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Resiliency of Mutualistic Supplier-
Manufacturer networks
Mengkai Xu, Srinivasan Radhakrishnan, Sagar Kamarthi & Xiaoning Jin  

current Supplier-Manufacturer (SM) networks are highly complex and susceptible to local and global 
disruptions, due to connectivity and interdependency among suppliers and manufacturers. Resiliency of 
supply chains is critical for organizations to remain operational in the face of disruptive events. existing 
quantitative analyses oversimplify the mutualistic nature of SM networks, in which failure of individual 
entities affects not only the directly connected entities but also those connected indirectly. In this work 
we investigate resiliency of SM networks using the quantitative methods employed to study mutualistic 
ecological systems. Much like in ecological systems, catastrophic failures of SM networks are difficult to 
predict due to high dimensionality of their interactive space. To address this, first we create a bipartite 
representation and generate a multidimensional nonlinear model that captures the dynamics of a SM 
network. We transform the multidimensional model into a two-dimensional model without sacrificing 
the model’s ability to predict the point of collapse. We extensively validate the model using real-world 
global automotive SM networks. We observe that the resiliency of a SM network depends on both the 
network structure and parameters. The current work offers a means for designing resilient supply chains 
that can remain robust to local and global perturbations.

Large manufacturing organizations rely on many suppliers spread across globally to acquire parts for their 
products. At factory level, internal perturbations in the form of labor unrest, machine reliability issues, or 
material shortage affect the optimum performance of a factory and the associated SM network. At meso level, 
geographical conditions surrounding the factory, local perturbations in the form of natural disasters, mate-
rial shortage or restrictive economic policies tend to affect the performance of suppliers and manufacturers. 
Finally, at enterprise level, global perturbations in the form of reduction in overall demand or weak economic 
markets reverberate across the entire supply chain. Disruptions in supply chain can be detrimental to a firm’s 
performance and can negatively impact the overall financial gains1–5. Organizations are proactively paying 
attention to improving their Supply Chain Resiliency (SCR)5–8. SCR enables SM networks to withstand disrup-
tions at multiple scales to mitigate performance and economic losses5. For example, it was SCR that enabled 
Japanese firms to rapidly respond and restore production post a massive earthquake in 2011 through resilient 
resource mobilization5,9. The common notion of SCR is the ability of a supply chain to cope with the unavoid-
able and unpredictable performance disruptions and bounce back to the original operating state or to a new 
desirable operating state7,10–14.

The existing studies on resiliency of supply chains focus on both qualitative and quantitative approaches, 
though qualitative ones are more common. These strategies involve heuristics and rule of thumb strategies 
built on past experience. At factory level, redundancy in the form of parallel machines and storage buffers 
improves resiliency15. At system level, the risks of supplier disruptions are mitigated by building redundancy 
through multisource strategies. The common approach in all the qualitative studies is identifying vulnerabili-
ties and building capabilities to counter the vulnerabilities16. Quantitative approaches on the other hand focus 
on operational resiliency. They monitor post-disruption performance of supply chains using key performance 
metrics (KPIs)17,18. The reactive and preventive strategies for improving resiliency minimize the related costs 
including the cost associated with recovery and performance loss17. SM networks are multidimensional, and 
the existing low-dimensional analyses of SCR do not effectively incorporate structural information of inter-
connected components and do not sufficiently consider the dependencies between the suppliers and manu-
facturers. Several studies have investigated the robustness of highly interconnected complex networks in the 
event of disruption19–22. Novel strategies are proposed to deal with cascading failures in engineered connected 
systems such as power grid, and communication networks21,22. Supply chains have been investigated as a com-
plex adaptive system23. This allows researchers to model supply chains as a network and analyze them using 
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techniques from the field of nonlinear dynamics, statistical physics and information theory. However, current 
supply chain network models do not consider the mutualistic interaction effects of supplier and manufac-
turer on each other. The phenomenon of mutualism creates an environment in which two different groups 
benefit mutually due to interactions among members across the groups. The existing analysis only focuses on 
manufacturer’s resiliency as a function of supplier disruptions. However, because of mutualism, the survival 
(and growth) of one manufacturer positively influences other manufacturers, and similarly the survival (and 
growth) of one supplier positively influences other suppliers. Intuitively speaking a much better configuration 
to study SCR would be to treat manufacturers and suppliers as different classes having between-class inter-
actions. Such configurations are commonly investigated in mutualistic ecological networks. The dynamical 
properties of such mutualistic systems are represented by a mathematical model that combines the network 
structure and the parameters to assess the resiliency of the system against perturbations24–26. The mathemat-
ical models presented in these studies involve growth, decay, competition, and mutualistic effects. Previous 
studies have reduced the multidimensional models into one- or two-dimensional models to effectively rep-
resent the resiliency function24,25. In such dimension–reduced model the resiliency of the system depends on 
the network structure and parameters alone. We believe that the same analysis can be extended to SM net-
works where one can treat the manufacturers and suppliers as different species who benefit from mutualistic 
interactions. The dynamics that govern the abundance of a species in a mutualistic ecological network share 
similarity with the abundance of throughput (production quantity) in a SM network. Similar to ecological 
systems, SM networks include a growth component which is bounded by the maximum capacity of the pro-
duction center, decays in form of internal reliability loss that reduces the production quantity, competition 
in the form of pricing and technology, and finally the mutualistic effects can be captured using the network 
structure. Apart from the similarity in the dynamics, interestingly, the structural properties of ecological 
networks and SM networks are strikingly similar27–29. These provide an impetus to emulate the approaches 
used for ecological networks.

First, we formulate a dynamical model for the multidimensional SM network combining structural informa-
tion and network parameters. Next, we reduce the multidimensional formulation to an effective two-dimensional 
model. Using this dimension-reduced model, we introduce local and global perturbations and assess their impact 
on the throughput of the SM network. We observe that the dimension-reduced model, like multidimensional 
model, is insensitive to external noise and parameter variations, and is able to generate the same point of collapse 
as the one generated by the multidimensional model. In addition, we observe that the SM network resiliency is 
highly sensitive to the network structural properties, namely, nestedness and density. The proposed approach is 
accurate in identifying the point of collapse (tipping point) beyond which a SM network will be unable to deliver 
the desired throughput and unable to regain its production capacity.

Results
nonlinear dynamical model of SM mutualistic network. Figure 1a shows a mutulistic SM net-
work, and Figure 1b shows the bipartite representation of the SM network. The manufacturers and the 
suppliers are represented as nodes. In Figure 1b, M represents a manufacturer and S represents a supplier. 
A manufacturer is connected to a supplier if the supplier provides parts/products to the manufacturer. The 
link is unweighted, i.e., even if the supplier supplies multiple components to the manufacturer, the link will 
still have a weight of one.

Mathematically the bipartite network is represented as adjacency matrix A whose element yij is 1 if manu-
facturer i is connected to supplier j; 0 otherwise. Equations (1) and (2) represent the dynamics of a mutualistic 
SM network. While Eq. (1) models the nonlinear dynamic change of the throughput of manufacturer i, Eq. (2) 
similarly models the nonlinear dynamic change of the throughput of supplier i.

Figure 1. (a) A mutualistic Supplier-Manufacturer (SM) network, (b) bipartite representation of SM network.
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Eq. (1) follows the proposed logistic growth model for our SM network application. Here Mi is the throughput 
of manufacturer i; Ki

M( ) is the production capacity of manufacturer i acting as plant capacity (i.e., capacity limiting 
term)30–33; αi

M( ) is an internal perturbation parameter; βij
M( 1) and βij

M( 2) are the effects of price competition and 
technology competition between manufacturers i and j; QM is the number of manufacturers; γik

M( ) represents the 
mutualistic interaction effect between manufacturer i and supplier k; the saturation parameter h is used to char-
acterize the squashing effect; QS is the number of suppliers; and μi

M( ) indicates the production subcontracting/
outsourcing intensity. Same notations are applied to Eq. (2) except that the superscript stands for suppliers.

Growth term. The first term on the right-hand side of Eq. (1) represents the growth term. In this research we are 
measuring growth of a manufacturer or supplier in terms of throughput (production volume). Figure 2 shows the 
commonly adopted growth models, which are either unbounded, bounded, and bell shaped curves. A bell shaped 
growth model will fail to represent the realty that when manufacturers decommission specific product lines, 
they compensate for the production loss at the enterprise level by producing other products. A bell shape growth 
model for the proposed approach will indicate that, over time the throughput of a manufacturer declines to zero 
(which translates to extinction of manufacturer) after reaching a peak production.

In this context, an unbounded (e.g., exponential) growth model indicates that throughput keeps increasing 
for ever without a limit. The unbounded growth models, although mathematically appealing, they are not sup-
ported by empirical evidence34. For a given plant capacity, the unbounded growth model is feasible only when 
the throughput of a manufacturing plant scales linearly or super-linearly with the plant utilization, which is not 
the case in reality. In practice, when the plant utilization increases, the throughput of the plant also increases. 
However, beyond a certain point, any increase in utilization is followed by a decrease in the throughput. The root 
cause for this trend is that the increase in utilization comes at the expense of avoiding equipment maintenance 
which adversely affects machine reliability. This in turn leads to increase in the frequency of failures (F) and 
longer repair time (Td). An increase in Td and/or F increases downtime, work in progress (WIP), and cycle time 
(Tc)31,32. The fact that throughput does not scale linearly with the plant utilization is not represented correctly in 
the unbounded growth model.

Therefore, a bounded growth model, especially a logistic shape, can better represent throughput growth pat-
tern of a manufacturer or a supplier. In a bounded growth model, the growth becomes bounded as a conse-
quence of the growth itself. Constraints such as space limit, finite talent pool, policies, regulations, resources 
(water and energy), and the risk of unmanageable complexity, make unending growth untenable. Logistic growth 
models have extensively been investigated for ecological systems where the environment carrying capacity, and 

Figure 2. Commonly explored growth models.
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competition act as growth limiting factors35,36. In addition, logistic growth behavior has been observed in new car 
registrations in Japan37, car population in Italy37, and annual production of natural resources34,38.

Internal perturbation term. The second term in Eq. (1), αi, is an internal perturbation parameter. It represents 
the production system reliability which is adversely affected by internal perturbations such as machine failure 
and labor unrest39–42. Throughput nonlinearly decreases as the production system reliability decreases39–42. When 
the throughput is high, a small reduction in reliability due to internal perturbation could result in large through-
put reduction; when the throughput is small, a small reduction in reliability can only cause a minor change in 
throughput39–42.

Price and technology competition terms. The third and the fourth terms in Eq. (1) reflect the effect of price com-
petition and technology competition between manufacturers (suppliers) i and j on their throughput43–45. The 
throughput of a manufacturer (supplier) declines as the competition becomes fierce. When β β>ij ij

(1) (2), the price 
competition dominates the technological advantage. The dominance is reversed when β β>ij ij

(2) (1).

Mutualistic interaction term. The fifth term in Eq. (1), γik, captures the mutualistic interaction effect between 
manufacturer i and supplier k. When both manufacturers and suppliers are generating high throughput, the 
interaction effect between them saturates the throughput growth24,25,46. The saturation constant h is used to char-
acterize the squashing effect. The term γik is defined as26,47

γ
γ

= δy
N( ) (3)

ik ik
i

0

where =y 1ik  if manufacturer i and supplier k interact; =y 0ik  otherwise. The term γ0 represents the level of 
mutualistic strength, which in this work is set to 1. The term δ denotes the mutualistic trade-off modulating the 
relation between the interaction strength and the number of interactions Ni. The interaction strength γik is deter-
mined by the node degree of manufacturer i. The more connections manufacturer i maintains, the weaker is the 
mutualistic interaction between manufacturer i and supplier k. This also indicates that when manufacturer i 
partners with a large number of suppliers, the contribution of each of these suppliers will be smaller.

Outsourcing intensity term. In Eq. (1), μ indicates the production subcontracting/outsourcing intensity. In the 
long run, μ will have a negligible effect on a manufacturer’s dynamics, but in the short term, μ exerts a consider-
able influence. However in reality, manufacturers and suppliers rarely outsource their proprietary components/
products for the fear of creating unintended opportunities for future competition. So even for short term, one can 
assume a negligible effect of μ on throughput of a SM network.

As mentioned earlier, the nonlinear dynamics of suppliers are modeled by Eq. (2). All the terms in Eq. 2 have 
the same interpretation for suppliers as they have for manufacturers in Eq. (1).
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Equations (1) and (2) represent a multidimensional SM network, where each manufacturer or each supplier is asso-
ciated with its own dynamics. Multidimensionality increases the computational load and is lack of predictability, and 
those issues can be resolved by reducing the dimensionality of the model described by Eqs 1 and 2. The 
dimension-reduced models are given in Eqs (4) and (5). They can be used to capture the SM network’s dynamics and 
topological information that was described by Eqs (1) and (2). The dimension reduction procedures are given in the 
Supplementary Information Sections 1–3. In Eqs (4) and (5), Meff and Seff represent the effective average throughput 
of the SM network aggregated over all manufacturers and suppliers respectively; K is the production capacity; α is 
the effective internal perturbation parameter; β is the effective competition parameter that combines both the price 
and technology competitions; and γ〈 〉M  and γ〈 〉S  are the effective mutulistic strengths for manufacturers and suppli-
ers. The terms γ〈 〉M  and γ〈 〉S  can be computed using averaging methods such as unweighted average, degree-weighted 
average, and eigenvector-based average25. In this work we consider the degree-weighted average method for comput-
ing γ〈 〉M  and γ〈 〉S , since it is robust against noise and parameter variations25.

In the following sections we investigate the effect of network structure on the resiliency function, demonstrate 
the robustness of the dimension-reduced model against ransom noise and random parameter variations, and dis-
cuss the ability of the dimension-reduced model to predict the point of collapse in the structure-parameter space.

Analysis of real world SM networks. Studies have revealed a strong similarity between structural prop-
erties of mutualistic ecological networks and SM networks27–29. Network properties, mainly, nestedness, degree 
distribution, and modularity are significantly similar for ecological networks and SM networks27. Nestedness is 
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a property of a bipartite network where specialists (e.g., pollinators that visit a few specific type of plants) inter-
act with species of other class with whom generalists (e.g., pollinators that visit many types of plants) interact48. 
Similarly SM networks are characterized by the presence of “generalist” and “specialist” suppliers29. The general-
ists have the technical capabilities to manufacture a wide variety of products at lower volumes (job shop produc-
tion) while specialists have the capabilities to manufacture products with low design variation at higher volumes 
(mass production). The nestedness in SM networks aligns with that of ecological networks where, the specialist 
suppliers interact with manufacturers with whom the generalist suppliers interact29. This redundancy (nested-
ness) ensures the resiliency of SM networks, which otherwise will fail with the demise of a few suppliers. Apart 
from the nested property, network density plays a major role in ensuring the resiliency of a mutualistic system24.

We validate the models proposed in Eqs (4) and (5) using the global automotive supply chain network data. 
There are 376 manufacturers and 5229 suppliers who supply approximately 300 components including critical 
and noncritical components. The critical components like piston and connecting rod are essential for the function 
of an automobile. The noncritical components like lamp wiper and exterior are required although their failures 
do not affect the primary function of an automobile. The data spans from 1999 to 2020 (future orders are also 
considered). We divide the automotive SM networks into 21 sub-networks according to AA classification scheme 
as given in Supplementary Table S1. Sub-networks are considered for two reasons: (a) automotive assemblies 
are highly modular and independent of each other (e.g., an engine sub-assembly has no dependence on a door 
panel for its production completion), and (b) to allow simulation runs to complete in a reasonable amount of 
time. We create two versions of automotive SM networks for analysis. In the first one, we consider all the manu-
facturers and suppliers across multiple years (longitudinal data). In such networks, manufacturers do not always 
get parts/products from the same suppliers every year. We form 21 longitudinal networks corresponding to each 
of the 21 subnetworks. The network properties (densisty and nestedness) for longitudinal networks are given in 
Supplementary Table S2. In the second version of networks, we consider two automotive SM subnetworks just 
for the year 2017 (cross sectional data). The network properties (densisty and nestedness) for cross sectional net-
works are given in Supplementary Table S3. Resiliency patterns of networks using cross sectional data show the 
point-in-time (or current) resiliency of the automotive SM networks. The networks formed using longitudinal 
data are not useful to assess the true resiliency of the networks compared to the networks formed using the cross 
sectional data. However, the networks formed using longitudinal data serve as an ideal reference for evaluating 
resiliency of the network that can be obtained using networks built with the cross sectional data.

In tune with the previous studies27–29, we observe that automotive SM networks generated using both longitu-
dinal and cross sectional data exhibit high nestedness and low network density (see Supplementary Information 
Tables S2 and S3), striking similarity to the network properties exhibited by ecological networks. It is not unusual 
for automotive SM networks to exhibit such network properties. It is in the best interest of manufacturers to have 
many suppliers, while this is constrained by the supplier capabilities and production economics. A supplier may 
take many years to upgrade technology and skills to align with the manufacturer’s requirements. Even though 
that there are many capable suppliers, manufacturers will work only with optimum number of suppliers to allow 
suppliers to derive the benefit of economies of scale. In the event of low capacity utilization at the supplier end, 
the costs cannot be maintained competitive which hampers the survivability of the suppliers. Therefore a network 
with the structure of low density and high nestedness is created.

Effect of network structure. In order to reduce the time complexity of rewiring real world SM networks to under-
stand the effects of nestedness, we use simulated data (having same nestedness and density properties of real 
world networks) to observe the structural effects on the resiliency of the SM network. We simulate synthetic SM 
networks with 10 manufacturers and 26 suppliers. The network density, a, of a bipartite network is computed as 

=
×

a m
I J

, where m is the total number of interactions for all the nodes in the SM network, I is the number of man-
ufacturers and J is the number of suppliers49. The value of density varies from 0 to 1, 0 being low density and 1 
being high density. The nestedness is computed using the NTC method50. The normalized value of nestedness 
varies form 0 to 1, 0 being low nestedness and 1 being high nestedness.

We remove fn fraction of suppliers and observe the effects of the perturbation on the throughput of suppliers. 
Similarly, we remove fn fraction of manufacturers and observe the effects of the perturbation on the throughput of 
manufacturers. We remove fl fraction of suppliers and see the effect of perturbation on manufacturer throughput, 
and finally we remove fl fraction of manufacturers and see the effect of perturbation on supplier throughput. In 
addition to local disturbances, we also introduce global perturbations by reducing fw which is the fraction of inter-
action strength loss in Eqs (4) and (5). For all the perturbations, the effective throughput of the manufacturers 
and suppliers are computed using Eqs (4) and (5). We assume that in the event of a node or link loss the man-
ufacturers do not redistribute their workload among the remaining suppliers and suppliers do not form a new 
link with remaining manufacturers. It is a realistic assumption considering that the last minute load distribution 
by manufacturers is impeded by the capacity constraints of the suppliers and, demand and product constraints 
prevent suppliers to form links with new manufacturers in a very short period of time.

Supplementary Figure S3 shows the result of the SM network resiliency under varying degree of nestedness with 
constant density. Two networks consisting of 10 manufacturers and 26 suppliers are generated with low (0.19) and high 
(0.95) nestedness properties. The density is maintained at a constant value of 0.30. Supplementary Figure S4 shows the 
result of the SM network resiliency under varying degree of density and constant nestedness. The simulation process 
remains the same as described above except that the two networks are generated with high density (0.68), and low 
density (0.30). The nestedness value is kept constant at 0.95. First, we observe that irrespective of the network structure, 
the system is more sensitive to global perturbations than the local perturbations. The network resiliency is sensitive to 
both nestedness and the network density. High values of nestedness and network density bestow a supply chain with 
better resiliency. This result is in agreement with the observations for mutualistic ecological networks, where the nested 
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structure allows a resilient system that can accommodate node or link deletion with minimal performance loss51. To 
better understand the relation between network density and nestdeness, a sensitivity analysis is conducted on a syn-
thetic network (10 manufacturers, 26 suppliers) by varying degree of nestedness and network density. The results (see 
Supplementary Figures S5 to S7) confirm that both nestedness and density contribute to the network resiliency. When 
the network density is relatively high, the network resiliency is less sensitive to degree of nestedness. Similarly when the 
degree of nestedness is high, the network resiliency becomes robust to degree of density. Hence either high degree of 
nestedness or high network density can guarantee the resiliency of the system.

Robustness against noise and parameter variation. We perform numerical analyses using the multidimen-
sional model (Eqs (1) and (2)) and dimension-reduced model (Eqs (4) and (5)) to examine the sensitivity of the 
dimension-reduced model to noise and parameter variations, i.e., we examine if the dimension-reduced model 
is able to predict the point of collapse (point where the SM network collapses unrecoverably) without large devi-
ation. We use a real world SM network with 80 suppliers who supplied drive train parts to 75 manufacturers for 
the year 2017. The nestedness of the network is 0.9703 and the density is 0.0323. Figure 3 shows the throughput 
of manufacturers and the suppliers when subjected to local and global perturbations. The parameters for both 
the multidimensional model and the dimension-reduced model remain the same. The perturbations are intro-
duced randomly and one hundred realizations of each perturbation scenario are performed. We observe that the 
dimension-reduced model effectively captures the resiliency pattern of the multidimensional model without a 
significant deviation. The average throughput of both the models converge almost at the same point of collapse.

We then add Gaussian noise of strength 0.1 to the multidimensional model and the dimension-reduced 
model. We observe that both the models are able to converge at the point of collapse (see Supplementary 
Figure S8). The observation also extends to scenarios with parameter variation, where a random variation 
(U . .[0 8, 1 2]) in value of K does not significantly alter the point of collapse for both models (see Supplementary 
Figure S9). We also introduce random variations in competition parameter β using uniform distribution 
U . .[0 001, 0 002] and internal reliability α using uniform distribution U .[1, 1 2]. We observe that the variations in 
α and β do not affect the ability of the dimension-reduced model to predict the point of collapse (see 
Supplementary Figures S10 and S11). Overall, the effective dimension-reduced model does not deviate from the 
multidimensional model for predicting the point of collapse and can be used to represent the dynamics of the SM 
network. For generalizability, we also test the effectiveness of dimension-reduced model using synthetic network. 

Figure 3. Dynamics of manufacturer and supplier throughputs when subjected to local and global 
perturbations. The network considered here is for suppliers who supplied drive train components to the 
manufacturers for the year 2017. It has 75 manufacturers and 80 suppliers. The nestedness value is 0.9703 and 
the density value is 0.0323. (a,d) Show the throughputs for manufacturer and supplier when subjected to 
manufacturer removal fn and supplier removal fn respectively. (b,e) Show the throughputs for manufacturer and 
supplier when subjected to supplier removal fl and manufacturer removal fl respectively. (c,f) Represent the 
effect of global perturbation on throughputs of manufacturer and supplier respectively in form of weight 
reduction fw. Maroon color curves are the results of multidimensional model (Eqs (1) and (2)), Orange color 
curves are the results of dimension-reduced model (Eqs (4) and (5)). The line with circle is the average of 100 
realizations and the shaded area shows the lower bound and the upper bound values. =K 1, α = .1 2, 
β = .0 0001, γ = 10 , δ = .0 5.
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We generate a network of 10 manufacturers and 26 suppliers with a nestedness of 0.95 and a density of 0.19. The 
observations do not deviate from the earlier investigation done on real world networks and the effective 
dimension-reduced model does not deviate from the multidimensional model for predicting the point of collapse 
and can be used to represent the dynamics of the SM network. The results are shown in Supplementary 
Figures S12 to S15.

predicting point of collapse in real world SM networks. We subject both longitudinal networks and 
cross sectional networks to local and global perturbations. The resiliency patterns for all the networks using lon-
gitudinal data are shown in Supplementary Figures S16 to S24. The resiliency patterns for all the networks using 
cross sectional data are shown in Supplementary Figures S25 and S26. As expected, we observe that the networks 
formed using longitudinal data exhibit higher resiliency than the networks formed using cross sectional data. One 
can see that each realization generates a different point of collapse when subjected to perturbations in fn, fl, or fw 
direction. However the emergence of the point of collapse (the first occurrence of the point of collapse does not 
change with respect to random perturbations. The exact point of collapse can be captured in the 
structure-parameter space. In α−f[ ]n  space and α−f[ ]w  space we are able to accurately predict the point of 
collapse (the stability analysis, derivation of the stable state, and computation of the point of collapse is explained 
in detail in Supplementary Information). So using the structure-parameter space one is able to predict the point 
of collapse in a space that involves local (fn) and global (fw) perturbations that occur outside the manufacturing 
facility and internal perturbations that is reflected in the parameter α. This is important since the aforementioned 
perturbations are measurable in real life. Figures 4 and 5 show the traceability of point of collapse in the 
structure-parameter space for networks created using longitudinal data and cross sectional data respectively. We 
observe that both internal perturbation and external perturbation deteriorate SM network resilience. Large inter-
nal perturbation shifts the point of collapse, where a small fraction of local perturbation (supplier or manufac-
turer removal) causes the system to collapse faster. Hence using the proposed approach we are able to reduce the 
multi-dimensions to manageable two dimensions that compute the effective throughput of manufacturers and 
suppliers in the SM network. In addition, we are able to accurately predict the point of collapse in a space that 
needs only the information about the underlying network structure and the internal reliability of the manufac-
turer and supplier facilities.

Discussion
In this work we present an approach to measure the resiliency of a mutualistic supplier-manufacturer (SM) 
network. The proposed approach helps create a nonlinear dynamical model by integrating the network struc-
ture and the network parameters. The proposed model incorporates growth, internal reliability, price com-
petition, technology competition and mutualistic interaction between the suppliers and manufacturers. The 
simplification approach helps reduce the multidimensional model to a manageable two-dimensional model, 

Figure 4. Emergence of point of collapse for network 12 (Supplementary Information Table S2) that considers 
the main components related to Engine from 2006–2019 (longitudinal data). (a) Resilience function Meff vs. 
manufacturer removal fn with the parameter regime of α, (b) resilience function Meff vs. manufacturer link loss 
fl with the parameter regime of α, (c) resilience function Meff vs. global weight loss fw with the parameter regime 
of α, (d) resilience function Seff vs. supplier link loss fl with the parameter regime of α, (e) resilience function 
Seff vs. supplier removal fn with the parameter regime of α, (f) resilience function Seff vs. global weight loss fw 
with the parameter regime of α, (g) emergence of the point of collapse computed in terms of manufacturer 
removal fn and variation of α, (h) emergence of the point of collapse computed in terms of supplier removal fn 
and variation of α, and (i) emergence of the point of collapse computed in terms of global weight loss fw and 
variation of α.
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which is robust against noise and random parameter variations. Our results show that the resiliency of a SM 
network is a function of network structure and parameters. The resiliency is sensitive to structural properties 
of the network, namely, nestedness and density. Our model enables an accurate detection of emergence of the 
point of collapse as a measure of network resiliency which is highly predictable in the structure-parameter 
space. We observe that the SM network collapses in an accelerated fashion with the proportion of node or link 
removal and the reliability degrades resulting in decreased resiliency. For real-world applications, we observe 
that the global automotive industry is more resilient to local perturbations than to global perturbations, mainly 
due to high nestedness resulting from network design principles of redundancy adopted by the automotive 
industry. Global supply chains are becoming more integrated via cyber and physical interconnections. The 
emergence of Internet of Things (IOT) enables manufacturers and suppliers to measure system parameters in 
real time, given that current machines are equipped with advanced sensors for monitoring machine health. 
In addition, advanced statistical and machine learning models enable accurate prediction of machine failures. 
As time progresses, manufacturers and suppliers are able to obtain an accurate estimate of their reliability. The 
same cyber-physical principles help manufacturers and suppliers to obtain real time information regarding 
the network structure throughout the entire supply chain. Hence the current work is suitable for real world 
applications for predicting the collapse of SM networks. The proposed model can be adapted to any mutualistic 
SM networks. The proposed model fills an important existing theoretical gap in understanding and analyzing 
the resiliency of supply chains. We provide a comprehensive analytical framework from which further supply 
chain resiliency metrics can be developed.

Recovery patterns are generally time related behavior indicating the time to regain the original performance 
post a disruptive event18. The behavior of recovery patterns is influenced by factors such as speed of disruption 
onset, levels of disruptions and delays between intervention and performance response. As disruptions vary in 
severity and duration, so do the recovery patterns, which can be linear, concave, convex and non-specific. Hence 
combining all factors into a single metric for investigating SCR is challenging. Although recovery patterns were 
not covered within the scope of the current work, we believe this work will motivate and form a foundation for 
future research on recovery patterns of supply chains.

Methods
Real world SM networks. We use proprietary global automotive supply chain data obtained from Marklines 
database. The dataset has 376 manufacturers and 5229 suppliers who supply approximately 300 components. The 
data spans from 1999 to 2020. In the first version the dataset is divided into 21 sub-networks according to AA 
classification scheme as given in Supplementary Table S1. The classification scheme describes 21 categories where 
each category has multiple automotive components associated with it. These 21 sub-networks considers all the 
manufacturers and suppliers in each category across multiple years (longitudinal data). In such networks, manu-
facturers do not always get parts/products from the same suppliers every year. The network properties (densisty 

Figure 5. Emergence of point of collapse for network 12 (Supplementary Information Table S3) that considers 
the main components related to Engine from 2017 (cross sectional data). (a) Resilience function Meff vs. 
manufacturer removal fn with the parameter regime of α, (b) resilience function Meff vs. manufacturer link loss 
fl with the parameter regime of α, (c) resilience function Meff vs. global weight loss fw with the parameter regime 
of α, (d) resilience function Seff vs. supplier link loss fl with the parameter regime of α, (e) resilience function 
Seff vs. supplier removal fn with the parameter regime of α, (f) resilience function Seff vs. global weight loss fw 
with the parameter regime of α, (g) emergence of the point of collapse computed in terms of manufacturer 
removal fn and variation of α, (h) emergence of the point of collapse computed in terms of supplier removal fn 
and variation of α, and (i) emergence of the point of collapse computed in terms of global weight loss fw and 
variation of α.
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and nestedness) of these 21 sub-networks are given in Supplementary Table S2. In the second version of networks, 
we consider two automotive SM sub-networks just for the year 2017 (cross sectional data). The network proper-
ties (densisty and nestedness) are given in Supplementary Table S3.

Data source. https://www.marklines.com/portal_top_en.html.

computations. For testing the effectiveness of the dimension reduced model in presence of noise, Gaussian 
noise was added to the Eqs (1), (2), (3) and (4). The noise was added using the function awgn() in MATLAB com-
putational software. For testing the effectiveness of the dimension reduced model in presence of random param-
eter variations, variations were introduced in form of uniform distribution using rand() function in MATLAB 
computational software. For all the synthetic networks and the real world SM networks, the network density, a, of 
a bipartite network is computed as =

×
a m

I J
49, where m is the total number of interactions for all the nodes in the 

SM network; I is the number of manufacturers and J is the number of suppliers. The value of density varies from 
0 to 1, 0 being low density and 1 being high density. The nestedness is computed using the NTC method50. The 
normalized value of nestedness varies form 0 to 1, 0 being low nestedness and 1 being high nestedness.

Data Availability
The data for synthetic networks used in this work will be provided upon request.

code Availability
All the codes are generated using MATLAB computational software. Code will be made available upon request.
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