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Hidden Markov models reveal 
temporal patterns and sex 
differences in killer whale behavior
Jennifer B. Tennessen1,2*, Marla M. Holt1, Eric J. Ward1, M. Bradley Hanson1, 
Candice K. Emmons1, Deborah A. Giles3,5 & Jeffrey T. Hogan4

Behavioral data can be important for effective management of endangered marine predators, but 
can be challenging to obtain. We utilized suction cup-attached biologging tags equipped with stereo 
hydrophones, triaxial accelerometers, triaxial magnetometers, pressure and temperature sensors, 
to characterize the subsurface behavior of an endangered population of killer whales (Orcinus orca). 
Tags recorded depth, acoustic and movement behavior on fish-eating killer whales in the Salish Sea 
between 2010–2014. We tested the hypotheses that (a) distinct behavioral states can be characterized 
by integrating movement and acoustic variables, (b) subsurface foraging occurs in bouts, with distinct 
periods of searching and capture temporally separated from travel, and (c) the probabilities of 
transitioning between behavioral states differ by sex. Using Hidden Markov modeling of two acoustic 
and four movement variables, we identified five temporally distinct behavioral states. Persistence in the 
same state on a subsequent dive had the greatest likelihood, with the exception of deep prey pursuit, 
indicating that behavior was clustered in time. Additionally, females spent more time at the surface 
than males, and engaged in less foraging behavior. These results reveal significant complexity and sex 
differences in subsurface foraging behavior, and underscore the importance of incorporating behavior 
into the design of conservation strategies.

Studying the behavior of organisms can yield insights that transcend disciplines, and is an urgent priority as 
global change imposes novel pressures on ecological patterns and processes1–5. For threatened and endangered 
populations, characterizing behavior can be integral to conservation outcomes3, yet particularly challenging for 
these populations. The rarity of such populations can make them paradoxically difficult to study6. Furthermore, 
behavioral studies are vulnerable to observer bias and the tendency to quantify behaviors through subjective 
lenses7. Additionally, for species that spend the majority of their time in habitats inaccessible to researchers, quan-
tifying behavior can be especially challenging and confounded by time (i.e., only the behaviors that are observed 
are quantified)5.

Many populations of cetaceans (whales, dolphins and porpoises) are endangered globally8. Until recently it 
was difficult to obtain continuous observations of subsurface behavior to inform conservation efforts because 
these species spend the majority of their lives underwater. For endangered cetaceans that forage in groups, indi-
viduals need to balance the energetic gains of group-facilitated prey consumption with the metabolic costs of prey 
pursuit at depth9–12. The ways in which these species temporally structure their foraging activities to account for 
this paradox, however, are poorly understood yet fundamental to conservation.

We studied the foraging behavior of an endangered population of killer whales (Orcinus orca), which lives in 
the Northeastern Pacific Ocean, and spends the majority of its time in the inland and coastal waters along the west 
coast of North America between central California and southeastern Alaska. Individuals in the Southern Resident 
killer whale (SRKW) population spend their lifetimes in stable, matrilineal groups, and consume salmon, primar-
ily Chinook (Oncorhynchus tshawytscha)13,14, that are routinely shared with group members15. Chinook salmon, 
the largest salmon species, provide a significant energetic return, but given that they occur deeper than other 
salmon species, up to several hundred meters16,17, SRKW must invest significant energy in the forms of breath 

1Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National 
Oceanic and Atmospheric Administration, Seattle, WA, USA. 2Lynker Technologies, Leesburg, VA, USA. 3Department 
of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA. 4Cascadia Research Collective, 
Olympia, WA, USA. 5Present address: University of Washington, Friday Harbor Laboratories, Friday Harbor, WA, 
USA. *email: jennifer.tennessen@gmail.com

OPEN

https://doi.org/10.1038/s41598-019-50942-2
mailto:jennifer.tennessen@gmail.com


2Scientific Reports |         (2019) 9:14951  | https://doi.org/10.1038/s41598-019-50942-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

holding and locomotion costs associated with fluking and drag11,12, in order to pursue these larger caloric payoffs. 
The challenge of acquiring sufficient Chinook salmon to meet caloric requirements is compounded by the fact 
that many Chinook salmon populations originating from the west coast of the United States and British Columbia 
are threatened or endangered18.

To study foraging behavior, past studies primarily relied upon observations of kills at the surface, collection 
of samples of prey floating in the water after kills, or collection of fecal samples indicating recent consumption 
e.g.13,14. Surface observations revealed distinct episodes of foraging activities, including increased swim speeds 
indicative of prey pursuit14, and aggregation behavior following prey capture, presumably to share prey among 
group members, particularly between dependent offspring and mothers. A recent study utilized movement varia-
bles of subsurface behavior to identify prey capture events, in order to explore sex differences in foraging ecology 
of fish-eating killer whales, revealing males made more prey capture dives than females, presumably to support 
the energetic requirements of a larger body size19. Currently, however, little is known about the extent to which 
these prey pursuits represent the culmination of continuous search efforts, or whether foraging occurs in dis-
tinct periods in space and time, allowing for other activities including recovery following metabolically costly 
deep dives, socialization, traveling, or other non-foraging activities. Additionally, given the sexual dimorphism 
between males and females and differences in metabolic rates, energetic requirements12 and foraging rates19, it 
is possible that males and females may partition behavioral activities or timing to minimize energy use while 
maximizing gain and meeting other needs including care of dependent offspring. Indeed, in many species of 
sexually dimorphic marine mammals, foraging behavior is sexually segregated20–22. Addressing these data gaps 
can inform management of the SRKW population in critcal habitat including the inland waters of Washington 
State and British Columbia, where many commercial and recreational interests coincide with the whales’ foraging 
activities from May through September.

We utilized multisensor biologging tags to characterize the subsurface behavior of SRKW. Specifically, tags 
were attached by suction cup to killer whales and recorded depth, movement, and sound, providing the oppor-
tunity to collect a continuous stream of data as the subjects traveled below the surface. To minimize the effect of 
subjective observer bias on behavioral categorization, we used hidden Markov models to systematically charac-
terize latent behavioral states based on four movement and two acoustic variables computed from data recorded 
on the tags. This approach enabled quantification of behavioral states based on similarities identified through a 
latent Markov process rather than relying on subjective assignment by researchers. We then used these behavioral 
state allocations to test the hypotheses that (a) SRKW engage in distinct behavioral activities characterized by 
differences in their subsurface movement and acoustic behavior, (b) SRKW foraging behavior occurs in bouts, 
with distinct periods of searching and capture followed by rest, and (c) the probabilities of transitioning between 
behavioral states differ by sex.

Knowledge of the behavior of a species, the temporal patterning of activity budgets, and whether behavio-
ral patterns differ by sex is valuable for guiding effective conservation5,23. The SRKW population was listed as 
Endangered in the United States24 and as a Species at Risk in Canada25. Though this population has been small 
(<100 animals) since 1975, recent declines have reduced the population to a near record low of 73 animals at 
present, prompting increased concern over its future viability26,27. One of the main threats to population persis-
tence is availability and accessibility of prey14,27,28. Therefore, a better understanding of the temporal patterns of 
behavior, and whether foraging-related activities including shallow searching and deep prey pursuit differ by sex, 
will enable the design of effective SRKW conservation measures that promote foraging opportunities.

Results
Summary of deployments.  We analyzed a total of 41.8 h from all 13 deployments (2010 = 9.3 h, n = 3; 
2012 = 15.3 h, n = 6; 2014 = 17.2 h, n = 4) (Table 1). Mean analyzed time per deployment was 3.2 h (range = 0.6–
6.9 h). We analyzed 3728 dives from these deployments. Females (f) and males (m) made a total of 1324 and 2404 
dives, respectively (2010: 253 (f), 517 (m); 2012: 429 (f), 912 (m); 2014: 642 (f), 975 (m)). The number of dives 
analyzed per deployment ranged from 37 to 583 (Table 1).

State classifications of diving behavior.  The unit of analysis was a dive, defined as any departure from 
and return to the surface. The best model identified five underlying behavioral states in Southern Resident killer 
whales (Fig. 1, Supplementary Figs S1 and S2). These states were characterized by: (1) deep dives with common 
occurrence of buzzing, nearly ubiquitous occurrence of clicking, and large values of jerk peak, roll and heading 
variance, (2) shallow dives with no buzzing, uncommon clicking, and small values of jerk peak, roll and heading 
variance, (3) shallow to intermediate dives with no buzzing, some clicking, and small-to-moderate values of jerk 
peak, roll and heading variance, (4) shallow dives with virtually no buzzing, abundant clicking, small values of 
jerk peak and heading variance, and small-to-moderate values of roll, and (5) shallow dives, no buzzing, rare 
clicking, and small values of jerk peak, roll and heading variance (Table 2, Fig. 2). There was a significant effect of 
state on dive duration (linear mixed model: F4, 3718 = 761.2, p < 0.0001) (Fig. 3).

Transition probabilities.  For both females and males, the largest transition probabilities observed were for 
state persistence on the subsequent dive, indicating that behavior was temporally clustered, as expected (Fig. 4, 
5, Supplementary Fig. S1). Females and males were most likely to persist in states 2, 4 and 5 (different types of 
shallow behavior). Persistence in state 1 (deep dives) never occurred for females, and was rare for males. For state 
3 (shallow-intermediate dives), persistence was the most likely outcome for males but not females (Fig. 5).

For females and males, switching to state 1 was rare, whereas switching to state 2 was common from states 1 
and 3. For females, switching to state 3 was moderately likely from states 1 and 2, less common from state 4, and 
rare from state 5. In contrast, after persistence in state 3, males were equally likely to switch to state 3 from any 
other state. Males were more likely than females to switch to state 4 from any state except state 1, suggesting males 
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often returned to state 4 throughout a deployment. For both males and females, transitions into state 5 from states 
1, 2 or 4 were rare, and infrequent from state 3 (Fig. 5).

State allocations.  The multinomial logistic model supported the existence of differences between females 
and males in the frequency of different behavioral states (Table 3, Supplementary Table S1, Fig. 6A). The positive 
log odds ratio (with state 1 as the reference baseline) indicated both sexes were more likely to occur in states 2–4 
than in state 1. Furthermore, the log odds ratio differed between sexes for all states except state 5, supporting 
the hypothesis of sex differences in state allocation, and was most different between sexes for state 2, indicating 
females were substantially more likely to occur in state 2 (respiration) vs. state 1 (deep prey pursuit) than were 
males.

We found a significant difference between males and females in the proportion of time per state (χ2 = 7883.1, 
df = 4, p < 0.0001; Table 3; Fig. 6B). Females spent substantially less time than males in state 1 or 4, and notably 
more time than males in states 2, 3, and 5.

Discussion
We used a latent Markov process to identify five temporally distinct behavioral states, demonstrating complexity 
in subsurface behavior of Southern Resident killer whales. From the most likely state sequence, we computed the 
probability of state persistence and state switching, revealing that behavior occurs in bouts. We show that females 
and males differ in their transition probabilities between states, and in the frequency and cumulative time in these 
states.

State 1 was characterized by deep dives, common buzz and nearly ubiquitous click occurrence, and large values 
of jerk peak, roll and heading variance. Additionally, state 1 dives had the greatest duration. Consistent with pre-
vious results19, state 1 is likely associated with close pursuit and capture attempts of salmonid prey, whereby prey 
are chased at depths typically greater than 30 m, producing substantial jerk movement due to abrupt acceleration 

Date
Time on 
(hh:mm:ss)

Whale 
ID Sex Age (y) Dur (h)

No. dives 
analyzed

Number of dives per state

1 2 3 4 5

2010-09-18 15:32:45 L72 F 24 0.62 37 0 16 15 0 6

2010-09-21 12:37:09 L83 F 20 2.53 216 0 86 27 0 103

2010-09-22 12:15:42 K33 M 9 6.18 517 34 183 97 107 96

2012-09-07 11:22:21 K33 M 11 1.57 153 11 42 36 64 0

2012-09-10 10:46:44 L95 M 16 6.94 583 10 95 111 307 60

2012-09-17 10:11:55 L84 M 22 2.11 176 2 1 60 42 71

2012-09-22 10:39:21 L91 F 17 2.56 214 12 58 46 78 20

2012-09-22 13:45:09 L47 F 38 0.51 56 1 15 14 26 0

2012-09-23 14:56:07 J28 F 19 1.63 159 0 76 35 48 0

2014-09-06 09:55:10 L113 F 5 5.61 583 11 159 100 55 258

2014-09-20 11:57:15 L85 M 23 6.48 510 15 45 116 195 139

2014-09-21 11:31:46 L91 F 19 0.68 59 4 18 25 10 2

2014-09-23 10:53:41 K35 M 12 4.47 465 20 126 91 217 11

Table 1.  Summary of analyzed Dtag deployments on Southern Resident killer whales.

Figure 1.  Hidden Markov modeling revealed five distinct behavioral states across all individuals. Dives 
(n = 3728) are plotted for all deployments (state 1 = purple, state 2 = red, state 3 = orange, state 4 = green, state 
5 = blue).
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and deceleration, as well as changes in musculature in the head region at prey interception29–33. Additionally, state 
1 is associated with large values of roll, and large heading variance due to repeated direction changes34 while clos-
ing in on prey. Similarly, prey pursuit dives by Northern Resident killer whales, a partially-sympatric population 
with a similar diet13, tend to be deeper, longer, include a large roll angle, are more tortuous, and include faster 
swim speeds than non-pursuit dives35.

Dives allocated to state 2 were characterized by shallow depth, no buzzing and uncommon clicking, and small 
values of jerk peak, roll and heading variance. These dives were shortest in duration, reflecting their surface asso-
ciation, and typically followed intermediate to deep dives. These dives are likely associated with surface respira-
tion, with small values of heading variance. The high probability of switching from state 1 to state 2, particularly in 
males, and moderate probability of switching from state 3 to state 2, as well as the high probability of persisting in 
state 2, supports the idea that state 2 dives likely function as respiration dives as in35 following depletion of oxygen 
stores during deep dives. The presence of occasional clicking by females and slightly more common clicking by 
males (Table 2, Fig. 2) suggests that a small amount of acoustic searching may be occurring during state 2 dives as 
well. State 5 dives were similarly characterized by shallow depth, no buzzes, rare occurrence of clicks, and small 
values of movement variables including heading variance, which is indicative of directional travel. These dives 
were short in duration but significantly longer than state 2 dives (Fig. 3), with the highest likelihood of persistence 
for any of the states. The notable occurrence of these dives in long bouts suggests that state 5 likely represents 
traveling.

State 4 was characterized by dives similar in depth and kinematics to states 2 and 5, but notably different was 
the nearly ubiquitous occurrence of clicks. Dives in this state were short as well, similar to those in states 2 and 5. 
State 4 is likely a prey searching state primarily, consistent with the acoustic behavior that precedes prey capture 
in many other toothed whales whereby an individual produces echolocation clicks that scan an area for possible 
targets prior to initiating a capture attempt e.g.29,30,36–40. Additionally, the tendency for these dives to occur in 
bouts further supports the interpretation that this is primarily a prey searching state. The absence of buzzes from 
nearly all dives in this state indicates these dives are unlikely to include capture attempts. It is important to note, 
however, that prey searching does not preclude the occurrence of other surface-associated behaviors that may 
occur simultaneously, such as traveling or socializing.

Finally, state 3 was characterized by intermediate depth, with no buzzes, relatively common click occurrence, 
and low to moderate values of jerk peak, roll and heading variance. These dives were intermediate in duration, 
suggesting there could be a variety of behaviors associated with dives in this state. The absence of buzzes indi-
cates these dives are unlikely prey capture attempts, but it is possible that prey pursuit was initiated and then 
aborted at intermediate depth. This interpretation is unlikely to explain all dives classified to state 3, however, 
because approximately two thirds of female dives and half of male dives in this state did not contain clicks. It 
is possible that state 3 behaviors include socializing, such as engaging in tactile behavior and/or prey sharing, 
which could explain moderate values of heading variance, roll and jerk peak as individuals move vertically and 
horizontally and make physical contact with other group members41. Additionally, these behaviors may be best 
accomplished several meters below the surface, where positional alignment within a pod may be able to take on 
a three-dimensional formation whereas surface swimming arrangements are confined to essentially the same 
horizontal plane. Furthermore, acoustic interference with the surface can create zones that impede detection 
of signals42,43. Therefore, when communicating with individuals out of sight, using stereotyped pulsed calls and 

Sex State

Response variable

Max depth (m) Jerk peak Roll (deg)
Heading 
variance

Buzz 
prop.

Slow click 
prop.

F

1 107.34
(86.35–135.56)

23.44
(12.91–36.07)

62.45
(26.13–85.65)

0.59
(0.39–0.75) 0.64 1

2 2.06
(1.69–2.43)

3.48
(2.89–4.26)

2.86
(1.84–4.42)

<0.01
(0.002–0.008) 0 0.05

3 6.49
(2.57–16.98)

7.33
(4.47–12.02)

8.02
(4.70–15.44)

0.04
(0.01–0.12) 0 0.27

4 2.51
(2.14–3.03)

4.07
(3.67–4.82)

9.17
(5.75–13.16)

0.01
(0.01–0.02) <0.01 0.82

5 3.00
(2.63–3.46)

4.68
(4.02–5.56)

4.58
(3.13–6.50)

0.02
(0.01–0.02) 0 <0.01

M

1 91.78
(40.82–132.80)

23.27
(11.16–45.55)

52.71
(29.57–87.53)

0.61
(0.47–0.72) 0.62 0.89

2 2.01
(1.68–2.38)

3.16
(2.80–3.73)

3.44
(2.25–5.46)

<0.01
(0.003–0.009) 0 0.17

3 6.18
(3.02–16.38)

5.33
(4.14–8.08)

13.75
(7.71–24.61)

0.08
(0.03–0.22) 0 0.48

4 2.96
(2.36–3.51)

3.78
(3.33–4.26)

10.31
(6.71–15.48)

0.02
(0.01–0.03) <0.01 0.82

5 2.94
(2.56–3.37)

3.88
(3.42–4.45)

5.73
(3.83–7.21)

<0.01
(0.002–0.006) 0 0.03

Table 2.  Median, first and third quartile values of kinematic response variables and proportion of dives 
containing buzzes and clicks, by state and sex. Within each cell of the four kinematic response variables, median 
is displayed on top and first and third quartile values are displayed on the bottom, from left to right, respectively.
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whistles with the majority of energy in mid-frequencies (1–20 kHz)44,45, it is possible that swimming approxi-
mately 15–25 m below the surface, as observed in many dives classified to state 3, may facilitate social behavior by 
optimizing passive listening for and active sending of important information.

For both females and males, behavioral bouts (sequences of consecutive dives of the same state) were common 
for states 2, 4 and 5, moderately common for state 3, and rare for state 1. This indicates that certain behaviors, 
particularly acoustic searching (state 4) and respiration and travel (states 2 and 5, respectively), are clustered in 
time. Surface travel behaviors are common in other social odontocetes e.g.35,46,47, supporting our finding of tem-
poral patterning (bouts) of behavior. Indeed, subsurface behavior does not appear to be randomly distributed in 
time, but rather is temporally clumped, likely driven by other factors, including prey distribution48,49, bathym-
etry features that may aggregate prey50,51, time of day51,52, oceanographic parameters53, aerobic dive limits54 and 
anthropogenic pressures55–58. It is not possible to tease apart the relative importance of each of these factors in this 
study. However, the extreme sociality of resident-type killer whales likely plays a considerable role in mediating 
behavioral patterns. Resident-type killer whale movements are coordinated at a coarse scale, with pods often 
traveling together, or breaking apart briefly to reunite a few hours or a few days later. Furthermore, because of the 
existence of kin-directed prey sharing among resident-type killer whales15, coordinating behavior to maximize 
foraging success would benefit the population59. Indeed, studies have revealed synchronicity in diving behavior 
in other cetaceans41,60–63.

Figure 2.  Fitted state-dependent distributions of the best model by sex.
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Notably, persistence in state 1 (final pursuit and capture attempt) between consecutive dives was rare. There 
are at least two, non-mutually exclusive explanations for this finding. First, deep diving for prey pursuit incurs sig-
nificant energy expenditure through (1) the depletion of oxygen stores during breath-holding, (2) the kinematics 
of chasing prey including rapid acceleration and deceleration and sudden direction changes, and (3) withstanding 
the physiological effects of extreme pressure at depth. Rather than completing costly consecutive dives, individu-
als may enhance their overall foraging effectiveness by recovering near the surface (demonstrating behavior such 
as in dives classified to state 2) before initiating another prey pursuit dive. Indeed, many deep-foraging cetaceans 
make several recovery dives at the surface before returning to depth e.g.35,46,64,65. The second explanation for the 
paucity of state 1 persistence may be that a prey item is often captured during a deep foraging dive19. Upon captur-
ing a prey item, it is then typically shared among pod-members near the surface15, precluding the occurrence of 
consecutive deep dives. If prey are not captured during pursuit, it is possible that their heightened vigilance may 
make consecutive deep prey pursuit dives less likely to be executed due to their potentially reduced likelihood of 
success.

We found sex differences in state switching behavior. Males were more likely than females to switch to acoustic 
searching (state 4) from any state except deep prey pursuit (state 1), suggesting males often returned to acoustic 
searching behavior. This may be driven by key deployments in which females did not engage in any deep prey 
pursuit behavior. Additionally, females were more likely than males to engage in non-foraging behavior, and 
spent notably more time in surface respiration, intermediate depth or traveling states than males, who spent 
substantially more time searching for and pursuing prey. It is possible that female foraging behavior is temporally 
compartmentalized, due to the time demands of caring for calves or other offspring or kin e.g.66,67, and due to the 
potentially increased costs of transport for females with calves4. Alternatively, since adult males are larger than 
females or juvenile males, and have the largest metabolic requirements in the population12, they may need to 

Figure 3.  Differences in dive duration by state and sex. Boxes indicate least square mean values for females 
(black) and males (gray), whiskers indicate confidence. Significance, determined by a Tukey HSD test across all 
states and sexes, is indicated by unshared letters above bars.

Figure 4.  Dive profile of a deployment on a male killer whale, indicating behavioral state allocation over time. 
State 1 = purple, state 2 = red, state 3 = orange, state 4 = green, state 5 = blue. Gray dives indicate the omitted 
5-min interval at the start of each deployment.
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forage more often than females or juvenile males19 to meet their metabolic requirements, and consequently may 
engage in searching behavior more often. It is important to note our conclusions are limited by the sample size 
of deployments greater than three hours on females. We cannot rule out the possibility that collecting a greater 
number of longer deployments on females could reveal more equal time budgets of state allocation. Nonetheless, 

Figure 5.  Transition probabilities between states for females and males. Line color indicates the state of origin, 
and line thickness scales positively with probability, which is indicated adjacent to the corresponding line.

State 1 State 2 State 3 State 4 State 5

Female 28
6641 (13.6)

428
6939 (14.2)

262
20579 (42.1)

217
4456 (9.1)

389
10235 (21.0)

Male 92
19311 (20.1)

492
6931 (7.2)

511
34928 (36.4)

932
22797 (23.8)

377
11999 (12.5)

Table 3.  Number of dives, cumulative time in each state, and percentage of total time sampled by sex. Within 
each sex-by-state cell, number of dives is displayed on the top and cumulative time (seconds) on the bottom, 
followed by percentage of total time sampled in parentheses.

Figure 6.  Summaries of behavioral state allocation for all deployments. (A) Boxplots of proportional 
occurrence of dives by state, per deployment, for females (light blue) and males (dark blue). Horizontal bars 
indicate medians, box edges are interquartile ranges, whiskers indicate minimum and maximum values, and 
outliers are plotted. (B) Proportion of time spent per state, per deployment, arranged by sex. State 1 = purple, 
state 2 = red, state 3 = orange, state 4 = green, state 5 = blue.
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our results are consistent with known sex differences in prey capture and prey pursuit in Southern Resident killer 
whales19.

This investigation utilized Hidden Markov models to characterize the subsurface behavior of a population 
of killer whales, to shed light on the ways in which group foraging cetaceans temporally structure their foraging 
activities and to determine whether females and males differ in their behavioral patterns. We revealed that killer 
whale subsurface activity budgets are complex, involving at least five distinct behavioral states, and that females 
and males differ in subsurface activity, with females generally engaging in less foraging behavior than males, 
though we cannot rule out the possible influence of small sample size on this sex difference. We demonstrated that 
foraging is more than intermittent deep dives to acquire prey, following the general sequence: (1) an event causes 
a transition from the intermediate depth or traveling states into active searching at the surface using echolocation, 
(2) the individual identifies a potential target, and initiates a deep dive to investigate further or engage in initial 
prey pursuit, (3) the individual either abandons the investigation or pursues the target and initiates a chase and 
potentially a successful capture, and (4) the individual returns to the surface and continues searching or transi-
tions to respiration, traveling or socializing behavior. Consequently, these findings underscore two important 
points. First, when determining how environmental or human factors may impact foraging, it is important to 
consider disturbance to multiple foraging-related behaviors, not just to the ultimate prey capture. Second, it is not 
possible to completely assess whether animals are engaged in foraging activities from surface observations alone. 
Studies that categorize behavior through focal observations may not be able to resolve differences between dive 
types, so they may not be able to quantify disruptions to foraging, for example impacts on searching effort, an 
integral component of foraging. Indeed, we demonstrate that searching appears kinematically similar to respira-
tion or traveling, and is distinguished primarily by the presence of echolocation. Thus, studies quantifying human 
impact on cetacean foraging should combine surface observations with quantification of subsurface behavior, 
including both kinematic and acoustic data when possible. This approach, combined with modeling hidden states 
using latent Markov chains, can provide a valuable method for identifying patterns in behavioral data that can 
inform management of threatened and endangered species.

Methods
Data collection.  We deployed multi-sensor biologging tags (‘Dtags’)68 on SRKW in the Salish Sea during 
September 2010 and 2014 (Version 2) and September 2012 (Version 3). Dtags were equipped with stereo hydro-
phones, triaxial accelerometers, triaxial magnetometers, and pressure and temperature sensors, and recorded 
subsurface acoustic and movement behavior. Dtags sampled audio at 192 kHz and depth, movement and tem-
perature at 50 Hz (Version 2), or sampled audio at 240 kHz and depth, movement and temperature at 200 Hz 
(downsampled to 50 Hz during post-processing; Version 3). Dtags stored data to onboard flash memory, con-
tained a VHF beacon to enable tag recovery, and were programmed to release before local sunset, if they had 
not already fallen off naturally. Tagging was conducted under federal research permits in the U.S.A. (NMFS No. 
781–1824/16163) and in Canada (DFO SARA/Marine Mammal License No. MML 2010-01/ SARA-106B), and 
approved by the Northwest Fisheries Science Center’s Institutional Animal Care and Use Committee.

Twenty-three Dtags were attached by suction cup to the dorsal side of 21 killer whales using a 7 m carbon 
fiber pole held by a tagger standing on the bow pulpit of a 6.7 m rigid-hulled inflatable research vessel. Animal 
reactions to tagging consisted primarily of mild to moderate behavioral changes, and included flinching or div-
ing for up to a few minutes, but resumed previous behavior within five minutes of tagging. Animals were tagged 
opportunistically, while ensuring a balanced representation between sexes. All animals were >1 year old. No ani-
mals were tagged multiple times within the same year, but two animals were tagged twice in different years. Focal 
follows of the tagged animal were conducted for the duration that the tag remained on the animal, described else-
where19,69. These focal follows allowed for identification of changes in tag orientation for use in data calibration, 
and to facilitate tag retrieval. All tags were attached during only daylight hours.

No. states
Transition matrix 
covariate logLik ∆AIC

5 Sex −15296.366 0

5 Age class −15300.187 7.641

5 Year −15285.412 18.091

5 1 −15341.371 50.011

4 Sex −15823.431 988.131

4 Age class −15835.986 1013.239

4 Year −15827.778 1020.825

4 1 −15860.000 1037.268

3 Sex −16502.042 2287.351

3 Year −16499.977 2295.221

3 Age class −16510.743 2304.753

3 1 −16520.492 2312.252

Table 4.  Comparison of number of states and covariates on the transition matrix, AIC scores and log-likelihood 
values for all Hidden Markov models.
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Data processing.  Following tag retrieval, data were downloaded and custom software (the 2014 Dtag 
Toolbox, www.soundtags.org/dtags/dtag-toolbox) along with custom scripts in Matlab version 2016a (The 
Mathworks, Natick, MA, USA) were used to calibrate acoustic and movement sensor data and convert pressure 
data to temperature-corrected depth, following established methods68, see details in19,69. All acoustic audits of 
sound files were conducted by the same experienced researcher. We excluded nine deployments due to acoustic 
quality. For these deployments, excessive noise from water flowing past the hydrophones, often due to suboptimal 
tag placement, prevented acoustic variables from being computed. Additionally, we excluded the first deployment 
due to inconsistencies in data collection methods and hydrophone gain settings with the rest of the deployments. 
We down-sampled pressure data to 5 Hz, and applied a custom dive detector that identified a dive as the interval 
containing a departure from the surface (0.5 m), a maximum depth ≥1 m, and a return to the surface. Due to the 
relatively high sample rate in the pressure data, occasionally noise in the pressure data caused false detections. 
Therefore, we checked all dive results manually, and corrected dives as needed. We excluded dives that began 
within the first five minutes of tag attachment in order to account for any short-term behavioral responses to 
tagging. We confirmed that this was a conservative estimate of the duration of behavioral responses to tagging, by 
visually inspecting all dive profiles.

Dive was the unit of analysis in this study, defined as the time between successive respirations at the surface. 
For each dive, we calculated start and end times of the whole dive and of the bottom phase (≥70% of maximum 
depth), following methods in Arranz et al.33. Next, we computed six variables for each dive: Maximum depth, the 
deepest point of a dive (m); Jerk peak, the maximum peak in the jerk (rate of change of acceleration); Roll, the 
median of the absolute value of the animal’s roll (dorsal-ventral); Heading variance, the circular variance in the 
animal’s heading (left-right); Buzz presence, the binary presence of echolocation pulses with an inter-click inter-
val ≤10 ms within a click bout; Slow click presence, the binary presence of echolocation clicks with an inter-click 
interval >100 ms within a click bout. Both acoustic variables were localized to the tagged animal using angle of 
arrival (see details in19). Only clicks and buzzes assigned to the tagged whale were included in the analyses, and 
we followed methods in Arranz et al.33 to ensure that only foraging-related buzzes and not burst-pulses were 
selected. Each variable was calculated over the duration of an entire dive, with the exception of jerk peak, which 
was calculated over the bottom phase. Details about the derivation of these variables are published elsewhere19,70. 
These variables were selected because of their established roles in SRKW foraging activities. Slow echolocation 
click trains are produced during bouts of prey searching by odontocetes e.g.29,37,39. Buzzes occur during foraging, 
often just prior to prey interception30,33,36,37. Jerk peak, roll and heading variance have been used together to detect 
prey capture events with good accuracy19. Depth is a reliable indicator of foraging behavior, with resident-type 
fish-eating killer whales making deep foraging dives (i.e., often >30 m) to capture prey, particularly salmonids35.

Statistical analysis.  We used multivariate Hidden Markov Models (HMMs) to characterize subsurface 
behavior71. This framework has been previously established for studying behavior in cetaceans46,47,72–75, and is well 
suited for analyzing behavioral time series, as it identifies the most likely underlying, non-observable (hidden) 
states that produce the observed behavior. We utilized a first-order Markov process with N hidden states, in which 
the probability of being in the current state was determined by the previous state. The six dive variables measured 
during a dive defined the observed behavior for that dive. The four continuous variables (maximum depth, jerk 
peak, roll, heading variance) were natural log-transformed and assumed to have an approximate Gaussian distri-
bution, and the two binary variables were modeled with a binomial distribution and logit link. All dive variables 
were assumed to be independent of each other, which exploratory analysis revealed was a valid assumption, and 
each tag deployment (tag attached to an individual) was modeled as an independent time series.

We constructed models with three to five underlying hidden states, and did not consider higher order models 
because the quadratic increase in model parameters would result in biologically uninterpretable models. We did 
not allow models with six or more states because this was not supported by field observations of SRKW behav-
ioral activities11,56,70,76–78. A similar approach of constraining modeling to a pre-determined number of states has 
been utilized previously, to balance the tradeoffs of statistical vs. biological interpretability47,74,75. Models assumed 
that observed behavior was conditionally independent given the states (contemporaneous conditional independ-
ence). We used the depmixS4 package79 in R v.3.3.3 (R Core Team, Foundation for Statistical Computing, Vienna, 
Austria) to construct multivariate Hidden Markov Models. This platform allows for flexibility in constructing a 
variety of dependent mixture models. Each HMM included the six dive variables as response variables, with sex 
as the single covariate on each response variable. We computed the transition matrix for each model, assuming 
that all state transitions were possible (no elements fixed at a priori values), and for each model we included one of 
four covariates on the transition matrix: age class (juvenile or adult), sex, year or a null model without a covariate. 
We constructed twelve separate HMMs using unique combinations of number of states and a single transition 
matrix covariate; for interpretability we did not use more than one transition matrix covariate at a time.

We fit the models by maximum likelihood estimation using the expectation-maximization (EM) algorithm in 
the depmixS4 package, which iteratively maximizes the expected log-likelihood of model parameters given the 
observations and underlying states. We specified a maximum of 2000 starting values to increase the chance that 
a solution was found during model fitting. We fit each model 200 times from random initializations to check for 
numerical stability and robustness due to different starting values, and retained the model with the lowest AIC 
score. We compared the twelve best models via log-likelihood values and AIC scores. All 5-state models had 
lower AIC scores than all 4-state models, which had lower scores than all 3-state models (Table 4). The 5-state 
model with sex as a covariate on the transition matrix had the overall lowest AIC score, and the second lowest 
log-likelihood value, so we accepted this model (Table 4). Finally, we calculated transition probabilities from the 
state transition matrix for this model.

We analyzed results of the best HMM in R v.3.5.3. We tested whether dive duration varied by state and sex, 
given the increased costs of transport for females with calves11 and the known differences in metabolic rate and 
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energetic requirements12, and the potential temporal constraints this could have on behavior. To determine 
whether dive duration varied by state and sex, we constructed a linear mixed model using the lme480 package 
with dive duration (natural log-transformed to meet model assumptions) as the response variable, fixed effects 
of state and sex, and a random effect of deployment, followed by a Type III ANOVA test using the lmerTest 
package81 to identify significant effects, and a Tukey HSD test with adjusted p-values using the lsmeans82 and 
multcompView83 packages to compare levels of significant effects. To examine differences estimated between 
state occurrence by sex, we fit a hierarchical multinomial logistic regression model using the brms package84, 
with estimated state from the best HMM as the response variable, sex as a fixed effect, and deployment as a 
random effect. To determine if it was necessary to account for potential effects of deployment duration on the 
occurrence of the five states, we additionally fit multinomial logistic regression models as above, incorporating 
ln(deployment duration) as linear effects and as an offset, and compared these models to the one without deploy-
ment duration, by examining the posterior estimates of coefficients and comparing estimates using leave-one-out 
cross-validation (LOOIC)85. We found no strong support for including deployment duration as a predictor or 
offset in the model. Estimates of LOOIC were extremely similar across models and posterior estimates of the 
linear effects were uncertain, overlapping 0 in all cases, with large coefficients of variation ranging from 0.65 to 
14.7. Therefore, we did not include deployment duration in the final model. The final hierarchical multinomial 
logistic regression model was run with four MCMC chains, a burn-in period of 2000 samples, and we retained 
another 1000 samples. The Rhat values of all parameters were 1.0, supporting model convergence86. To examine 
differences in cumulative time spent in each state by sex, we summed dive duration (in seconds) across state and 
deployment, for each sex, and implemented a Chi-square test on the cumulative time per state, between females 
and males.

Ethics statement.  The research was conducted in accordance with all Research Permits (USA: NMFS 
No. 781-1824/16163; Canada: DFO SARA/Marine Mammal License No. MML 2010-01/SARA-106B), and was 
approved by Northwest Fisheries Science Center’s Institutional Animal Care and Use Committee.

Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.
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