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Horizontal and vertical integrative 
analysis methods for mental 
disorders omics data
Shuaichao Wang1, Xingjie Shi2, Mengyun Wu3 & Shuangge Ma4

In recent biomedical studies, omics profiling has been extensively conducted on various types of mental 
disorders. In most of the existing analyses, a single type of mental disorder and a single type of omics 
measurement are analyzed. In the study of other complex diseases, integrative analysis, both vertical 
and horizontal integration, has been conducted and shown to bring significantly new insights into 
disease etiology, progression, biomarkers, and treatment. in this article, we showcase the applicability 
of integrative analysis to mental disorders. in particular, the horizontal integration of bipolar disorder 
and schizophrenia and the vertical integration of gene expression and copy number variation data are 
conducted. the analysis is based on the sparse principal component analysis, penalization, and other 
advanced statistical techniques. In data analysis, integration leads to biologically sensible findings, 
including the disease-related gene expressions, copy number variations, and their associations, which 
differ from the “benchmark” analysis. Overall, this study suggests the potential of integrative analysis 
in mental disorder research.

Mental disorders have been posing an increasing public health concern. Two types of mental disorders that are 
of essential importance are bipolar disorder and schizophrenia, which have been shown to affect about 1% and 
0.5% of the population globally1,2. Bipolar disorder is a type of brain order and also known as manic-depressive 
illness. It can cause unusual shifts in mood, energy, and activity levels, and affect the ability to carry out common 
tasks. Schizophrenia is a chronic and severe mental disorder. It has a direct impact on thinking, feeling, and 
behaving. People with schizophrenia often seem to have “lost touch with reality”. Although schizophrenia may 
be less common than some other mental disorders, the symptoms can be more disabling. Extensive studies have 
been conducted to understand the etiology and progression of bipolar disorder and schizophrenia. For example, 
childhood trauma has been suggested as associated with bipolar disorder and probably interacted with genetic 
susceptibility factors3. High paternal age and urbanization at birth have been suggested as possible risk factors 
for schizophrenia4.

In the past decades, we have witnessed significant advancements in omics profiling techniques, and studies 
have been conducted searching for molecular risk factors for the etiology and progression of bipolar disorder, 
schizophrenia, and other mental disorders5. For example, Kordi-Tamandani and Mir6 conducted a gene expres-
sion study and identified three groups of functionally related genes that are associated with bipolar disorder 
and schizophrenia and involved in energy metabolism, mitochondrial function, and others. An analysis of copy 
number variations (CNVs) in a family-based study suggested the importance of CNVs of genes MAGI1 and 
MAGI2 in the etiology of bipolar disorder and schizophrenia7. Epigenetic studies have also been conducted. 
For example, Abdolmaleky, et al.8 found hypermethylation of the reelin (RELN) promoter in the brain of schiz-
ophrenic patients. In another study, the DNA methylation status of SOX10 was reported to be associated with 
the development of schizophrenia9. Our literature review suggests that most of the existing studies, including the 
aforementioned ones, analyze a single type of mental disorder and a single type of omics measurement, hence 
being limited.
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In recent biomedical studies on complex diseases, integrative analysis is gaining popularity fast. There are two 
main families of integration. In horizontal integration, data on different (but usually related) diseases are analyzed, 
whereas in vertical integration, multiple types/sources of data on the same disease are analyzed. An example of 
horizontal integration is Cava, et al.10, which jointly analyzed gene expression data on sixteen types of cancers. An 
example of vertical integration is Chen, et al.11, which proposed a BRIDGE method and integrated multi-omics 
data, including protein interactions, gene sequences, and gene expressions, to detect disease markers for obesity 
and type 2 diabetes. Jiang, et al.12 developed a novel statistical model to integrate gene expressions, CNVs, and 
methylation and predict the prognosis of melanoma. Examples also include the prostate cancer study in Taylor,  
et al.13, breast cancer study in Hendrickx, et al.14, and others.

The symptoms, and clinical, environmental, and social risk factors of bipolar disorder and schizophrenia are 
“related”, suggesting the relatedness of the two diseases15. In addition, studies have also shown that some common 
genetic factors may affect the occurrence of both diseases16, suggesting their connections at the molecular level. 
Logotheti, et al.17 compared the differentially expressed genes of the two diseases (against normal controls) and 
found that they shared the downregulation of +K and +Na transporting ATPases. Shao and Vawter18 identi-
fied 78 genes that are significantly dysregulated in both diseases, including AGXT2L1, SLC1A2, and others. The 
aforementioned and other published evidences suggest that it can be reasonable to conduct the horizontal integrative 
analysis of bipolar disorder and schizophrenia. The existence of regulations among different types of omics meas-
urements, for example regulations of gene expressions by CNVs, is relatively “independent” of diseases. With the 
same rationale as for cancer, diabetes, and other complex diseases, it can be of interest to also conduct the vertical 
integrative analysis for bipolar disorder and schizophrenia.

In the literature, there are a few related studies. Studies such as Logotheti, et al.17 analyzed data on different 
mental disorders separately and then compared results across diseases to identify overlapping findings. Such 
studies basically take a meta-analysis strategy, which, as shown in recent studies19, is not as effective as the integra-
tive analysis strategy. There are also studies, for example Schubert, et al.20, that confirmed findings in one type of 
omics measurement by conducting functional analysis of other types of omics measurements. However, there is a 
lack of integration in the discovery process. In addition, in these studies, the most advanced statistical techniques 
have not been adopted.

The goal of this study is to showcase conducting both horizontal and vertical integrative analysis of mental 
disorders. Although the adopted analytic techniques are much related to those in the study of cancer and other 
complex diseases, this article is the first to comprehensively apply them in mental disorder studies and can val-
uably serve as a prototype for future studies. Compared to the existing omics analysis of mental disorders, it has 
significant advancements in analytic techniques. It is noted that although bipolar and schizophrenia, and gene 
expression and CNV data are analyzed in this article, the methodologies described can be directly applicable to 
other mental disorders and other types of omics data. The availability of analysis software enables other research-
ers to conveniently apply these methods. In addition, the findings from integrative analysis may complement 
those in the literature using “classic” analysis.

Methods
Stanley Medical Research institute mental disorder data. The Stanley Medical Research Institute 
(SMRI) is one of the largest organizations supporting research on the causes and treatment of bipolar disor-
der and schizophrenia. Data analyzed in this article are downloaded directly from the SMRI Online Genomics 
Database website. To get the download access, researchers are first required to register with the web link https://
www.stanleygenomics.org/contact.html. Then data are available and can be downloaded freely from https://www.
stanleygenomics.org/stanley/studySummary.jsp. This data has been considered in the literature21, however, using 
relatively simple analysis techniques. For 86 subjects, a total of 20,515 gene expression measurements are avail-
able, which were measured using the Affy Hgu133A chips. For CNVs, single nucleotide polymorphism (SNP) 
data measured by Affy SNP5.0 chip are available. CNV measurements are extracted from the SNP data following 
a standard procedure using the PennCNV software22. A total of 22,428 CNV measurements are available on 153 
subjects. After data matching, a total of 71 subjects have both gene expression and CNV measurements (on 19,053 
genes), including 23 bipolar disorders, 24 schizophrenics, and 24 normal controls.

As suggested in the literature, the number of genes relevant to bipolar disorder and schizophrenia is not 
expected to be large. Also with consideration on sample size, we conduct a prescreening, which can improve the 
reliability of analysis and also reduce computational cost. Specifically, we identify genes in three signaling path-
ways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The first is the ubiquitin mediated 
proteolysis (UMP) pathway, which contains 133 genes. It has been suggested that the UMP pathway plays an 
important role in the treatment of damaged and toxic proteins through ubiquitin-dependent protein hydrolysis, 
and the disorder of the UMP pathway can affect the occurrence of bipolar disorder and schizophrenia23,24. The 
second is the tryptophan metabolism pathway which contains 40 genes. Tryptophan is an important component 
of 5-serotonin in brain which has been shown to make people feel calm and mild25. The imbalance of tryptophan 
metabolism has been observed in bipolar disorders and schizophrenics26. The third is the neurotrophin signaling 
pathway, which contains 130 genes. Published studies have shown that the brain-derived neurotrophic factor has 
the functions of preventing neuron death, promoting the development, differentiation, repair and regeneration of 
neurons, and strengthening the transduction of synaptic signals27, and that the neurotrophin signaling pathway 
is importantly associated with bipolar disorder and schizophrenia28.

It is noted that although these three pathways have been previously indicated as highly important for bipolar 
and schizophrenia, we by no means suggest that they are the most important or a lack of significance of other 
pathways. They are sufficient for the purpose of showcasing integrative analysis. It is also noted that this pre-
screening is not essential. As the sample size is limited in our analysis, we conduct prescreening to reduce dimen-
sion for improving estimation stability, as well as reducing computational cost. Other prescreening measures, 

https://doi.org/10.1038/s41598-019-49718-5
https://www.stanleygenomics.org/contact.html
https://www.stanleygenomics.org/contact.html
https://www.stanleygenomics.org/stanley/studySummary.jsp
https://www.stanleygenomics.org/stanley/studySummary.jsp


3Scientific RepoRtS |         (2019) 9:13430  | https://doi.org/10.1038/s41598-019-49718-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

such as p-value based on marginal regression, can also be used. We adopt this prior information-based approach 
to increase interpretability. This strategy has also been commonly adopted in published studies29,30. If a larger 
sample size become available, the analysis of all genes can be conducted directly and may lead to more definitive 
and comprehensive findings.

Data. For the kth type of samples (bipolar disorder, schizophrenia, or normal), assume n(k) independent sub-
jects with x z y( , , )i
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are the p-dimensional vectors of gene expression and CNV measurements, and ∈y {0, 1}i
k( )  is the binary response 

with =y 0i
k( )  for a normal subject and 1 for bipolar disorder or schizophrenia. The SMRI data has a case-control 

design, and the outcome variable is binary. Integrative analysis described below can also be conducted on other 
types of designs/outcome variables. To simplify notation, we have used the same dimension for gene expressions 
and CNVs and note that in analysis there is no requirement on the matching of gene expressions and their regula-
tors. Integrative analysis can be conducted from multiple different perspectives. Below we describe three types of 
analysis, which are perhaps more popular in the literature.

Vertical integrative analysis of multi-omics data. In multiple published studies, analysis has been 
conducted building risk models using omics data. In this set of integrative analysis, the goal is to build a more 
comprehensive model using multiple types of omics measurements (in this particular case, gene expression and 
CNV). The overall flowchart of analysis is provided in Fig. 1. The analysis is built on the SPCA (sparse princi-
pal component analysis) and other techniques. It can effectively accommodate the regulations between different 
types of omics measurements, which, if not properly accounted for, can lead to co-linearity in model building. 
Accommodating the regulations can also make the analysis more interpretable.

The analysis (referred to as A1) proceeds as follows. In the first step, for each type of disease samples sepa-
rately, we apply SPCA to gene expressions for reducing dimension and accommodating high correlations among 
genes31. The top ten sparse PCs with the largest variances are selected to represent the effects of all gene expres-
sions and used for downstream analysis. Denote them as = …( )x x x, ,pc i
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In the second step, we consider the CNV-gene expression regression model
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Figure 1. Flowchart of vertical integrative analysis.
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where ω(k) is the 10 × p coefficient matrix, and εi
k( ) is the vector of random errors. ω̂ k( ), the estimate of ω(k), can be 

obtained using the (regularized) least squares method. With this regression, the levels of CNVs are then decom-
posed into two components. The first is ω=ˆ ˆz xi

k
pc i
k k( )

,
( ) ( ), which, loosely speaking, contains information in CNV 

that overlaps with that in gene expression. The second component is − ˆz zi
k

i
k( ) ( ), which contains independent 

information of CNV. As opposed to use the original CNV measurements in regression, only the second compo-
nent is used. Similar to in the first step, we select the top ten sparse PCs of − ˆz zi

k
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k( ) ( ) with the largest variances, 
which are denoted as = …( )z z z, ,pc i
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For k = 1, 2, representing bipolar disorder and schizophrenia, consider the logistic regression model
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the intercept. The unknown regression coefficients are then estimated using the standard maximum likelihood 
approach.

Rationale. The above analysis has been motivated by the following considerations. (1) In the analysis of omics 
data, high dimensionality and strong correlation are not uncommon. SPCA is adopted in the first step, which can 
effectively tackle both problems. SPCA applies penalization to the loadings of PCs, which leads to the loadings of 
unimportant variables estimated as exactly zero. As such, sparse PCs are linear combinations of selected impor-
tant variables with nonzero loadings, and only these important variables can enter the logistic regression model. 
SPCA is superior to the “standard” PCA by removing “noises” and “focusing” more on important variables, lead-
ing to more interpretable results. Here SPCA is conducted on gene expression, which is “closer” to disease out-
come than CNV. In our analysis, the number of sparse PCs is fixed as ten, which leads to low computational cost 
and satisfactory numerical performance. We note that this choice may be slightly subjective, and there are other 
ways to determine the number of sparse PCs. For example, it can be selected using the cumulative variance con-
tribution rate, following the traditional principal component analysis. It can also be selected based on model 
selection techniques, such as the Bayesian Information Criterion (BIC) and cross validation. However, in this set 
of analysis, the main goal is to construct an outcome model as opposed to selecting significant PCs. As such, we 
fix the number of PCs but also note that this may need adjustment in other studies. In addition, as suggested in 
the literature12, SPCA can be replaced by other dimension reduction techniques, for example, partial least squares. 
(2) In a “standard” regulation analysis, gene expressions are regressed on CNVs, which, along with other regula-
tors, regulate gene expressions. However, in the second step of our analysis, our goal is to remove “redundant 
information” in CNVs (that overlaps with that in gene expressions). As such, a “reversed regression” of CNVs on 
gene expressions is proposed. With the low dimensionality of the sparse PCs of gene expressions, this step of 
regression can be easily realized. The strategy of decomposition has also been considered in the literature32, how-
ever, under different settings and using different techniques. We note that there are more complex techniques for 
extracting overlapping information, for example, based on nonlinear modeling. However, such analysis can be 
challenged by the high dimensionality and low sample size as in this dataset. Linear regression has been adopted 
in the published gene expression-CNV (and other regulators) association studies33,34 and shown to be effective. 
As the main goal here is outcome model building as opposed to modeling the CNV-gene expression relationships, 
it is sensible to adopt not overly complex methods (which may not be “perfect” for overlapping information 
extraction). (3) The third step of analysis is a “standard” regression, where we collectively analyze gene expression 
and its regulator CNV to more comprehensively and more informatively describe disease outcome. Published 
studies have suggested that multiple types of omics changes, including gene expressions, CNVs, DNA methyla-
tions, and others, are potentially associated with disease outcomes35. Different types of omics measurements are 
interconnected. As such they may have overlapping information. On the other hand, it is also suggested that they 
can have independent information. Here, we use the “residual” − ˆz zi

k
i

k( ) ( ) to describe the information of CNVs 
that is independent from gene expressions and potentially has direct effects on disease outcomes not captured by 
gene expressions36. Here we note that − ˆz zi

k
i

k( ) ( ) is not random error in “standard” regression analysis. Rather it 
may contain (potentially important) information in CNV that is not reflected in gene expression. Including it in 
analysis makes the proposed model significantly different from the gene-expression-only analysis. The logistic 
model can be replaced by other models depending on data/model settings.

Horizontal integrative analysis for disease marker identification. In this analysis, the goal is to 
identify omics markers that are associated with diseases. With the relatedness of bipolar disorder and schizophre-
nia, integrative analysis is conducted to borrow information across diseases so as to generate more reliable marker 
identification and estimation. The penalization technique is adopted to accommodate high data dimensionality 
as well as select relevant markers. Further an additional penalty is introduced to facilitate borrowing information.

The same analysis can be conducted on different types of omics measurements separately. To avoid confusion, 
we take gene expression as an example. For k = 1, 2, representing bipolar disorder and schizophrenia respectively, 
consider the logistic regression model
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where β β β= ... ′( ), ,k k
p

k( )
1
( ) ( ) is the p-dimensional coefficient vector, and α(k) is the unknown intercept. To select 

important gene expressions, and to accommodate high data dimensionality, consider the penalized estimation 
with objective function
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where l(β(k)) is the log-likelihood function, and λ1 > 0 and λ2 > 0 are the tuning parameters. Here it is noted that 
we have suppressed the dependence on the intercepts, which are low-dimensional and not subject to penalization. 
With respect to ρ(β(1), β(2)), we consider two proposals, which have been considered in the literature but under 
quite different settings. The first is the magnitude-based shrinkage penalty
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is the sign-based shrinkage penalty
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The estimate is defined as the minimizer of (1). The nonzero components of β(k) correspond to important 
variables that will be concluded as associated with the disease risk. The proposed integrative analysis for disease 
marker identification with penalties (2) and (3) are referred to as B1 and B2, respectively.

Rationale. Joint analysis, which can accommodate the combined effects of multiple genes in a single model, is 
conducted. Compared to marginal analysis that analyzes one gene at a time and has a risk of missing factors with 
weak marginal but strong joint effects, the proposed analysis can more effectively describe disease biology, that is, 
outcomes and phenotypes of complex diseases are usually associated with the joint effects of multiple gene expres-
sion anomalies. In objective function (1), if λ2 = 0, then the analysis simplifies to two Lasso estimations, with one 
for each disease. Here Lasso can be replaced by other sparse penalties as well as other techniques that can conduct 
regularized estimation and variable selection. The key advancement is the β βρλ ( , )

2
(1) (2)2  penalty term. Intuitively, 

with the relatedness of the two diseases, this newly added penalty promotes certain similarity between the models 
for the two diseases, thus realizing information borrowing. More specifically, the magnitude-based shrinkage 
penalty (2) promotes the magnitudes of the two sets of omics effects to be similar, that is, quantitative similarity. 
More specifically, in (2), for each gene, if the signs of the corresponding coefficients for the two diseases are the 
same, then the value difference between the two coefficients is shrunk toward zero. In contrast, the sign-based 
penalty (3) promotes the same signs, that is, qualitative similarity. In (3), for each gene, the sign difference 
between two coefficients for the two diseases is shrunk towards zero. As such, the two important sets identified 
under the magnitude-based shrinkage penalty may tend to have more similar effect magnitudes, while those 
under the sign-based shrinkage penalty may tend to have more overlaps. In a sense, the former one promotes 
stronger similarity than the latter one. Although in the literature the relatedness of bipolar disorder and schizo-
phrenia has been suggested, it is not clear “how similar” they are. As such, it is prudent to examine both penalties. 
In addition, in future analysis when the relatedness of other diseases is less clear, both penalties can be useful.

Horizontal integrative analysis of gene expression-CNV regulations. For many complex diseases 
including mental disorders, the dysregulation of omics measurements (for example, gene expressions by CNVs) 
is an important cause of disease development. In this analysis, we examine the regulations of gene expressions by 
CNVs. It is noted that both sides of the regression are high dimensional, making the analysis particularly chal-
lenging. As such, it can be more important to borrow information across diseases. The integration strategy taken 
here is consistent with that in the above analysis.

Specifically, for bipolar and schizophrenia samples, consider the regression model
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k( )’s, we consider the objective function
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where λ3 > 0 and λ4 > 0 are the tuning parameters, and η ηρ( ),j j
(1) (2)  is defined similarly as in (2) and (3), promot-

ing similarity in magnitudes and signs of the estimates. In (5), we conduct joint analysis which fits all CNVs in 
one model. With penalization, the estimated coefficients of some CNVs can be exactly zero. A nonzero compo-
nent of ηj

k( ) corresponds to a regulation between the corresponding gene expression and CNV, with the magni-
tude and sign describing the strength and “direction” of regulation. The proposed integrative analysis of gene 
expression-CNV regulations with penalties similar to those in (2) and (3) are referred to as C1 and C2, 
respectively.
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Rationale. When the sample size is limited but the numbers of gene expressions and CNVs are large, we describe 
regulations using linear regression models. The Lasso penalization technique is adopted to accommodate high 
dimensionality and, more importantly, identify regulations. Similar to that in Section 2.4, the magnitude and sign 
based penalties are imposed to facilitate information borrowing and promote similarity between the two closely 
related diseases. The proposed penalized objective function (5) has been motivated by the considerations that 
most components of ηj

k( )’s are zero, and ηj
(1) and ηj

(2) for the two diseases have a certain degree of similarity. It has 
been suggested that one gene expression is usually regulated by only a small number of CNVs, and one CNV 
usually affects only a few gene expression levels34, leading to the sparsity of ηj

k( )’s. The similarity between the two 
diseases and hence their regression models has been discussed in Section 1. In a similar spirit, integrative analysis 
can also be conducted on diseased and normal samples, which may facilitate a better understanding of disease 
etiology by identifying dysregulations.

computation. For the vertical integrative analysis described in Section 2.3, the three steps can be realized 
using existing software. In particular, in our data analysis, we use R functions spc, lm, and glm for SPCA, linear 
regression, and logistic regression, respectively. For the two types of horizontal integrative analysis described 
in Sections 2.4 and 2.5, optimizations cannot be carried out straightforwardly using existing software. In our 
analysis, they are realized based on the coordinate descent (CD) technique which has been a popular choice in 
penalization studies and has affordable computational cost. The detailed computational algorithms are described 
in Appendix. In Table A1 (Appendix), we provide the average computer time, obtained using a regular laptop, 
for the three types of analysis on simulated data with sample size 10,000. Various values of dimension have been 
examined. It is observed that the proposed analyses are computationally feasible even for data with a much larger 
sample size. For example, for the simulated data with n = 10,000 and p = 500, the proposed horizontal integrative 
analysis for disease marker identification B1 and B2 takes about 9.3 and 10.9 minutes. To facilitate data analysis 
and applications beyond this study, we have developed R code and made it publicly available at https://github.
com/shuanggema/VHintegr. It can be easily implemented and modified if needed. It is noted that computational 
cost can be much reduced with parallel computing and more powerful computers.

Results
Vertical integrative analysis of multi-omics data. Beyond the integrative analysis method described 
in Section 2.3 (referred to as A1), we also consider the following alternatives: Approach A2 conducts SPCA with 
gene expressions and CNVs separately and then stack the top ten PCs together for downstream analysis. This 
approach uses both gene expression and CNV data, however, there is a lack of attention to the overlapping infor-
mation. Approaches A3 and A4 use the top ten PCs of gene expressions and CNVs, respectively, and there is a lack 
of data integration. We conduct analysis on bipolar disorder and schizophrenia, respectively.

We first examine the sparse PCs, which are the building blocks of the outcome models. The numbers of impor-
tant genes with nonzero PC loadings are provided in Table 1, along with the overlaps between different approach. 
Detailed estimation results of the PC loadings are provided in Table S1 (Supplementary Excel file). It is observed 
that the set of important genes under A1 differs from the alternatives. Preliminary literature search suggests 
that the genes with nonzero loadings under A1 may have important biological implications. For example, gene 
MAPK1, which has a nonzero loading in the eighth PC for bipolar disorder, has been shown to have an impact 
on monoamines-related pathways and dendrites development37 and have associations with bipolar disorder37,38. 
For bipolar disorder, gene YWHAE has nonzero loadings in the first and tenth PCs. It has been reported in Jie, 
et al.39, which investigated its 11 SNPs, that it plays a critical role in bipolar disorder. Gene TPH1 is identified as 
important for both bipolar disorder and schizophrenia. It has been suggested as a schizophrenia risk-associated 
gene40. The corresponding tryptophan hydroxylase (TPH) has been proposed as a rate-limiting enzyme that can 
limit the rate of the synthesis of 5-HT which is implicated in the pathophysiology of schizophrenia41. It has also 
been found that the polymorphisms of rs1800532 and rs1799913 of TPH1 are associated with bipolar disorder42. 
Gene NGF has a nonzero loading in the first PC for bipolar disorder. Published studies have shown that Serum 
NGF level has a compensatory role of neuroprotection and is significantly correlated with the duration of bipolar 
disorder43. The genetic variants and protein expressions of AKT1 have been investigated for both bipolar disorder 
and schizophrenia in Karege, et al.44, which established its critical role. We note that the goal of this analysis is 
not to identify disease associated genes. However, the above plausible biological interpretations may still provide 
some support to the proposed analysis.

Detailed estimated coefficients for the PCs under different approaches are provided in Table  S2 
(Supplementary Excel file), which reveals that different approaches lead to different estimations. It is difficult 

Bipolar disorder Schizophrenia

A1 A2 A3 A4 A1 A2 A3 A4

A1 67 54 33 36 62 62 33 34

A2 139 33 121 113 33 85

A3 33 15 33 5

A4 121 85

Table 1. Vertical integrative analysis of multi-omics data: number of genes identified by different approaches 
and their overlaps.
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to objectively evaluate which set of estimation is “biologically more meaningful”. As in published studies, we 
conduct a resampling based prediction evaluation, which can provide some support to the validity of estimation. 
Specifically, data is randomly split into a training and a testing set. Estimation is generated using the training set 
and used to make prediction for the testing set subjects. The corrected prediction ratio (CPR) is used to evalu-
ate prediction, where a larger value indicates a better prediction. The procedure is repeated 200 times, and the 
summary results are provided in Table 2. It is observed that all approaches have moderate CPRs, which are likely 
caused by the small sample sizes and low signal levels. In addition, both bipolar and schizophrenia have a large 
number of other risk factors. In this analysis, only omics variables are considered. Taking both diseases into con-
sideration, integration analysis A1 has a small advantage over the alternatives.

Horizontal integrative analysis for disease marker identification. Besides the integrative analysis 
methods described in Section 2.4 with penalties (2) (referred to as B1) and (3) (referred to as B2), we also consider 
an alternative analysis, referred to as B3, which analyzes the two diseases separately and applies Lasso to accom-
modate high dimensionality and select relevant markers. This comparison can straightforwardly show the merit 
of horizontal integration. Detailed estimation results are provided in Table S3 (Supplementary Excel file). The 
numbers of gene expressions identified by different approaches and their overlaps are provided in Table 3, which 
suggests that different approaches lead to different findings. In addition, there are also variations across pathways 
and diseases. To better comprehend the adopted similarity-based penalties (2) and (3), we further provide the 
overlaps of the identified genes between the two diseases in Table 4. Overall, compared to B3, B1 and B2 are 
observed to identify more overlapping gene expressions associated with both diseases. For example, for the first 

Approach Bipolar disorder Schizophrenia

A1 0.50 (0.15) 0.53 (0.14)

A2 0.46 (0.14) 0.48 (0.13)

A3 0.57 (0.14) 0.47 (0.16)

A4 0.39 (0.13) 0.51 (0.14)

Table 2. Vertical integrative analysis of multi-omics data: prediction performance of different approaches, 
mean (sd) of CPR.

Pathway Approach

Bipolar disorder Schizophrenia

B1 B2 B3 B1 B2 B3

1

B1 62 25 11 68 18 8

B2 32 6 32 5

B3 12 13

2

B1 14 9 4 16 9 1

B2 24 4 19 3

B3 4 3

3

B1 27 10 6 12 7 1

B2 33 8 34 8

B3 18 11

Table 3. Horizontal integrative analysis for disease marker identification: numbers of gene expressions 
identified by different approaches and their overlaps.

Pathway Approach
Bipolar 
disorder Schizophrenia Overlaps

1

B1 62 68 35

B2 32 32 32

B3 12 13 4

2

B1 14 16 10

B2 24 19 15

B3 4 3 1

3

B1 27 12 4

B2 33 34 27

B3 18 11 4

Table 4. Horizontal integrative analysis for disease marker identification: overlaps of the identified gene 
expressions between two diseases with different approaches.

https://doi.org/10.1038/s41598-019-49718-5
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pathway, the numbers of overlapping gene expressions are 35 (B1), 32 (B2), and 4 (B3). With the close relatedness 
of bipolar and schizophrenia, the integrative analysis results can be sensible. For the gene expressions identified 
by B1 and B2, literature search suggests that they may have important biological implications. For example, gene 
BRCA1 in the ubiquitin mediated proteolysis pathway, with nonzero coefficients for both diseases, is relevant to 
cell cycle. It has been reported to be down-regulated in schizophrenia patients45, supporting BRCA1 as a potential 
biomarker for schizophrenia. Regarding to gene Bax in the tryptophan metabolism pathway, Bax/Bcl-2 ratio has 
been found to be 50% higher in schizophrenia patients than nonpsychiatric comparison subjects46. Gene PIK3CA 
encodes the alpha catalytic subunit of the PI3K enzyme, of which the aberrant signaling has been identified as a 
factor in the pathophysiology of multiple psychiatric disorders including schizophrenia and autism6. Published 
studies have shown that the expression of gene Bcl-2 can impact intracellular calcium (Ca2+) homeostasis (ICH) 
in bipolar disorder47. In addition, in the neurotrophin signaling pathway, it has been reported that the expression 
of gene PSEN1 is significantly decreased in schizophrenia and bipolar patient groups, supporting PSEN1 as a 
potential biomarker for both diseases48.

Simulation. To better comprehend the operating characteristics of the two types of shrinkage penalties, we 
conduct simulation under various scenarios to evaluate their identification performance. The specific settings 
are as follows. First, set n(k) = 40, k = 1, 2, 3, and p = 100. Then, following the literature for example the human 
disease network studies49,50, the similarity between diseases is described using marker similarity, where diseases 
sharing with more common important markers or having more similar marker effects are indicated to be more 
similar. Specifically, gene expression values for the kth type of mental disorders are generated from a multivariate 
normal distribution N(μk,Σ)with a mean vector μk = (μk1, …, μkp) and a block-diagonal covariance matrix Σ, 
and those for the normal controls are generated from N(0, Σ). Here, the first eight variables are set as associated 
with the disease outcomes with the corresponding elements of μk being nonzero, and the rest of μk are zeros. Σ 
has two blocks corresponding to the important variables and unimportant ones, respectively, where each block 
has an auto-regressive structure with the correlation coefficient between the jth and kth variables being 0.3|j−k|. 
Set μ1 = (−1, −1, −1, −1, 2, 2, 2, 2, 0, …, 0). We consider various values of μ2 to generate different levels of dis-
ease similarity. Scenario I has μ1 = μ2, that is, with the same signs and same magnitudes. Here two diseases have 
strong similarity with the same markers as well as the same association effects. Scenarios II and III have μ1 and 
μ2 with the same signs but magnitudes having certain differences. In particular, μ2 = (−1, −1, −4, −4, 2, 2, 4, 
4, 0, …, 0) for scenario II, and μ2 = (−2, −2, −0.5, −0.5, 3, 3, 1, 1, 0, …, 0) for scenario III. Scenario IV has μ1 
and μ2 with the same nonzero components but various conflicting signs. In particular μ2 = (2, 2, −0.5, −0.5, 3, 
3, −1, −1, 0, …, 0). It is noted that generating variables with normal distributions for two diseases directly corre-
sponds to logistic regression models. We acknowledge that the simulation settings may be considerably simpler 
than practical data. However, such settings have been extensively adopted in the literature and are sufficient for 
demonstrating the proposed analysis.

For the four scenarios, we compute the average TPR (true positive rate) and FPR (false positive rate) values 
over 100 replicates in Table A2 (Appendix) to evaluate identification performance. It is observed that the pro-
posed B1 and B2 perform much better than B3, with larger TPR and smaller FPR values under Scenarios I-III. 
Under Scenario IV, where the sign and magnitude consistency do not hold, B1 and B2 still have performance 
comparable to B3. Compared to B2, B1 has superior performance under Scenarios I and II, and inferior per-
formance under Scenarios III and IV, suggesting that the magnitude-based penalty may be favorable when two 
diseases have stronger similarity. This simulation also suggests that for practical data analysis, where the level of 
similarity is unknown, it is worthwhile to have both approaches.

Horizontal integrative analysis of gene expression-CNV regulations. Besides the integrative analy-
sis methods described in Section 2.5 with penalties similar to those in (2) (referred to as C1) and (3) (referred to as 
C2), we also consider an alternative for a direct comparison. The approach C3 analyzes the gene expression-CNV 
regulation for the two diseases separately using the Lasso approach for accommodating high dimensionality and 
conducting variable selection. The detailed estimation results are provided in Tables S4–S6 (Supplementary Excel 

Pathway

Bipolar disorder Schizophrenia

C1 C2 C3 C1 C2 C3

1

C1 197 23 3 279 31 19

C2 203 2 230 30

C3 281 590

2

C1 49 4 11 54 9 2

C2 40 1 46 3

C3 117 110

3

C1 242 13 9 240 18 12

C2 147 2 147 8

C3 214 631

Table 5. Horizontal integrative analysis of gene expression-CNV regulations: numbers of regulations identified 
by different approaches and their overlaps.
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file), and the summary is provided in Table 5. It is observed that integrative analysis C1 and C2 generate findings 
different from the benchmark C3, with different sets of nonzero coefficients and hence concluding different gene 
expression-CNV regulations. Such differences are sensible, as the three approaches have fundamentally different 
strategies, with C1 and C2 promoting similarity in magnitudes and signs respectively, and C3 paying no attention 
to the potential similarity.

Besides identification, we also more closely examine the estimation results. Specifically, we compute the differ-
ences of the estimated coefficient matrices for any two of bipolar, schizophrenia, and normal. Here, the gene 
expression-CNV regulations for the normal are estimated using Lasso separately. Two distances are considered. 
The first is defined as η η η η= ∑ − ≠ ′′

=
′( ) ( ) k kDist , ,j

k
j
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l
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jl
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jl
k( ) ( )
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, which takes into account both magnitude 
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focuses on the “directions” (signs) of regulations. Results are shown in Table 6. It is observed that, under C1 and 
C2, both measures between two diseases are significantly smaller than those between disease and normal. It is 
expected that the similarity between diseases is higher than that between disease and normal. As such, the 
resulted distances are sensible, which can provide support to the validity of integration. A closer examination of 
the identified gene expression-CNV regulations is also taken, which suggests that the identified regulations are 
biologically sensible. Of note in the proposed analysis, both cis- and trans-acting regulations are considered. As a 
representative example, we consider gene ATF4. Disruption in schizophrenia 1 (DISC1) and its molecular cas-
cade have an influence on the pathophysiology of schizophrenia and bipolar disorder. ATF4 can encode proteins 
that interact with DISC1, suggesting its important role in the pathophysiology of the two diseases51. With 
approaches C1 and C2, the expression of gene ATF4 is identified to be regulated by three CNVs (PLCG2, 
PTPN11, CALML5) besides the cis-acting CNV. In contrast, the alternative C3 misses these regulations.

Simulation. To obtain further insights into the identification performance of our horizontal integrative analysis, 
we conduct simulation based on real data. Specifically, we use the observed CNV measurements as predictors and 
resampling to generate desirable variations across multiple simulation replicates. Each gene expression is regu-
lated by 10% of the CNV measurements, where a half of the corresponding nonzero regression coefficients in (4) 
are randomly generated from Uniform(0.6, 1.2), and the other half are randomly generated from Uniform(−1.2, 
−0.6). In addition, we reinforce that, for each gene expression, bipolar disorder and schizophrenia share six 
important CNVs, and the corresponding coefficients have the same signs. Random errors are generated from N(0, 
1), and gene expression values are computed from linear regression models. To evaluate identification, TPR and 
FPR values are computed. The averages computed based on 100 replicates are provided in Table A3 (Appendix). 
The proposed two approaches are observed to have better performance for all the three pathways. They can iden-
tify the majority of true gene expression-CNV associations with a low FPR. For example, for the first pathway of 
bipolar disorder, C1 and C2 have (TPR, FPR) = (0.982, 0.019) and (0.992, 0.011), compared to (0.843, 0.046) for 
C3. This provides support to the validity of the proposed horizontal integrative analysis.

Pathway Approach SZ-N BD-N BD-SZ

η η ′( )Dist ,j
k

j
k( ) ( )

1

C1 226.21 223.84 137.90

C2 241.35 243.60 191.94

C3 300.31 262.70 281.58

2

C1 172.89 159.21 73.44

C2 157.86 153.72 72.05

C3 213.43 180.20 189.58

3

C1 216.90 209.61 134.28

C2 213.80 207.03 132.57

C3 499.10 206.39 468.94

η η ′( )SignDist ,j
k

j
k( ) ( )

1

C1 30.46 29.05 21.77

C2 29.61 29.22 20.71

C3 35.54 30.98 29.68

2

C1 15.13 14.70 9.95

C2 14.87 14.46 9.17

C3 16.64 16.73 15.46

3

C1 30.63 30.40 21.40

C2 28.79 28.83 17.49

C3 37.00 29.70 28.83

Table 6. Horizontal integrative analysis of gene expression-CNV regulations: differences between coefficient 
matrices. BD, SZ, and N stand for bipolar disorder, schizophrenia, and normal.
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Discussion
In mental disorder research, omics profiling is getting routine. Two major objectives of omics profiling studies, 
as shown in the literature, are to construct outcome models using omics measurements and to identify disease 
associated risk factors. In addition, for almost all diseases including mental disorders as well as normal subjects, it 
is of interest to understand the regulations among different types of omics measurements. In this sense, this study 
has not proposed new analysis goals. Rather, the goal of integrative analysis is to better achieve those goals via 
integrating data on multiple related diseases and on multiple types of omics measurements. In recent biomedical 
studies, meta-analysis has played a critical role in summarizing results from multiple Genome Wide Association 
and other types of studies. Different from the summary results-based strategy, the proposed integrative analysis 
introduces integration of original data in the discovery process. Published studies, for example, Li, et al.52, Shen, et 
al.53, and Zhang and Zhang54, have shown that integrative analysis can more effectively integrate information and 
improve analysis results. As demonstrated by data analysis in this article, integrative analysis is highly feasible and 
practical with mental disorders. Integrative analysis has been highly successful, for example in cancer research. It 
is reasonable to expect similar successes in mental disorder research in the near future. This article may provide a 
timely showcase of integrative analysis with mental disorders.

Our study introduces three types of integrative analysis with different strategies. The first type integrates 
multi-omics data for a single type of disease. The second type integrates multiple related diseases with one type 
of omics data. The third type integrates multiple related diseases for identifying regulations between two types 
of omics data. Researchers may be able to conduct one type or multiple types of the proposed analysis according 
to the available data. For example, with SNP data from the Psychiatric Genomics Consortium (PGC) on nine 
types of psychiatric disorders, researchers can conduct the second type of integrative analysis for disease marker 
identification. With eQTL studies, researchers can conduct the third type of integrative analysis to analyze gene 
expression-SNP relationships if data are available on different types of mental disorders. In addition, with the 
development of large-scale genomic projects, there are an increasing number of studies that have collected both 
disease and omics data. For example, Pai, et al.55 performed a multi-omics study of neurons isolated from bipolar 
disorder, schizophrenia, and normal patients, where both DNA methylations and gene expressions were meas-
ured. Data are publicly available at the GEO website with GEO accession GSE112525. Multi-omics data have also 
been collected for other types of related diseases, such as type II diabetes and obesity56, obese, bland steatosis and 
early non-alcoholic fatty liver disease57, and others. As mental disorders have been posing an increasing public 
health concern, it is expected that samples with both disease and omics data for mental disorders will be accumu-
lated at a fast pace in the near future, enabling broader applications of our approaches.

It is noted that integrative analysis methodologies are under fast development, and what has been conducted 
in this article is only a small subset of integrative analysis. There can be many other possibilities, for example 
conducting simultaneous vertical and horizontal integrations, accommodating more types of omics measure-
ments, and conducting integrative analysis based on high-dimensional techniques other than penalization. The 
analysis conducted in this article can be potentially improved in multiple aspects. For mental disorders, clinical, 
environmental, socioeconomic, and other risk factors may also play critical roles. With limitations in data, such 
confounders are not included in analysis. When available, they can be easily incorporated in modeling. For exam-
ple, a more comprehensive outcome model may consist of “confounders + omics measurements”. Confounders 
usually have a low dimension and are pre-selected. Their coefficients will not be subject to penalized selection. 
The adopted techniques are based on penalization, which determines whether an effect is important by examin-
ing whether its coefficient is nonzero. In “classic” low-dimensional statistical modeling, inference is the popular 
tool for determining significance. High-dimensional inference with penalization is extremely challenging and 
still an open problem. It is beyond the scope of this article to develop inference techniques for penalized inte-
grative analysis. Our data analysis has generated some sensible findings that are different from the benchmark 
alternatives. The analyzed data are limited in multiple aspects, including for example a small sample size, limited 
omics measurements, and limited outcome variables. As such, the findings may need to be taken with cautious. 
Ultimately, functional/experimental validations and additional independent data will be needed to confirm our 
findings. However, our data analysis can already demonstrate the implementation and effectiveness of integrative 
analysis to a great extent. Overall, the integrative analysis techniques and data analysis results are expected to be 
useful for mental disorder research.
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