ) e ))hd h2 2 d
6

6 0
6

3 1
6

6 2  and ′ ′ = − |→ + |→ − |→A A( e ) e ) e ))hd h4 4 d
6

6 0
6

3 1
6

6 2  can be obtained, 
and they are also shown in Table 9.

In fact, in Yu-Oh’s scenario, 13 vectors and 24 correlation pairs (orthogonal vectors) are involved, and the contex-
tuality can be showed through these observables (vectors). Recently, Pavičić pointed out that there should be addi-
tional 12 vectors and all 48 orthogonalities in Yu-Oh’s sets15, and these are also exhibited in our experiment. In 
Tables 8 and 9, the vectors (observables) in each row correspond to the vectors on each edge in Fig. 19 of ref.15, and 
the 16 rows correspond to the all 16 edges. Thus, all 16 triplets of mutually orthogonal vectors, 25 vectors and 48 
orthogonalities are contained. The vectors (observables) in parentheses are the vectors in the Yu-Oh’s scenario14, and 
there are 13 vectors (observables), which can compose the 24 correlation pairs. The vectors (observables) in square 
brackets  are  t he  dropp e d  12  ve c tors ,  w hich  are  i l luminate d  in  re f . 15.  For  example , 

′ = |→ − |→ + |→A e ) e ) e )hc3
6

3 0
6

6 1
6

6 2 , ′a 3 (vector |→ + |→ − |→e ) e ) e )3
3 0

3
3 1

3
3 2 ) and ′a 5 (vector |→ + |→e ) e )2

2 1
2

2 2 ) 
compose the triplets of mutually orthogonal vectors, and they correspond to the triplets (unnormalized) {(2, −1, 1), 
(1, 1, −1), (0, 1, 1)} in Fig. 9 of ref.15. Our work is consistent with the description in ref.15.

The experimental values and theoretical results of observables for the different input 
states. For the original Yu-Oh form, the experiment results and the theory predict values of the observables 
for six other input states are listed in Tables 10–15 as follow. The experimental results of contextuality are listed 
in the last row.
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