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Machine learning-aided analysis 
for complex local structure of liquid 
crystal polymers
Hideo Doi1, Kazuaki Z. takahashi1*, Kenji tagashira2, Jun-ichi fukuda3 & takeshi Aoyagi1

Elucidation of mesoscopic structures of molecular systems is of considerable scientific and technological 
interest for the development and optimization of advanced materials. Molecular dynamics simulations 
are a promising means of revealing macroscopic physical properties of materials from a microscopic 
viewpoint, but analysis of the resulting complex mesoscopic structures from microscopic information 
is a non-trivial and challenging task. in this study, a Machine Learning-aided Local Structure Analyzer 
(ML-LSA) is developed to classify the complex local mesoscopic structures of molecules that have not 
only simple atomistic group units but also rigid anisotropic functional groups such as mesogens. the 
proposed ML-LSA is applied to classifying the local structures of liquid crystal polymer (Lcp) systems, 
which are of considerable scientific and technological interest because of their potential for sensors 
and soft actuators. A machine learning (ML) model is constructed from small, and thus computationally 
less costly, monodomain Lcp trajectories. the ML model can distinguish nematic- and smectic-like 
monodomain structures with high accuracy. the ML-LSA is applied to large, complex quenched Lcp 
structures, and the complex local structures are successfully classified as either nematic- or smectic-
like. furthermore, the results of the ML-LSA suggest the best order parameter for distinguishing the 
two mesogenic structures. our ML model enables automatic and systematic analysis of the mesogenic 
structures without prior knowledge, and thus can overcome the difficulty of manually determining the 
specific order parameter required for the classification of complex structures.

Recent advances in computer power and simulation techniques make it possible to perform large-scale molecular 
simulations of macromolecules. However, analysis of the resulting complex mesoscopic structures from micro-
scopic information is a non-trivial and challenging task, especially for amorphous, glassy, liquid-crystalline, and 
quenched materials. For mass point or spherical particle systems, several analysis methods that focus on the 
arrangement of particles have been widely accepted1. These methods are based on particle coordinates and can 
classify many types of molecular forms, such as liquid, solid, body-centered cubic, face-centered cubic, hexagonal 
close-packed, and vacancy structures. These have been applied to many different problems: classifying the phases 
of Lennard–Jones (LJ) systems2 or water systems3, drawing the phase diagram of confined LJ systems4, observing 
the crystal nucleation of molten Cu5, observing the spontaneous nucleation and growth of methane hydrate6, 
and detecting the vacancy and interstice of many types of molecular structures7–9. For anisotropic rigid particle 
systems such as liquid crystals, however, the above analyses are not easy because of the additional orientational 
degrees of freedom. For instance, the aspect ratio of the mesogenic ellipsoids, which is determined for specific 
problems and therefore user-dependent (i.e., by changing the chemical architecture of mesogens in experiments), 
significantly affects the structures and phases of the system. Difficulties in predicting the structures and phases 
prior to the simulations preclude preliminary development of specific order parameters that classify the system 
structure. For bulk liquid crystalline systems, classification of phases is not difficult because of a good perfor-
mance of well-established order parameters such as Onsager order parameter10 and McMillan order parameter11. 
For complex systems with nonuniform local structures of liquid crystals, however, it is non-trivial whether the 
above order parameters maintain their performance or not. Therefore, it is desirable to develop a systematic 
and automatic classification method that does not require prior knowledge of the structures. Recently, Spelling 
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and co-workers demonstrated how machine learning (ML) can be applied to discovering interesting areas of 
parameter space which are closely related to characteristic colloidal structures12. Carrasquilla and co-workers 
demonstrated that ML using the convolutional neural network (NN) can detect topological phases that cannot 
be classified by conventional order parameters13. VanNieuwenburg and co-workers proposed a ML approach 
to find phase transitions from the performance of the NN after training it with deliberately incorrectly labeled 
data14. Rodriguez and co-workers propose an unsupervised approach based on diffusion maps that learns topo-
logical phase transitions from raw data without the need of manual feature engineering15. Walters and co-workers 
demonstrated supervised machine learning can classify topological defects in a two dimensional confined liquid 
crystal system16.

Effective descriptors were designed from numerical fingerprints of structures found in colloidal self-assembly, 
and were applied to both automatically finding interesting areas on a phase diagram and automatically identify-
ing important parameter groups related to simple/complex local crystal structures. Their study demonstrates the 
significant potential of ML for automatic classification and discovery of molecular structures.

Here we developed a ML-aided Local Structure Analyzer (ML-LSA) for classifying complex local mesoscopic 
structures of molecules that are composed of not only isotropic particles but also anisotropic rigid functional 
groups such as mesogens. The proposed ML-LSA was applied to classifying the local structures of liquid crystal 
polymer (LCP) systems.

There are two major reasons why we chose LCPs as the target of our ML-LSA. One is that liquid crystal net-
works (LCNs) that consists of LCPs have been attracting growing interest as a promising material for practical 
applications such as sensing and actuator devices; LCNs exhibit macroscopic deformations to modest external 
stimuli such as electrical and magnetic fields and irradiated light17–26, which is attributable to the combination 
of the orientational degrees of freedom and the entropic elasticity of the polymer network and the resulting soft 
elasticity. Indeed this unique responsiveness motivated the development of several types of LCN actuators27–29.

The other reason is the difficulty in the characterization of local structures of LCPs obtained by particle-based 
simulations. Modeling liquid crystal molecules as coarse-grained anisotropic particles has been regarded as a 
promising approach for predicting micro- and mesoscopic properties of LCPs30–34. In previous studies, “voxel” 
analysis has conventionally been employed for structure analysis (e.g., evaluation of the orientational tensor order 
parameter35,36 and visualization of topological defects37–41), in which the simulation box is split cuboidal voxels 
each containing a single mesogenic particle on average. Each local structure is defined by grouping neighboring 
voxels that contain mesogenic particles oriented in the same direction. However, the local structure determined 
by voxel analysis could depend on how the simulation box is split into voxels, although voxels are introduced 
just for analysis purposes and do not have any physical meaning on their own. Note also the difficulty of voxel 
analyses for a deformable system (indeed the deformation of LCNs in response to external stimuli is an important 
research subject as already mentioned). Voxels of fixed position and shape cannot trace the deformation of the 
system. On the other hand, when the voxels are deformed so that they conform to the deformation of the whole 
system, deformed voxels may not be able to capture the local properties of the systems when their aspect ratio 
deviates significantly from 1. Therefore, it is highly desirable to develop analysis methods without relying on 
artificial voxels.

The ML-LSA proposed in this work was applied to our own MD simulations of LCPs using the SCGB 
(soft-core Gay-Berne) model similar to what Skačej and Zannoni developed for their Monte-Carlo simulations32. 
To construct a ML model which classifies “smectic-like” and “nematic-like” structures of LCPs, we first obtained 
small and thus computationally less demanding monodomain LCP trajectories. Next, to simulate the microscopic 
structure change induced by temperature variations, LCP trajectories for a larger system were quenched from the 
temperature condition for the isotropic structure to that for the smectic-like structure. The quenched trajectories 
generally have complex local structures that contain nematic- and smectic-like mesogenic structures; however, 
conventional particle-based analysis cannot distinguish between the two. Using ML-LSA, we successfully clas-
sified these complex local structures, regardless of the choice of user-dependent parameters, i.e., the aspect ratio 
of mesogenic rigid ellipsoids. Furthermore, the results provided by ML-LSA suggest the best order parameter for 
distinguishing between nematic- and smectic-like mesogenic structures. Our ML model enables automatic and 
systematic analysis of the mesogenic structures without prior knowledge, and thus can overcome the difficulty of 
manually determining the specific order parameter required for the classification of complex structures.

Methodology
Machine learning-aided local structure analyzer. ML is a powerful technique for analyses such as clas-
sification, interpolation, and regression. To find out unknown information, ML is generally applied without prior 
knowledge. To describe some potential characteristics of the data, a set of numerical values called a “descriptor” is 
defined and used. The descriptor should capture the characteristics of the data for the specific problem. Figure 1 
shows a conceptual image of ML-LSA. In this study, we defined order parameters as structure descriptors, and 
defined an array Ds as the set of order parameters. To define this structure descriptor, eleven equations related to 
modified or developed order parameters were employed: the local Onsager order parameter10 S; local McMillan 
order parameter11 T; bond order parameter42 Q; common neighborhood parameters43 A, P, and M; bond angle 
analysis44 B; centrosymmetry parameter analysis45 C; neighbor distance analysis46 D; angular Fourier-series-like 
parameter47,48 F; and the angle histogram analysis parameter H (details of each order parameter are given in the 
Supporting Information). Importantly, the exact form of each order parameter changes with the setting of varia-
bles such as the number of neighboring particles (see Table S1 in Supporting Information). These variables ensure 
that the order parameters have different sensitivities for describing the characteristics of the data. Therefore, we 
individually counted and labeled the order parameters given by the same equation but different variables. Using 
this labeling rule, the number of order parameters increased to almost 1,600,000 (see Table S1 in Supporting 
Information). The set of order parameters was merged to form the array of structure descriptors Ds. To classify the 
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local structure of quenched LCP trajectories, we performed three ML steps. Firstly, each component of the struc-
ture descriptor (i.e., each order parameter) was calculated for well-established single-domain nematic- and smec-
tic-like trajectories of LCP systems. Note that the order parameters were calculated for each mesogen particle i to 
show the local structure around i. The structure descriptor for each particle was labeled as either “nematic-like” 
or “smectic-like” for a supervised classification done at the next step. Next, to obtain the ML model for each 
order parameter, a supervised classification was performed using the random forest technique49. Note that the 
ML model (or the hypothesis) is a certain function that strongly resembles the target function, which is expected 
to clearly express a certain proposition. More specifically, each obtained ML model can be expected to describe 
well the characteristics of each order parameter for detecting nematic- or smectic-like structures. Thus, when 
the ML model performs well, the classification accuracy for distinguishing between single-domain nematic- and 
smectic-like structures becomes high. Finally, we applied the above ML model to classify the local structures of 
quenched LCP trajectories. Quenched trajectories themselves are extremely hard to use to obtain ML model 
because of the complex mixture of nematic- and smectic-like local structures. Thus the ML model determined 
from well-established single-domain trajectories were used, and mainly evaluated from comparison with several 
conventional classification methods.

Note that we do not use NN, just use random forest. For two-dimensional problems, the NN has proven to be 
a powerful method for machine learning: it does not need order parameters for classifying some kinds of phases/
structures. However, from the “curse of dimensionality”, there is a high possibility that the NN becomes compu-
tationally expensive for three dimensional problems. Therefore, we developed the combination of supervised ML 
and order parameters rather than using NN.

Molecular dynamics simulations. We performed coarse-grained MD simulations for LCPs using the 
SCGB model32. The units and dimensions of the values introduced below are exactly the same as in ref.32. The 
simulations were performed using constant particle-number, volume, and temperature conditions. The mono-
mer density of the GB particle ρ was set to 0.3. The velocity Verlet integrator50 was used with three-dimensional 
periodic boundary conditions and a time step of 0.01. The LCPs were expressed by the combination of 5-mer GB 
main chains, and the monomer density of LCPs was fixed to 0.15. The LCP systems were swelled by monomeric 
GB particles, and the density of swelling GB particles was fixed to 0.15 (i.e., a degree of swelling was kept to 50%). 
In this study, two types of LCP systems were considered: (i) small systems for obtaining the ML model, (ii) large 
systems for simulating the microscopic structure changes induced by temperature changes. For small systems, 
the equilibrated trajectories of 972 GB particles were computed under temperature conditions of θ = 1.5 and 2.0 
to form smectic- and nematic-like structures, respectively (see Fig. 2 in next section). The ML model was con-
structed from the trajectory given by a system of GB particles with aspect ratios of 3.0. The accuracy of the model 
was then examined through the classification of structures for systems of GB particles with aspect ratios of 2.8, 
3.0, and 3.2. For large systems, GB particles with aspect ratios of 3.0 were used. The equilibrated isotropic struc-
tures of 62,204 GB particles at θ = 5.5 were gradually quenched to the condition θ = 1.5 over 100,000 simulation 
steps.

Results and Discussion
Machine learning using monodomain lcp systems. Figure 2 shows the temperature dependence of the 
original Onsager order parameter S* and the original McMillan order parameter T* for small LCP systems. The 
former is defined by the following equation,
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where the Nsys is the number of GB particles in the system, the n is the director which denotes the average of 
orientation direction of GB particles, and the ui is the unit vector along the long axis of the GB particle i. The 
definition of T* is
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Figure 1. Conceptual image of ML-LSA, where ri is the coordinate of particle i, rneighbori is the coordinates 
of particles in the neighborhood of i, and the terms Q, S, and T are examples of equations that give the order 
parameters (see Supporting Information).
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where the z is the distance between GB particle i and the closest smectic-A layer, and the d is the distance between 
two smectic-A layers. Snapshots of trajectories were also shown for temperature conditions of θ = 1.5 and 2.0. 
For θ = 1.5, the monodomain smectic-like structure was observed. For θ = 2.0, the monodomain nematic-like 
structure was observed. The difference of two structures was visually clear, but there was almost no difference 
of Onsager order parameters S* for the two. In contrast, McMillan order parameter T* can distinguish the two. 
However, it is non-trivial whether this order parameter maintain its performance for complex systems that consist 
of local structures of LCPs. In particular, polymeric networks consisting of LCP chains may let local structures of 
mesogens freeze at untypical pattern. Therefore, we developed the ML-LSA for systematic and automatic classifi-
cation that is independent of knowledge of the structures, and applied it for LCP systems.

To obtain the ML model for each order parameter, ML was performed for the small monodomain nematic- 
and smectic-like trajectories. The “accuracy” of each order parameter was defined as the correct answer rate to the 
following question: To which structure does the given trajectory belong? The correct answer rate X was defined 
as follows,

=X Z
Z

,
(3)

correct

total

where the Zcorrect is the number of correct answers to the above question and the Ztotal is the total number of the 
answers. Finding single order parameter with high X is one of our purposes in this work, because the high X 
means that the histogram of value of the order parameter can be clearly divided into two areas respectively show-
ing nematic- and smectic-like structures. Note that the large amount of answers should be required to ensure the 
accuracy of the histogram itself. Otherwise, the ML results may suggest the order parameter with high X only at 
a specific situation.

Figure 3 shows the correct answer rate of each order parameter. Note that the results were plotted with respect 
to each equation giving the same type of order parameter. The x-axis of each graph represents a ranking of each 
order parameter, which is sorted with respect to the correct answer rate. The dashed line connects the ideal 
highest accuracy point (rank = 1, X = 1) with the lowest accuracy point (bottom rank, X = 0.5). As mentioned 
in Section 2.1, the exact form of each order parameter changes with the setting of variables. A simple example 
is the local McMillan order parameter T that depends on the variable d representing the distance between two 
smectic-like layers. Changing d obviously affects the performance of T. The description of other variables for 
order parameters are shown in Table S1 in Supporting Information. These variables ensure that the order param-
eters have different sensitivities for describing the characteristics of the data. Figure 3 draws the performance of 
each order parameter. The high correct answer rate indicates few overlapping of the histogram of order parameter 
values that reflect smectic-like or nematic-like local structures. To help the understanding, the data of order 
parameter S plotted on the Fig. 3 are displayed in Table 1 as the example. The results sorted by the rank indicate 
the tendency of the accuracy for each type of order parameter. Focusing on the peak performance of each type 
of order parameter (i.e., the results at the left side of each graph), all parameters except S can accurately distin-
guish between the two structures. However, the distribution of the correct answer rate varies among the order 

Figure 2. Temperature dependence of Onsager order parameter S* and McMillan order parameter T* for small 
LCP systems.
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parameters. For order parameters B, C, F, H, and M, the accuracy decreases exponentially with the increase of 
rank, indicating that it is relatively difficult to stably produce good order parameters for various conditions of 
input data such as coordinates of particles. For order parameter S, the accuracy decreases slowly with the increase 
of rank, however, the highest performance of S is quite low of 0.93. Order parameter Q displayed the best perfor-
mance, attaining both high peak performance and a slow decay of accuracy with respect to the x-axis. This slow 
decay indicates the robustness of this order parameter for local structure analyses. Namely, Q attained to stably 
produce good order parameters for various conditions of input data.

The accuracy of each order parameter can be affected by the definition of the neighborhood of particle i. 
For good order parameters, their accuracy is expected to be stable and high with respect to variations of neigh-
borhood information. Figure 4 shows the highest accuracy of each type of order parameter with respect to the 
number N of neighborhood particles and the radius R of the neighborhood. The results can again be separated 
into three tendencies. For C, H, and P, the accuracy is unstable. Each parameter attained its peak performance 
under a certain condition, but the accuracy did not consistently increase along with the increment of information 
in the neighborhood. This instability becomes a bottleneck for accurate analyses. For S, a consistent increment 
in accuracy corresponding to the neighborhood information can be observed, but the accuracy itself is generally 
low. For the others, the accuracy is stable and increases monotonically with respect to the neighborhood infor-
mation. The origin of the instability of C, H, and P can be thought of as the similarity of the equations; however, 
A did not exhibit such instability despite having a similar equation to the above three parameters. Q attained the 
ideal correct answer rate (=1) under the condition N ≥ 12 or R ≥ 2.25. Note that the above tendencies of the order 
parameters only apply to LCP systems. It is possible that completely different tendencies would be observed for 
analyses of other materials. For ML, any prediction of the capability of order parameters using previous knowl-
edge should be avoided.

By using a certain amount of information for the monodomain local structures, we have shown that a single 
feature (i.e., a single order parameter) can attain a high correct answer rate for distinguishing between the two 
structures. For higher computational efficiency, however, the reduction of local information, such as the value 
of N, should be examined. To attain a suitable level of accuracy while reducing N, the selection of an efficient 
combination of features is a promising approach. However, choosing components of the efficient combination is 
non-trivial task because the results of random forest itself do not suggest any information for relationships among 
features. A sequential forward selection (SFS) algorithm51 is one possible way to identify high-performance fea-
ture sets for classification using random forest classifier. In SFS, one feature is firstly selected, which displays the 
best performance on the single feature ML model. Then the second feature is selected, which displays the best 

Figure 3. Correct answer rate of order parameters. The results are plotted with respect to each equation that 
gave the same type of order parameter. The x-axis of each graph represents an identification number of each 
order parameter sorted with respect to the correct answer rate. The results are shown in three different graphs 
because they can be separated into three tendencies.
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performance on the two feature ML model by combining with the first feature. The third and subsequent features 
can be sequentially selected the same manner, until the performance is saturated. From this sequential selection, 
the small set of effective features can be determined. The SFS was performed for the results of random forest. All 
of the order parameters were prepared for the nematic- and smectic-like trajectories under the neighborhood 
conditions N = 4, 5, 6, 8, 12. SFS was then performed to decrease the large number of order parameters to five 
features. Figure 5 shows the correct answer rate for the combination of features selected by SFS. Overall, the 
accuracy increased with respect to N and the number of features. For N = 4, 5, and 6, an increase in the number 
of features up to four was effective in improving the accuracy. The addition of the fifth feature did not improve the 
results. For N = 8, the accuracy was saturated with two or more features. For N = 12, the accuracy was almost ideal 
regardless of the number of features. The condition N = 8 with two features and the condition N = 6 with four fea-
tures came close to the accuracy of the condition N = 12. Figure 6 visualizes the results of SFS through pair-plots 
of features under the conditions N = 4 with four features, N = 8 with two features, and N = 12 with one feature. 
For N = 4, the data for all pair-plots slightly overlap, indicating that one or two features could not completely dis-
tinguish between the nematic- and smectic-like structures. Note that the accuracy of this condition reached 0.98 
using all four features. Importantly, D1 was selected as an efficient feature together with Q1, Q2, and Q3. This shows 
that the combination of different types of order parameters can improve the accuracy of classification. For N = 8, 
the data for the pair-plots almost separate into two regions, indicating good performance by this combination of 
features. In contrast, the data for a single feature only slightly overlap. This means that the combination of two 
features, Q4 and Q5, improved the accuracy. For N = 12, the data for the single feature completely separate into two 
fields. This means that Q6 is an excellent feature for classification. Overall, Q produced excellent order parameters 
when selected as features.

Rank
Neighborhood 
condition Condition a

Correct 
answer rate

1 R = 3.00 2 0.931

2 N = 27 2 0.916

3 R = 2.75 2 0.908

4 N = 24 2 0.903

5 N = 20 2 0.890

6 R = 2.50 2 0.886

7 N = 16 2 0.877

8 R = 2.25 2 0.860

9 N = 12 2 0.846

10 R = 2.00 2 0.814

11 N = 8 2 0.814

12 N = 5 2 0.793

13 N = 6 2 0.791

14 R = 1.75 2 0.788

15 N = 4 2 0.777

16 R = 3.00 1 0.735

17 R = 2.75 1 0.724

18 N = 27 1 0.723

19 N = 24 1 0.718

20 N = 20 1 0.713

21 R = 2.50 1 0.711

22 R = 2.25 1 0.708

23 N = 12 1 0.708

24 N = 16 1 0.703

25 R = 2.00 1 0.700

26 N = 6 1 0.700

27 N = 5 1 0.695

28 N = 8 1 0.693

29 R = 1.75 1 0.690

30 N = 4 1 0.689

Table 1. Correct answer rate of the local Onsager order parameter S, where N is the number of neighborhood 
particles, R is the radius of the neighborhood, and a is the number of times of averaging the values of order 
parameter that particles neighboring the i-th particle have. Note that N is equal to the size of an array storing 
the identification numbers of particles neighboring the i-th particle, a. The R is an alternative expression of 
neighborhood using distance from i, but generally corresponds to N. The description for the a and equation of S 
are shown in Supporting Information.
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Note that the above ML models and analysis results are for systems of GB particles with aspect ratios of 3.0. 
For GB particles with aspect ratios of 2.8 or 3.2, however, the analysis results using the same ML models are 
almost the same as those for GB particle with aspect ratios of 3.0 (data not shown). This indicates that the ML 
models are not significantly influenced by the aspect ratio over the range 2.8–3.2.

Local structure analysis for complex lcp systems. To obtain complex LCP trajectories, systems were 
quenched from the temperature condition of the isotropic structure (θ = 5.5) to that of the smectic-like structure 
(θ = 1.5). Figure 7 shows a snapshot of some complex trajectories. The trajectories have complex local structures, 

Figure 4. Highest accuracy of each type of order parameter with respect to (a) the number of neighborhood 
particles, and (b) the radius determining the neighborhood. The results are shown in three different graphs 
because they can be separated into three tendencies.

Figure 5. Correct answer rate (i.e., accuracy) for combination of features selected by SFS. The accuracy 
increases with respect to N and the number of features. For N = 4, 5, and 6, an increase in the number of features 
up to four effectively improves the accuracy. The addition of the fifth feature does not improve the results. For 
N = 8, the accuracy is saturated with two or more features. For N = 12, the accuracy is almost ideal regardless of 
the number of features. The condition N = 8 with two features and the condition N = 6 with four features is close 
to the accuracy of the condition N = 12.
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but it is difficult to visually classify each local structure. First, we examined four conventional particle-based 
analysis methods: centrosymmetry45, polyhedral template matching52, Voronoi atomic volume, and the Voronoi 
cell topology visualization and analysis toolkit (VoroTop)7. The results are shown in Fig. 8. It is clear that the four 
conventional methods cannot distinguish any local structures of ellipsoidal rigid mesogenic systems.

Instead of conventional methods, the ML model constructed using the monodomain LCP systems was applied 
to the local structure analysis of complex LCP systems. For monodomain systems, nematic- or smectic-like 
trajectories themselves can be used as the supervisor. However, this is difficult in complex systems including 
nematic- and smectic-like mesogenic structures. Thus, the ML model determined from monodomain systems 
were applied as a reliable function to distinguish local structures. The classification accuracy was evaluated from 
the “consistency” of the classification results for each local structure. First, the results of the most “accurate” anal-
ysis were obtained from using all the ML models determined under the largest condition of N = 27. This was then 

Figure 6. Results of SFS illustrated by pair-plots of features under conditions (a) N = 4 with four features, (b) 
N = 8 with two features, and (c) N = 12 with one feature. The blue and yellow dots represent particles in smectic- 
and nematic-like trajectories, respectively. For N = 4, the data for all pair-plots slightly overlap, indicating that 
one or two features cannot completely distinguish between the nematic- and smectic-like structures. For N = 8, 
the data for the pair-plots almost separate into two regions, suggesting good performance by the combination of 
two features. In contrast, the data for one feature are slightly overlapped. For N = 12, the data for the one feature 
are completely separated into two fields. The definitions of the order parameters D1, Q1, Q2, Q3, Q4, Q5, and Q6 
are shown in the Supporting Information.
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used as a reference for evaluating the “consistency” of the results under the computationally less costly conditions 
attained by the reduction of N and number of features. Next, the analyses were performed for small values of N 
using small number of features. The correct answer rate with respect to the reference was calculated as the index 
of consistency. Namely, the index of consistency Xc was defined as follows,

=X
Z
Z

,
(4)

c

c
c

,correct

,total

where the Zc,correct is the number of correct answers with respect to the reference, and Zc,total is the number of total 
answers. Figure 9 visualizes the results of local structure analyses for N = 27 (the reference), N = 4, N = 8, and 
N = 12. For N = 27, 17120 of the 62204 mesogens were found to be in nematic-like structures. In comparison 
with the results of four conventional methods in Fig. 8, the classification of local structures was significantly 
improved. More specifically, the clear alignments of smectic-like layers of blue-colored particles were visually 

Figure 7. Snapshot of complex trajectories made by quenching from the temperature condition of the isotropic 
structure (θ = 5.5) to that of the smectic-like structure (θ = 1.5). The yellow particles belong to LCPs, and the 
gray particles are LC molecules for swelling. The trajectories exhibit complex local structures, but it is difficult to 
visually classify each local structure.

Figure 8. Results of conventional particle-based local structure analyses. (a) The centrosymmetry method 
with 12 neighboring particles. The particle colors gradually change from yellow to light blue with respect to the 
change in the centrosymmetry parameter from 3 to 4. (b) The polyhedral template matching method with a 0.6 
root-mean squared cutoff. The yellow color denotes a simple cubic structure, and the blue color represents other 
structures. (c) The Voronoi atomic volume method implemented on Ovito. The particle colors gradually change 
from yellow to light blue as the volume of the Voronoi cells increases from 3 to 4. (d) The Voronoi cell topology 
visualization and analysis toolkit (VoroTop). The pink color denotes a hexagonal close-packed structure, and the 
blue color represents other structures. None of the methods could distinguish any local structures of ellipsoidal 
rigid mesogenic systems.
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acquired, while loose parallel alignments of nematic-like layers of red-colored particles were also seen. For N = 4, 
the four-feature ML model was used based on the results for monodomain systems. The visualized structure 
contained numerous small domains that did not correspond to the reference condition. The Xc was 0.82, indicat-
ing poor consistency. Generally, structure classification requires a correct answer rate of at least 0.9. For N = 8, 
the two-feature ML model was used. The small domains observed with N = 4 were less visible. The Xc was 0.89, 
indicating adequate consistency. For N = 12, the one-feature ML model was used. The domain shapes were quite 
similar to those in the reference structure. The Xc was 0.92, indicating good consistency. Considering the good 
performance of McMillan order parameter to distinguish monodomain nematic- and smectic-like structures 
shown in Fig. 2, one big question still remains: can the local McMillan order parameter T classify the complex 
local structures of LCPs with high accuracy? The results of T was similar to that of two-feature ML model with 
N = 8. The Xc was 0.88, indicating adequate consistency. Therefore Q6 was better than T. Overall, Q6 was found 
to be the best order parameter for classifying the local structures of complex LCP systems. The values of index of 
consistency for all cases are presented in Table 2.

Figure 9. Results of local structure analysis using ML-LSA and conventional order parameter with (a) N = 27 
(the reference), (b) N = 4, (c) N = 8, (d) N = 12, (e) local McMillan order parameter T with the parameter 
d = 3.0 and (f) local Onsager order parameter S. For N = 27, 17120 of the 62204 mesogens are in nematic-
like structures. In contrast to Fig. 8, the classification of local structures was significantly improved. The 
clear alignments of smectic-like layers of blue-colored particles were visually acquired, while loose parallel 
alignments of nematic-like layers of red-colored particles were also seen. For N = 4, the four-feature ML model 
was used based on the results for monodomain systems. The visualized structure contains many small domains 
that do not correspond to the reference condition. For N = 8, the two-feature ML model was used. The small 
domains observed with N = 4 are less visible. For N = 12, the one-feature ML model was used. The domain 
shapes are quite similar to those of the reference structure. The local McMillan order parameter T achieved 
the adequacy similar to the two feature model with N = 8. The local Onsager order parameter S could not 
distinguish local structures properly. Definitions of the above order parameters are shown in the Supporting 
Information.

Number of 
neighborhood 
particles Number of features Consistency

N = 4 4 (D1, Q1, Q2, Q3) 0.82

N = 5 4 (D2, Q7, Q8, T1) 0.85

N = 6 4 (D3, D4, Q9, Q10) 0.87

N = 8 2 (Q4, Q5) 0.89

N = 12 1 (Q6) 0.92

N = 12 1 (T2) 0.88

N = 12 1 (S1) 0.63

Table 2. Correct answer rate of feature-combined models with respect to the reference condition. The 
definitions of the order parameters D1–D4, Q1–Q10, S1, T1 and T2 are shown in the Supporting Information.
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Note that the above analyses were performed for three different trajectories quenched from three different 
initial coordinates, and the results were almost the same in all cases.

conclusion
We have developed a Machine Learning-aided Local Structure Analyzer (ML-LSA) to classify the structures 
of LCPs containing rigid ellipsoidal particles. The ML model for local structure analyses was determined from 
small, and thus computationally efficient, monodomain LCP trajectories. The ML model was found to distinguish 
between nematic- and smectic-like monodomain structures with high accuracy. Furthermore, using feature selec-
tion, a single or set of order parameter(s) with good classification performance was revealed. For monodomain 
LCP trajectories, ML-LSA can distinguish between two structures using only the coordinates of the 1–4 nearest 
particles, which contain very little information about local structures.

ML-LSA was applied to the local structure analyses of large and complex quenched LCP trajectories. The 
quenched trajectories exhibited complex local structures containing nematic- and smectic-like mesogenic struc-
tures. As shown in Fig. 8, conventional particle-based local structure analyzing methods could not distinguish 
between these structures. However, we successfully classified these complex local structures using ML-LSA, 
regardless of the user-dependent parameter, i.e., the aspect ratio of mesogenic ellipsoids. Furthermore, the results 
of ML-LSA suggest that the best order parameter is Q6 for distinguishing nematic- from smectic-like mesogenic 
structures. For complex quenched LCP trajectories, ML-LSA can distinguish the two structures using the coor-
dinates of the 1–12 nearest particles.

The above analyses were performed automatically, systematically, and independent of previous knowledge 
using ML. This means that ML-LSA can overcome the difficulty of manually identifying the specific order param-
eter for the classification of complex structures. ML-LSA has strong potential for classifying the structures of 
other complex chemical and biological molecular systems. In future studies, the capabilities of ML-LSA will be 
intensively evaluated.
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