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Galewone, an Anti-fibrotic 
polyketide from Daldinia 
eschscholzii with an Undescribed 
carbon Skeleton
Ai Hua Zhang1, nan Jiang3, Xing Qi Wang2 & Ren Xiang tan  2

A novel polyphenolic natural product, galewone, with undescribed carbon skeleton, was isolated as 
a racemate from the culture of Daldinia eschscholzii IFB-TL01, a fungus obtained from the mantis 
(tenodera aridifolia) gut. the galewone structure was elucidated by a combination of MS and nMR 
spectra, and substantiated by X-ray crystallographic diffraction. The absolute stereochemistry of each 
galewone enantiomers was determined by the cD spectrum. in compliance of the structural similarities, 
galewone might be the shunt products of the dalesconol biosynthetic pathway. Both (−)- and 
( + )-galewones were evaluated to be anti-fibrotic against activated hepatic stellate cell line, CFSC-8B, 
with the ic50 values being 3.73 ± 0.21 and 10.10 ± 0.41 μM, respectively. thus, galewone may serve as a 
starting molecule for the discovery of new anti-fibrotic drug.

In liver, hepatic stellate cells function in the physiological condition to regulate retinoid homeostasis and remodel 
extra cellular matrix, by producing metalloproteases and their inhibitors as well as extracellular matrix compo-
nents1. However, after chronic liver injury, hepatic stellate cells (HSC) become activated and characterized by 
increased proliferation, motility, overproduction of α-smooth muscle actin (α-SMA) and extracellular matrix 
proteins and losing retinoid2,3. As a result of chronic liver damage, HSC become myofibroblasts (MFB)-like cells 
which eventually develop into liver fibrosis4–6. Previous studies have shown that hepatic stellate cells, once acti-
vated, could play a considerable role in the development of liver fibrosis7. Thus, the compounds capable of elim-
inating the effects of activated hepatic stellate cells are beneficial for the liver fibrosis therapy. However, such an 
eliminating effect must be sufficiently selective because some severe side effects occur if the molecules have the 
same/similar effects on the quiescent hepatic stellate cells. This is why there remains a lack of a well-tolerated and 
efficient medicament that impedes the progression of liver fibrosis.

Results
Owing to its production of a series of bioactive naphthol radical polymerized metabolites with undescribed archi-
tectures, the mantis-associated fungus Daldinia eschscholzii IFB-TL01 has attracted remarkable attention8–13. As 
part of our continuing research on discovery of anti-fibrotic metabolites, the EtOAc extract of the D. eschscholzii 
culture was selected for investigation. As a result, the new naphthol derivative, galewone, was characterized and 
demonstrated to possess a promising potential in anti-fibrotic action. Herein, we present the structure elucida-
tion, bioactivity evaluation, and plausible biogenetic pathway of galewone.

Galewone afforded as red needles, was ascertained to have a molecular formula of C32H20O9 from the 
sodium-liganded molecular ion at m/z 571.09910 (calcd. for C32H20O9Na, 571.09995) in its high-resolution elec-
trospray ionization mass spectrometry (HR-ESI-MS). This observation, along with its 1D and 2D NMR spectra 
(Table S2 and Figs 6–11 suggested that it was probably hydroxymethylated spirodalesol12. The 1H NMR spectrum 
of galewone suggested the presence of two groups of ortho-coupled protons (δH 7.01/H-15 and 7.28/H-16; δH 
6.94/H-27 and 7.48/H-28), two groups of three ortho-protons (δH 6.97/H-4, 7.68/H-5, and 7.75/H-6; δH 6.54/H-
21, 6.99/H-22, and 6.77/H-23), one hydroxyethyl group (δH 4.85), one methoxyl group (δH 3.59), and three 
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phenolic protons (δH 8.79/HO-3, 12.78/HO-14, and 12.70/HO-24). The 13C NMR and DEPT experiments evi-
denced the presence of 32 carbons grouped, including three carbonyl signals (δC 197.6/C-1, 189.6/C-12, and 
189.8/C-26). The most possible structure of galewone was assigned via the HMBC correlations of the H-6 with δC 
124.1/C-2 and 139.8/C-8, of the H-10 with δC 139.8/C-8, 189.6/C-12 and 132.3/C-18, and of the H-16 with δC 
162.0/C-14, 132.3/C-18 and 47.5/C-19, and of the H-21 with δC 47.5/C-19, 117.8/C-23 and 115.1/C-25, and of the 
H-31 with δC 131.6/C-10 and 189.6/C-12. Subsequently, the novel skeleton and relative configuration of galewone 
were confirmed by its single crystal X-ray diffraction (Fig. 1). Since galewone was obtained as a racemic mixture, 
chiral HPLC separation was performed to give two enantiomers ( + )-galewone and (−)-galewone, which were 
disclosed to possess (19 R,29 S)- and (19 S,29 R)-configurations (Fig. 2), respectively, by comparing their CD 
curves with the ECD spectra computed for all optional stereoisomers. In the calculated curves, the first Cotton 
effect centered at 218 nm, arising from the electronic transition from filled C=C bonding molecular orbital (MO, 
πC=C) to the anti-bonding C-C orbital (σ −

⁎
C C) (MO 135 → 146) (Figs 2, S4 and Table S4), corresponded to the peak 

at 218 nm in the acquired CD spectra. The next Cotton effect at 321 nm in the recorded CD spectra could be cor-
related to the shoulder peaks at 298 and 351 nm in the computed counterparts. The electronic transitions from 
πC=C and the lone pair orbital of oxygen (nO) to the π =

⁎
C C orbital contributed to these absorption bands (MO 

140 → 145 and MO 137 → 143). In addition, the Cotton effects at 251 and 375 nm in the acquired CD spectra were 
also reproduced by the calculations at 236 and 374 nm, respectively. The electronic transitions from πC=C to the 
π =

⁎
C C orbitals contributed to these absorption bands (MO 133 → 145 and MO 142 → 145, Table S4).

With the absolute configuration of galewone enantiomers determined, we initiated their biosynthesis through 
probing into their possible naphthol precursors. The structural similarities between galewone and dalesconols 
suggested that they might share a similar mechanism to perform their biosynthesis10. Galewone embodied two 
sets of intramolecular hydrogen bonds between phenolic hydroxyl group and adjacent carbonyl group simi-
lar to those of dalesconols A–C (Fig. 3), together with that they each consisted of seven rings. The compounds 
obtained from six-acetyl-CoA9 provided the possible naphthol radicals, which possessed unique carbon chains 
and participated in the formation of galewone. For instance, the existence of key intermediate 2-(hydroxyme-
thyl)-naphthalene-1,8-diol (Fig. 4) was rationalized by such related compound as 3,4,8-trihydroxy-6-(hydrox-
ymethyl)-3,4-dihydronaphthalen-1(2 H)-one9. These facts demonstrated that galewone might originate from 
an similar biogenetic mechanism analogous to that of dalesconols, which initiated by the combination of three 
naphthol radicals (Fig. 4).

Single enantiomers and racemate of galewone were comparatively evaluated for the anti-fibrotic activities. 
CFSC-8B was incubated with (−)-, ( + )-, and (±)-galewone at concentrations from 0.1 to 30 μM, respectively. 
The cell viability of CFSC-8B cells14,15 was significantly inhibited by (−)-, (+)-, and (±)-galewone with the IC50 
values determined to be 3.73 ± 0.21, 10.10 ± 0.41, and 10.90 ± 0.62 μM, respectively (Table S1). Interestingly, 
(−)-galewone showed a much weaker cell viability inhibition effect on Lx-2 cells which in quiescent phase 

Figure 1. X-ray crystallographic structure of (±)-galewone.
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(LX-2 cells cultured 3 days as quiescent cells1,16,17) with IC50 value of 26.60 ± 3.87 μM than that in CFSC-8B cells 
(Fig. S1b and Table S1). These results suggested that (−)-galewone selectively reduce the cell viability of activated 
hepatic stellate cells.

Activated hepatic stellate cells, such as CFSC-8B, have a strong migration capability and express some proteins 
aggravating liver fibrosis. Inhibition of the proliferation of CFSC-8B could prevent the migration and alleviate 
liver fibrosis. In our study, wound-healing and invasion chamber assay suggested that (−)-galewone blocked 
migration of activated hepatic stellate cells. In model group, FBS could induce wound closure 24 h after wound 

Figure 2. Absolute stereochemical assignments for (+)- and (−)-galewone by comparison of the recorded 
(solid lines) and computed (dotted lines) ECD spectra.

Figure 3. The structure of dalesconols A–C8,10.
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in gowning to CFSC-8B cells migration. However, activated hepatic stellate cells migration induced by FBS was 
dramatically and dose-dependently inhibited by (−)-galewone as indicated by larger the wounded area (Fig. 5a). 
Moreover, in BIOCOAT MATRIGEL chamber systems,10% FBS incubation with CFSC-8B cells induced migra-
tion of activated hepatic stellate cells was also significantly inhibited by (−)-galewone (Fig. 5b,c). Previous report 
suggested that activated hepatic stellate cells were responsible for the enhanced expression of α-SMA, Col1A1 and 
Col3A118,19. As determined by Western bloting, (−)-galewone addition suppressed the expression of the marked 
proteins of CFSC-8B cells in a dose-dependent manner (Fig. 5d,e).

Discussion
In conclusion, we have discovered a structurally intriguing metabolite from Daldinia eschscholzii IFB-TL01, 
and proposed a possible pathway for its formation. The naphthol radicals as unique starter units might be cou-
pled with intermolecular logic participating in the construction of the neat sequential compartmentalization 
of unforeseeable seven ring frameworks, and this finding could set the foundation for further characterization 
of distinctive radical machineries to produce galewone analogues with more complex biological functionaliza-
tions by combinatorial biosynthesis. Specifically, the anti-fibrotic activities of (−)-, (+)-, and (±)-galewone were 
observed to reduce the cell viability of activated hepatic stellate cells, but to inhibit very weakly that of Lx-2 cells 
in quiescent phase (Table S1), indicating that galewone may serve as a starting molecule for the discovery of new 
anti-fibrotic drug.

Figure 4. Plausible biosynthetic pathway of galewone.
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experimental Section
ethics approval. Specific pathogen-free, 8–10-week-old female BALB/c mice were purchased from 
Experimental Animal Center of Jiangsu Province (Jiangsu, China). They were maintained with free access to 
pellet food and water in plastic cages at 25 ± 2 °C and kept on a 12 h light/dark cycle. Animal welfare and exper-
imental procedures were carried out strictly in accordance with the Guide for the Care and Use of Laboratory 
Animals (National Institutes of Health, the United States) and the related ethical regulations of our university. All 
efforts were made to minimize animals’ suffering and to reduce the number of animals used.

Statement. All methods were carried out in accordance with relevant guidelines and regulations, in addition 
all experimental protocols were approved by Nanjing University and Hohai University.

General instrument and fungal Strain. As described8,13.

cultivation and metabolites isolation. D. eschscholzii IFB-TL01 was cultured on slants of potato dex-
trose agar (PDA) at 25 °C for 5 days. The fresh mycelium taken from the fungal colony in the Petri Dish was 
inoculated into the 1000 mL conical flasks each containing 300 mL of malt-extract medium (20 g/L malt extract, 

Figure 5. Effect of (−)-galewoneon CFSC-8B cells migration and expressions of α-SMA, Col1A1 and Col3A1 
induced by FBS. (a) The migration capability was measured by wound-healing assay. (b,c) CFSC-8B cells 
that migrated to the lower compartment of invasion chamber were quantified by cell counting, and data were 
expressed as a percentage of vehicle group. (d,e) The expressions of the hallmark proteins of activated hepatic 
stellate cells induced by FBS includingα-SMA, Col1A1 and Col3A1 were analyzed by western blotting. Data 
were presented as means ± SEM. *P < 0.05, **P < 0.01 vs. vehicle group.
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20 g/L sucrose, 1 g/L peptone), and then the culture was shaken at 28 °C and 200 rpm/min for 3 days. The fer-
mentation was repeated (6 × 300 mL) in order to inoculate into a 50 L fermentor containing 30 L of sterilized 
malt-extract medium. After a subsequent fermentation for 36 h, these were then seeded into scale-up cultures 
(350 L malt-extract broth in 500 L fermentor) at 25 °C and 100 rpm for 7 days (antifoam 0.1‰, aeration rate 8000 
NL/h). The broth was collected and extracted with EtOAc, and a solid (302.7 g) obtained from in vauo evapora-
tion of solvent of the extract was subjected to column chromatography (CC) over silica gel (1000 g, 300–400 mesh, 
50 × 15 cm) eluted with CH2Cl2/MeOH mixtures (v/v 100:0, 100:1, 100:2, 100:4,100:8, 100:16, 100:32, 0:100). 
Further purification of the “100:4”-eluted CC fraction was accomplished by gel filtration over Sephadex LH-20 in 
MeOH, followed by HPLC separation to afford galewone (3 mg).

Single crystal X-ray diffraction. The structure was solved by direct methods (SHELXS-97) and refined 
using full-matrix least-squares difference Fourier techniques. Crystallographic data in CIF format have been 
deposited in the Cambridge Crystallographic Data Centre [available free of charge at http://www.ccdc.cam.
ac.uk/deposit or from the CCDC, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223–336–033; or e-mail: 
deposit@ccdc.cam.ac.uk].

crystal data. Diffraction measurements were performed at 296 K on an Agilent Super Nova diffrac-
tometer equipped with Cu-Kα radiation (λ = 1.54178 Å). C32H20O9, Mr = 548.48, monoclinic, space group 
P21/n, a = 9.1106 (2) Å, b = 20.9125 (5) Å, c = 13.1349 (3) Å, V = 2464.34 (10) Å3, Z = 4, Dx = 1.478 g/cm3, 
μ = 0.913 mm−1 and F(000) = 1136.0; crystal dimensions: 0.19 × 0.17 × 0.14 mm3; 3060 unique reflections with 
4052 obeying the I > 2σ (I); R1 = 0.062, wR2 = 0.197, S = 1.013; supplementary publication no. CCDC-1043833.

ecD calculation details. The density functional theory (DFT) at B3LYP/6−31 G (d, p) level was employed 
to optimize the geometries of the studied systems, taking crystal structures as the original configuration. The sol-
vent effects on the electronic structures of the concerned systems were evaluated by quantum chemistry method 
through the polarizable continuum model (PCM, dielectric constant ε = 32.64 for CH3OH). Then, the corre-
sponding excited-state calculations were performed at the ground-state optimized geometries. Time-dependent 
DFT in combination with PCM model (TD-DFT/PCM) with the same basis set was carried out to calculate the 
spin-allowed excitation energy and rotatory strength of the lowest 100 excited states. The UV and ECD spectra 
were generated using the program SpecDis by applying a Gaussian band shape with the width of 0.20 eV, from 
oscillator strengths and dipole-velocity rotational strengths, respectively. All the calculations were performed 
with the Gaussian09 program.

cell culture and Mtt proliferation Assay. Lymph node cells isolated from female C57BL/6 mice were 
maintained in RPMI 1640 medium supplemented with 100 μgmL−1 of streptomycin, 100 UmL−1 of penicillin 
and 10% fetal calf serum under a humidified 5% (v/v) CO2 atmosphere at 37 °C. To activate lymph node cells, 
5 μgmL−1 concanavalin A (Con A) was used. For the MTT proliferation assay, lymph node cells were cultured in 
96-well plates either at a density of 3 × 105 cells/well in RPMI 1640 medium (0.2 mL), if stimulated with 5 μgmL−1 
of Con-A, or at 5 × 105 cells/well in the same medium but without Con-A. After a 48 h treatment with and with-
out the test samples ((−)-, (+)-, and (±)-galewone) at various concentrations, MTT (Sigma; 4 mg mL−1 in PBS; 
20 mL) was added to each well for a subsequent 4 h incubation. Subsequently, the supernatant was discarded, 
DMSO (200 mL) was added, and the OD540 was determined by using an ELISA reader (Sunrise, Tecan, Austria).

Immortalized human hepatic stellate cell line LX-2 and activated rat hepatic stellate cell line CFSC-8B were 
maintained on glass chamber slides in Dulbecco’s modified Eagle’s medium supplemented with 100 μgmL−1 of 
streptomycin, 100 UmL−1 of penicillin and 10% fetal calf serum under a humidified 5% (v/v) CO2 atmosphere 
at 37 °C. Cell viability was measured by MTT proliferation assay. LX-2 cells cultured 3 days as quiescent cells4.

Hepatic stellate cells migration assay. The migratory capacity of CFSC-8B was investigated as described 
before7. Specifically, confluent CFSC-8B at the top of BIOCOAT MATRIGEL invasion chamber was incubated in 
serum-free medium for 24 h. The lower chamber was filled with 10% fetal calf serum in the presence or absence of 
(−)-galewone at incremental concentrations. Incubating cells for 24 h, then, CFSC-8B from the upper surface of 
membranes were completely removed with gentle wiping. The migrated cells on the lower surface of membranes 
were fixed and stained with crystal violet. Migration rate of CFSC-8B was determined by counting the number of 
stained cells on membranes in six randomly selected fields at high power.

Hepatic stellate cells wound-healing assay. For determination of cell migration during wound heal-
ing, hepatic stellate cells wound-healing assay was measured as described before5. CFSC-8B were seeded in 
6-wellplates and grown to confluence in Dulbecco’s modified Eagle’s medium containing 10% FBS. Confluent 
CFSC-8B were deprived of serum for 24 h, and then disrupted to generate a linear wound, followed by incubation 
in Dulbecco’s modified Eagle’s medium containing 10% FBS in the absence or presence of (−)-galewone for 24 h. 
Cells were subsequently fixed and observed under phase contrast microscopy, five randomly selected points of 
each well along each wound were measured.

References
 1. Sarem, M., Znaidak, R., Macías, M. & Rey, R. Hepatic stellate cells: it's role in normal and pathological conditions. Gastroenterol. 

Hepatol. 29, 93–101 (2006).
 2. Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655–1669 (2008).
 3. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).
 4. Li, Z. J., Ou-Yang, P. H. & Han, X. P. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal. 26, 141–148 

(2014).

https://doi.org/10.1038/s41598-019-50868-9
http://www.ccdc.cam.ac.uk/deposit
http://www.ccdc.cam.ac.uk/deposit


7Scientific RepoRtS |         (2019) 9:14316  | https://doi.org/10.1038/s41598-019-50868-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

 5. Liu, Y. et al. Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ZK22258. Lab. 
Invest. 89, 1152–1160 (2009).

 6. Geng, Y. et al. Identification of antrodin B from Antrodia camphorata as a new anti-hepatofibrotic compound using a rapid cell 
screening method and biological evaluation. Hepatol. Res. 46, E15–E25 (2016).

 7. Liu, Y. et al. Inhibition of PDGF, TGF-β, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine 
kinase antagonist Nilotinib. J. Hepatol. 55, 612–625 (2011).

 8. Zhang, Y. L. et al. Unprecedented immunosuppressive polyketides from Daldinia eschscholzii, a mantis-associated fungus. Angew. 
Chem. Int. Ed. 47, 5823–5826 (2008).

 9. Zhang, Y. L. et al. Immunosuppressive polyketides from mantis-associated Daldinia eschscholzii. J. Am. Chem. Soc. 133, 5931–5940 
(2011).

 10. Fang, W. et al. Naphthol radical couplings determine structural features and enantiomeric excess of dalesconols in Daldinia 
eschscholzii. Nat. Commun. 3, 1039 (2012).

 11. Snyder, S. A., Sherwood, T. C. & Ross, A. G. Total syntheses of dalesconol A and B. Angew. Chem. Int. Ed. 49, 5146–5150 (2010).
 12. Zhang, A. H., Liu, W., Jiang, N., Xu, Q. & Tan, R. X. Spirodalesol, an NLRP3 inflammasome activation inhibitor. Org. Lett. 18, 

6496–6499 (2016).
 13. Zhou, Z. Z. et al. Dalmanol biosyntheses require coupling of two separate polyketide gene clusters. Chem. Sci. 10, 73–82 (2018).
 14. Bahde, R., Kapoor, S., Viswanathan, P., Spiegel, H. U. & Gupta, S. Endothelin-1 receptor A blocker darusentan decreases hepatic 

changes and improves liver repopulation after cell transplantation in rats. Hepatology 59, 1107–1117 (2014).
 15. Geng, Y. et al. Screening and isolation for anti-hepatofibrotic components from medicinal mushrooms using TGF-(β1-induced live 

fibrosis in hepatic stellate cells. Int. J. Med. Mushrooms 16, 529–539 (2014).
 16. Matsumoto, Y. et al. MiR-29a assists in preventing the activation of human stellate cells and promotes recovery from liver fibrosis in 

mice. Mol. Ther. 24, 1848–1859 (2016).
 17. Ezhilarasan, D. et al. Silibinin Inhibits Proliferation and Migration of Human Hepatic Stellate LX-2 Cells. J. Clin. Exp. Hepatol. 6, 

167–174 (2016).
 18. Tacke, F. & Trautwein, C. Mechanisms of liver fibrosis resolution. J. Hepatol. 63, 1038–1039 (2015).
 19. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

Acknowledgements
The work was successively financed by the Fundamental Research Funds for the Central Universities (2017B06614 
and 2017B05014). We thank Dr. Wen Liu and Dr. Tianheng Gao for the technical support of the bioactivity 
examinations.

Author contributions
A.H.Z. carried out experiments and wrote the manuscript; N.J. accomplished the computation; X.Q.W. carried 
out biological experiments; R.X.T. raised hypothesis, figured out strategy, supervised the project; all authors 
contributed to the data analysis and manuscript preparation.

Additional information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-50868-9.
Competing Interests: The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-50868-9
https://doi.org/10.1038/s41598-019-50868-9
http://creativecommons.org/licenses/by/4.0/

	Galewone, an Anti-Fibrotic Polyketide from Daldinia eschscholzii with an Undescribed Carbon Skeleton
	Results
	Discussion
	Experimental Section
	Ethics approval. 
	Statement. 
	General instrument and fungal Strain. 
	Cultivation and metabolites isolation. 
	Single crystal X-ray diffraction. 
	Crystal data. 
	ECD calculation details. 
	Cell Culture and MTT Proliferation Assay. 
	Hepatic stellate cells migration assay. 
	Hepatic stellate cells wound-healing assay. 

	Acknowledgements
	Figure 1 X-ray crystallographic structure of (±)-galewone.
	Figure 2 Absolute stereochemical assignments for (+)- and (−)-galewone by comparison of the recorded (solid lines) and computed (dotted lines) ECD spectra.
	Figure 3 The structure of dalesconols A–C8,10.
	Figure 4 Plausible biosynthetic pathway of galewone.
	Figure 5 Effect of (−)-galewoneon CFSC-8B cells migration and expressions of α-SMA, Col1A1 and Col3A1 induced by FBS.




