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Winding number selection on 
merons by Gaussian curvature’s 
sign
Ricardo Gabriel elías1,2, Nicolás Vidal-Silva2,3 & Vagson L. carvalho-Santos4

We study the relationship between the winding number of magnetic merons and the Gaussian curvature 
of two-dimensional magnetic surfaces. We show that positive (negative) Gaussian curvatures privilege 
merons with positive (negative) winding number. As in the case of unidimensional domain walls, we 
found that chirality is connected to the polarity of the core. Both effects allow to predict the topological 
properties of metastable states knowing the geometry of the surface. these features are related with 
the recently predicted Dzyaloshinskii-Moriya emergent term of curved surfaces. the presented results 
are at our knowledge the first ones drawing attention about a direct relation between geometric 
properties of the surfaces and the topology of the hosted solitons.

The relation between the curvature of materials and the topology of the configurations appearing on them is not 
completely understood neither mathematically nor physically. However, the study of these two concepts is a very 
old and established topic, as it can be seen for example in the Gauss-Bonnet theorem, which shows a relation 
between curvature and the Euler characteristic1. The curvature on two-dimensional condensed matter systems 
has consequences on the energetic properties and dynamics of quasiparticles and so also on the topology of the 
observed configurations. The changes in the topological charges of the configurations minimizing the energy and 
the relation between geometry and topology has been addressed in many physical contexts2 as thin layers3, soft 
matter4, superfluid5, superconductor spheres6, superconductors tubes7, nematic liquid crystals8 and many others, 
including cell membranes9, graphene10 and topological insulators11.

In the context of magnetic materials, the effects of curvature (see12 for a review) on magnetochirality13, the for-
mulation of exchange energy in terms of Gaussian and mean curvatures14 and some specific problems have been 
addressed: magnetochiral effects in tubular structures and the possibility to sustain stable domain walls (DWs) at 
large and constant propagation speed15, the geometric frustration in an infinite elastic cylinder16, the curvature of 
a Möbius ring, in which the topology of the ring favours the appearance of a DW and curvature is responsible for 
a Dzyaloshinskii-Moriya (DM) like term17 which couples the chiralities of the Möbius ring and magnetization, 
and the effects of the torsion and curvature on spin waves in nanowires18.

In the specific case of vortices, it has been shown that on the surface of a sphere its chirality is 
polarity-dependent (a phenomenon not observed in planar nanomagnets)19, which is actually a consequence 
of the interplay between the topology of the magnetic quasiparticle and the curvature of the surface. This 
curvature-induced polarity is also observed in domain walls hosted in curved nanowires17,20. Here we define 
the chirality γ of a meron type texture as the direction in which the magnetization is oriented respect to a radial 
direction defined on the surface. In this sense, a radial vortex21 has zero chirality while a tangent circulating one 
has chirality π/2 as is explicitly defined in Eq. (8).

A recent article describing the possibility of the development of vortex-antivortex pairs in magnetic toroidal 
shells22 has shown that the sign of the curvature could have an interesting effect on the preferred solitons to be 
hosted. In fact, regions of negative curvature prefer to accommodate anti-vortices while vortices are stabilized 
on positive curvature regions. In this sense, we explore the influence of the sign of the curvature on the local 
minima of the meron’s magnetic energy, composed by exchange and anisotropy terms. Meron is a generic name 
for vortices and anti-vortices and in general, they are half-integer topological charge structures. In this work, 
we find a suitable parametrization of a two-dimensional surface which allows us to change the curvature con-
tinuously exploring the negative and positive curvatures regions, and explore the energy of different magnetic 
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configurations: vortices and anti-vortices with different chiralities and polarities, as well as the normal homoge-
nous state.

This paper is organized as follows: In Section II, we introduce the physical model and the parametrization 
of a surface that goes continually from a paraboloid to a hyperbolic paraboloid depending on a continuous real 
parameter. In Section III we numerically calculate the energy for the different cases and present the discussion of 
the obtained results. Finally, in Section IV we present the conclusions and prospects.

Magnetization over paraboloid and Hyperbolic paraboloid Surfaces
In general, given a two-dimensional surface parameterised by r = r(u, v), where (u, v) are local curvilinear coor-
dinates, the tangent vectors to the surfaces can be found by gu = ∂ur and gv = ∂vr. From them, the elements gμν of 
the metric tensor g are defined as = ⋅μν μ νg gg  (for μ, ν = u, v). The inverse of the metric tensor is defined as 
gμαgαν = δν

μ, where δν
μ is the Kronecker delta and where repeated indices are implicitly summed over. With this 

notation, the energy of a two-dimensional ferromagnetic material with normalized order parameter m(r, t) with 
exchange and anisotropy energies is given by

∫=




 ∂ ⋅ ∂ +
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where g = det g, A is the exchange constant and the magnetic length is defined as = A K/ a , where Ka > 0 is the 
anisotropy constant and we are considering an in-surface anisotropy. The vector n is the normal vector to the 
surface.

In order to explore the relation between the curvature of the surface and the energy of different magnetic 
configurations, the considered magnetic system will be a surface whose shape depends on an adimensional real 
parameter c ∈ [−1, 1], parameterized by

= +r x y c cx y( , , ( )), (2)2 2

where (x, y, z) are the cartesian coordinates of the three-dimensional space. The c parameter controls the curva-
ture of the surface going continuously from a hyperbolic paraboloid (c = −1) to a paraboloid (c = 1) and passing 
by a flat surface (c = 0) (see Fig. 1), respectively. We have inserted a global c factor in the z coordinate in order to 
impose the flat surface when c = 0 (otherwise, we would obtain a cylinder geometry at c = 0). The Gaussian cur-
vature can be readily calculated from the metric tensor g (or the closely related first fundamental form)
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and the second fundamental form1, that in this case has the components L = N = 2c2 and M = 0. The Gaussian 
curvature (just curvature from now on) is then given K = (LN − M2)/(EG − F2), explicitly written as

Figure 1. Considered magnetic surfaces and magnetic configurations minimizing the energy. Paraboloid 
(c = 1), hyperbolic paraboloid (c = −1). We have depicted a magnetic vortex (blue arrows) on the paraboloid 
and an antivortex (red arrows) on the hyperbolic paraboloid.
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This curvature is anti-symmetrical in c (and it is axis-symmetrical for c = ±1). Therefore, it allows us to ana-
lyse the changes in sign of the curvature regardless of the specific details of the surface and comparing the oppo-
site sign case.

In this work, we are mainly interested in analising the energy of merons. The description of the magnetization 
of vortices and antivortices in this geometry will be done by using the local coordinates on the surface 
nρ = gρ/||gρ||, nφ = gφ/||gφ|| and the normal vector to the surface n = nρ × nφ/||nρ × nφ|| (we need to normalize this 
last product because of the non-diagonal behaviour of g). In the above definitions we use polar coordinates in the 
plane ρ = +x y2 2  and φ = arctan(y/x). Note that with this choice of coordinates the cases c = 0 and c = 1 pres-
ent now a diagonal metric, while the case c = −1 keeps a non-diagonal metric.

From these definitions a vector field on the surface can be written as

= Φ Θ + Φ Θ + Θ .ρ φN r n n nt( , ) cos sin sin sin cos (5)

where Θ = Θ(r, t) and Φ = Φ(r, t) are the local spherical field coordinates in which the angles Θ and Φ are the 
angles with respect to the normal and the angle of the projection of the field onto the tangent plane with the nρ 
tangent vector, respectively. Then, we define the normalized magnetization as

=
|| ||

m r N r
N r

t t
t

( , ) ( , )
( , )

,
(6)

with || || = + Φ Θ ⋅ρ φN r n nt( , ) 1 sin(2 )(cos )2 . The formal description of a meron solution will be given by the 
ansatz23

ρΘ =
+ ρ( )

pcos ( )
1 (7)r

s

0

φ φ γΦ = − + .q( ) ( 1) (8)

In these formulae, q is an integer number called the winding number of the structure and representing the 
curl of the field around the meron’s core when projecting the field onto the surface. In the simplest case, a vortex 
structure, we have that q = 1, while an antivortex is given by q = −1. In Eq. (8) γ determines the chirality of the 
meron, and it consists of a phase that gives the orientation of the field with respect to the radial direction on the 
surface. The parameter s is a positive integer that controls the size of the region between the core (with radius 
r0) and the in-surface regions. Finally, p is the polarity of the core, which can be 1 (parallel to the normal to the 
surface) or −1 (antiparallel to the normal). The topological charge is defined using the polarity and the winding 
number as Q = pq/2 in the case of merons and Q = pq in the skyrmion case24,25. It can be notice that in the adopted 
parametrization, a vortex (antivortex) is defined as a configuration that lies asymptotically in the in-surface plane. 
Due to the deformation of the surface, the radial direction in the surface nρ direction is not necessarily orthogonal 
to nφ. In this work, our discussion will focus mainly on merons, but our results can also be qualitatively extended 
to skyrmions.

Results
Relation between core and chirality. Following some recent results on nanowires20, we numerically 
explore the relation between the polarity of the core and the chirality of merons in its vicinity. In the cited work, 
the authors obtained that due to the appearing of a DM-like emergent field, as a consequence of curvature12,14,21, 
there is a selection in the phase on the azimuthal direction of a domain wall. Indeed, a head-to-head domain wall 
prefers pointing outward the bent wire, as long as a tail-to-tail domain wall points inward the bent wire.

In general, in two-dimensional magnets, the appearence of a DM-like term can be understood by writing the 
exchange energy in curved surfaces with diagonal metric as the addition of three terms14,26: the first one having 
the same structure of the exchange energy in a flat surface, the second one having the role of an anisotropy energy 
and the third one being first order in derivatives as in the usual DM interaction. Explicitly, the DM-like term can 
be written as26

= ∂αβγ β γ αE D m m2 , (9)DM

where the effective DM-like coefficients are

= ⋅
∂

αβγ α
γ

γγ
βe eD

g

where eμ are the unitary orthogonal tangent vectors to the surface. Let’s note that because of eα ⋅ eβ = 0 the Dαβγ 
is antisymmetric in α, β. These important results can be also applied to the understanding of a non-diagonal 
two-dimensional metric considering the fact that any two-dimensional Riemannian manifold can be described 
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locally by a diagonal metric (see27 for more details). In this sense, even considering our metric is not diagonal, it 
can be locally diagonalized and the physical effects coming DM-like energy must remain.

In order to explore these ideas on a two-dimensional magnet in which there is a non-trivial topological defect, 
we use the ansatz given in Eq. (8) considering different winding numbers q and chiralities in surfaces with dif-
ferent gaussian curvature sign as in the two surfaces shown in Fig. 1. For all the calculations we have considered 
s = 2. We have observed (see Fig. 2) that, similarly to the results presented in ref.20, the polarity of the meron 
drastically changes the chirality that minimizes the exchange energy, evidencing the appearance of chiral effects 
in curved surfaces (let’s remind that γ is undetermined by the exchange energy in flat surfaces). Figure 2a shows 
explicitly the exchange energy of merons in a surface with positive curvature (c = 1). It is observed that for a 
vortex with positive polarity, the chirality minimizing the energy is γ = 0, and a head-to-head structure holds. 
On the other hand, a vortex with negative polarity presents the minimum exchange energy for γ = π, creating a 
tail-to-tail structure. Both results are in agreement with the findings on domain walls on curved wires20. Still in 
2a) it can be noticed that the energy remains invariant as a function of γ for the anti-vortex case. This finding 
is coherent with the fact that changes in chirality are equivalent to rotations when we have an antivortex in an 
axisymmetric geometry.

In the c = −1 case, Fig. 2b, the situation is similar to the above case. The global minimum appears for the 
anti-vortex configuration with γ = 0 when p = 1 and γ = π when p = −1, which is again a manifestation of a 
curvature-induced polarity for a tail-to-tail and head-to-head magnetization configuration, correspondingly. 
Figure 2b) also shows that vortices have the same preferred chirality for both polarities, although these are ener-
getically less favorable that the minima of antivortices.

The polarity-chirality coupling on magnetic solitons has been pointed out lately by some authors12,14,21, which 
shows that the curvature effects on the magnetic properties give rise to an effective DM interaction, responsible 
for these magnetochiral effects. Our results follow this same line, showing the same effects for non-diagonal met-
rics as is the case with c = −1.

Figure 2. Exchange energy of vortex (blue) and antivortex (red) configurations in function of the chirality γ. 
Panel a) shows the paraboloid case c = 1 and panel b) presents hyperbolic paraboloid case c = −1.
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Relation between curvature and winding number. Once understood the relation between polarity 
and chirality, we address the problem of the properties of meron’s core (which is roughly the interior region of the 
surface bounded by ρ = r0). In order to exclude the influence of the core’s size on the meron-like groundstate of 
the system, we include an easy-surface anisotropy term into the energy. It is worth to notice that in the usual flat 
case in the presence of DM interaction there is a competition between the DM parameter, the anisotropy energy 
and the exchange one which determines the size of the core28,29. In the model here considered, the DM-like is 
an emergent field coming from the exchange interaction on curved surfaces and it cannot be controlled inde-
pendently, thus the only mechanism allowing a choice in the core size is the competition between anisotropy and 
exchange. As expected, the introduction of the anisotropy imposes a specific r0 which minimizes the total energy 
(see Fig. 3). Indeed, a divergence in the exchange energy related with the singularity in the azimuthal angle favors 
the formation of the meron’s core. However, the competition between exchange and anisotropy imposes that this 
core must have a specific radius r0 given by the interplay between anisotropy and exchange magnetic parameters 
of the materials. In this context, given an anisotropy and meron’s polarity, we can determine the values of r0 and 
γ minimizing the magnetic energy. It can be concluded from Fig. 3 that the global minimum of the energy is not 
determined by the meron’s core energy. That is, surfaces with positive curvatures present vortices while surfaces 
with negative curvatures present antivortices as meron-like groundstate.

Aiming to have a more complete analysis on the influence of the Gaussian’s curvature sign in the meron-like 
magnetization configuration lying on a curved surface, we have performed a numerical calculation of the energy’s 
minima for these magnetic structures in function of c. Main results are presented in Fig. 4, in which the behaviour 
of the meron’s exchange and total energy versus the continuous parameter c is plotted. In this figure, we have 
considered the chirality and polarity minimizing the energy of vortex and antivortex. The crossing of the curves 
associated with vortex (blue triangles) and antivortex (red circles) at c = 0 is promptly observed. That is, there is 
a curvature-induced selection of the winding number of merons in curved surfaces. Figure 4a also presents the 
energy of a configuration in which the magnetic moments point along the normal direction (blue asterisks).

Figure 3. Total energy as a function of the core r0 of the meron for Ka = 5 (continuous lines) and Ka = 0 (dashed 
lines). In panel a) panel we show the paraboloid case and in the left one the hyperbolic paraboloid case. Both 
cases are depicted for γ = 0 and positive polarity, according to the results of Fig. 2.
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Figure 4a also reveals the remarkable feature that there is the crossing in both sides of the plot between the 
normal magnetization field and the merons. Indeed, this effect occurs because, in this figure, only exchange 
energy is calculated. In fact, when the in-plane anisotropy term is considered, there is a qualitative change of this 
behaviour aside from the fact that the normal magnetization case is no longer a minimum energy configuration, 
as it is shown in Fig. 4b. Indeed, the inclusion of an in-plane anisotropy interaction leads to an increase in the 
energy of the normal magnetization, as well as the energy of merons (see Fig. 4b).

conclusions and perspectives
In this work, we have determined the magnetic energy of curved surfaces in function of the Gaussian curvature’s 
sign. From using a model considering exchange and in-plane anisotropy, we have shown that the polarity of mer-
ons is intrinsically related to their chiralities. In addition, the global minimum energy occurs for vortex (antivor-
tex) if the magnetic system has positive (negative) curvature.

We have also shown that the competition between exchange and in-plane anisotropy leads to the formation 
of a core on the meron configuration, but the presence of this core does not bring new qualitative changes in the 
global minimum energy obtained in function of the curvature.

Finally, we have presented a discussion on the minimum energy configuration lying on a curved surface by 
varying the curvature. It is shown that there is a crossing in the energy of vortex and antivortex meron-like con-
figuration when c = 0, showing a curvature-induced selection of the meron’s winding number. This phenomenon 
is in agreement with previously obtained results for diagonal metrics, and it is a consequence of the DM-like 
interaction that appears in curved magnetic systems.

Figure 4. (a) Minimized exchange energy and (b) minimized total energy (exchange plus anisotropy) by unit 
surface for the vortex state (blue), the antivortex (red) and the normal configuration (light blue) as a function 
of the c parameter controlling the sign of the Gaussian curvature. Both merons are plotted for γ = 0 and p = 1 
according to the minima of energy.

https://doi.org/10.1038/s41598-019-50395-7


7Scientific RepoRtS |         (2019) 9:14309  | https://doi.org/10.1038/s41598-019-50395-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

In the negative curvature case, there is a natural generalization of the fact that there is a link between the num-
ber of depressions and the winding number of the anti-vortex able to adapt to the surface. We must expect, for 
example, that in the monkey saddle case (a negative surface with three depressions) the anti-vortex minimizing 
the energy should be the one with winding number equal to −3. In this sense, the generalization of this work is 
obvious to be established but not easy to calculate and it exceeds the scope of this article.
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