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Photon-Assisted Perfect 
Conductivity Between Arrays of 
Two-Level Atoms
Chih-Chun Chang, Lee Lin & Guang-Yin Chen

We investigate interactions between two (parallel) arrays of two-level atoms (2LA) via photons through 
quantum electrodynamical interaction with one array (the source array) connected to a particle source, 
and we study the (photo-)resistivity of the other array (the measured array). The wave function of the 
interacted photon propagating in an array is a Bloch wave with a gap in its eigenvalue (the photonic 
dispersion). Due to interactions between arrayed 2LA and the dressed photonic field with non-linear 
dispersion, the conduction behaviors of the measured array can be very diversified according to the 
input energy of the particle source connected to the source array, and their relative positions. As a 
result, the resistivity of the measured array can be zero or negative, and can also be oscillatory with 
respect to the incoming energy of the particle source of the source array, and the separation between 
arrays.

The interactions between light and atoms and their diversified manifestations1–7 have been an important area of 
research in fundamental physics, and practical applications for many years. Among these researches, the phe-
nomena of microwave-induced zero resistance (MIZR), and microwave-induced resistance oscillation (MIRO) 
in systems of two-dimensional electron gas (2DEG) have been studied by many researchers since their discoveries 
around 20021,4. With the irradiation of microwave on these 2DEG samples, the (magneto-)resistance of the sys-
tems of semiconductor in two dimensions has oscillations1–4,8–21. And there have been many theories introduced 
to explain those phenomena8,22–58. In the above theoretical works, the displacement model and other related 
models8,22–57 with impurities required to participate in electron transportation are quite appropriate in systems 
with multiple impurities. On the other hand, as the concentration of impurities decreasing, the model of dressed 
photon with nonlinear dispersion58 seems to be a suitable theory. It is exhibited in ref.58 that MIZR & MIRO 
can arise due to interactions of quantum electrodynamics (QED) between photons and simple harmonic atoms 
in an array59–63 even in systems with no impurities. From the perspective of concentration of impurities, these 
two kinds of theories may be complimentary to each other in studying the propagation of electrons in systems 
exposed to photonic source.

In this paper, we would report that resistance oscillation and zero resistance also appear in two parallel arrays 
of two-level atoms (2LA) (Fig. 1). We consider a model of two parallel arrays (x-direction) of 2LA each with N 
sites with no impurities. They can only interact with each other via emitting/absorbing photons through the QED 
coupling. Only one array (the source array) is connected to a source (sink) of electrons of the excited state; and 
we measure the resistivity of the other one (the measured array). The resistance of the measured array shows 
oscillations & zero-resistance with respect to the frequency of the external source and the separation between 
arrays. People might be reminiscent of the classical phenomenon of mutual induction between two loops with the 
potential (emf) along one loop influenced by the other loop by variation of magnetic flux. The way to achieve it 
can be the relative motion between the two loops, or the changing source of electric current for the magnetic field. 
Analogously, in our model, the resistance and therefore the electric potential difference across one array can be 
influenced by the other array by variation of the EM irradiation of photon through relative displacement between 
the two arrays and change of the source of electron. The experimental realizations of our model will be discussed 
later in the Discussion section.

Please be noted that a major difference between this model and that in ref.58 is that we also study the mani-
festations of the MIZR & MIRO effects with respect to the separation between parallel arrays. And we will show 
an interesting big decrease of (averaged) resistance between two parallel arrays with the increase of separation 
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between them. In addition, the model of two-level systems discussed in this work is more related to potential 
applications to quantum memory and relevant systems. Furthermore, we will present a quantum analog of the 
potential of one EM set-up influenced by another one through photonic field interacting between them like the 
mutual-induction in the classical domain. From the point of view of accommodations of electrons, there is an 
essential difference between the atom of the two-level system and that of the simple-harmonic-oscillator (SHO) 
studied in ref.58. For a two-level atom, only one electron can be accommodated in an atom; while many electrons 
can be accommodated in an atom with eigenenergies of equal-energy-spacing like the SHO & the 2DEG in a 
magnetic field with Landau energy levels. Therefore, a two-dimensional array of SHO are more related to the 
2DEG in a magnetic field.

Results
In this paper, we study our system at temperature T = 0. The EM wave is assumed to be uniform along y, 
z-directions, and to move in x̂. Therefore, in radiation gauge (∇ ⋅

→
=A 0), the vector potential 

→
A  can be written 

as → =A x A x A x( ) (0, ( ), ( ))y z . The photonic annihilation operator A, and the photonic creation operator A† are 
defined as,
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†= + = − .
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with a the lattice spacing, p( )  the famous Bloch spectrum, and natural units is used ≡ ≡c( 1) 64. On the RHS of 
Eq. (3), the second term describes hoppings of electron from one site to its adjacent sites. Here the field operator 
of electron at site j on the upper (lower) energy level, the excited state (the ground state), is denoted as c j2,  (c j1, ) 
with ε2 (ε1) the corresponding energy. And both the upper & lower fields can hop to their nearest-neighbor sites 
with λ

2
 as the hopping coefficient. At low temperatures, there are two channels of conduction through transporta-

tions of particles of the upper field, and holes corresponding to vacancies of particles of the lower field. In Eq. (3), 
δ is small and positive. The Hamiltonian LA2

(4)  describes the on-site hard-core interaction between the upper & 
lower fields when U is set to ∞ to avoid the possibility of both the upper field particle and the lower field particle 
at the same site.

The interaction between the arrayed 2LA and photons is

 ∑= + . . .†c A g A x c c h c({ }, ) [ ( ) ]
(7)

int
j

j j j2, 1,

Figure 1.  Model. An array of N two-level atoms with spacing a (x-direction) interacts with another parallel 
array of N two-level atoms connected with a particle source/sink through emitting and absorbing photons. 
Inter-array hopping of electrons is prohibited.
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And the Hamiltonian c A({ }, )int  is the light-matter interaction adopted in QED in which a lower field can 
absorb a photon to become the upper field, and vice versa; the coupling constant ∼ ∼g e c/ 1/ 1372   is the 
coupling between bare electrons and bare photons as is widely adopted in field theory literatures, e.g., ref.64. Please 
note that the collective behavior of this coupling constant between electrons and photons in different geometry or 
confinements results in different effective65 coupling strength in quantum optics.

t-matrix.  To handle the hard-core interaction  LA2
(4)  (Eq. (5)), we can apply the method of binary collision 

which was developed in 195966–68. We add up all the repeated scatterings between the upper and the lower field 
(ladder diagrams (Fig. 2)) to get a finite effective coupling λt( ) between them at low energy.

We define 〈 |Γ | 〉q P P p( , )0  to be the sum of the ladder diagrams (in Fig. 2) which is the amplitude of repeated 
scatterings between upper field (1) and lower field (2) with incoming momenta p1 & p2, respectively 

= −( )p p p( )1
2 1 2 , and outgoing momenta q1 & q2, respectively = −( )q q q( )1

2 1 2 , and P0 is the total energy, P the 
total momentum69.

Following ref.69, we can obtain that
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And by setting → ∞U , we obtain the following equation,
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that is, the hard-core interaction between the upper field particle and the lower field particle is equivalent to a 
soft-core one, and is independent of both the incoming & outgoing relative momenta (p & q). Thus, by the binary 
collision method66,68,69 (Eq. (8)), and Eqs (4) and (5), the following Hamiltonian can be obtained, and it is the 
low-energy soft-core effective Hamiltonian for the hard-core interaction,
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is the effective new coupling used to replace the infinite U in  c({ })LA2
(4)  (Eq. (5)). Please be noticed that the 

hard-core scatterings between upper & lower fields at low energy is summarized in vP (Fig. 2).

Figure 2.  Ladder diagram. Diagrammatic expansion of 〈 |Γ | 〉q P P p( , )0  which is the sum of the repeated and 
continuous scatterings between the upper and the lower fields (ladder diagrams). The external legs are only for 
the eyes, the black dot “●” is U in Eq. (5), and the internal double-line (single line) represents the propagator of 
the upper (lower) field.
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Electron propagator.  The renormalized propagators of the lower & upper fields ωΔ
∼

α k( , )
(1)

 (α = 1, 2) (with 
hard-core interaction taken into account) are diagrammatically represented in Fig. 3, and they satisfy the follow-
ing Dyson’s equation (by Eqs. (3) and (9)),

ω
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where the + sign is for particle propagator going forward in time, and the − sign is for propagator going back-
ward in time (hole), and the effective mass ωΣα k( , )(1)  is

	 (14)

That is, the renormalized energy levels of both the upper & lower fields are shifted by Σ (0, 0)1
(1)  due to 

hard-core interaction. And these two effective masses can be well incorporated into our theory by redefining the 
energy levels to be ε ε′ = + Σα α (0, 0)1

(1) . It follows that the energy difference (resonance energy of the 2LA)

ν ε ε ε ε≡ − = ′ − ′ (15)2 1 2 1

is unchanged. In the mean time, the renormalized propagators of the upper & lower fields become
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It should be remarked that the renormalized propagators of the α field (α = 2 for the upper field, & 1 for the 
lower) ωΔ

∼
α

±
k( , )

(1)
 is the Fourier transform of the time-evolution amplitude 〈Ψ | |Ψ 〉

∼ ∼
α αt( )  of the renormalized 

eigenstate corresponding to the α field |Ψ 〉
∼

α  which carries the information of the hard-core interaction (or equiv-
alently, the effective soft-core interaction) between the bare upper & lower fields, and  t( ) is the time-evolution 
operator. Here, the renormalized eigenkets |Ψ 〉

∼
1  & |Ψ 〉

∼
2  are orthogonal to each other, and they form a basis of eigen-

kets that diagonalizes the Hamiltonian  + †c H c c({ }) ( , )LA eff2
(2) (4) .

Figure 3.  Diagrammatic expansions. Diagrammatic expansions of the renormalized propagators of the upper 
field ωΔ

∼ k( , )2
(1)

 (thick double-line) & the lower field ωΔ
∼ k( , )1

(1)
 (thick single-line) represented by the sum of free 

propagators of the upper field ωΔ
∼ k( , )2

(0)
 (thin double-line) & the lower field ωΔ

∼ k( , )1
(0)

 (thin single-line). The 
black dot “●” is the effective coupling vP (Eq. (12)).
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Photon propagator.  In this model, the lattice spacing will be denoted as a. Following ref.70, the photonic 
propagator ω ω′ ′G k k( , ; , ) satisfies the following Dyson’s equation
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2 2   is the propagator of free photon with  being an infinitesimal positive num-

ber, π=h n a2 /  is the reciprocal lattice vector (for all integer values of n), and ωΠ k( , ) is
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which is the renormalization correction of self-mass to the photonic propagator from the light-matter interaction. 
We can then obtain the photonic dispersion relation through a calculation similar to that done in refs70 &71 as,

ω ω
ω

ωΠ ⋅ + − =a k a
a

a ka( , ) sin cos cos 0, (19)
2

as is shown in Fig. 4. (Please notice that our self-mass ωΠ k( , ) (Eq. (18)) is not exactly the same as that in refs70 
&71). It is nonlinear with an energy gap near the energy spacing ν, around there the momenta are complex corre-
sponding to attenuated light waves. By ref.71, the dressed photon propagator is
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where δl k,  denotes crystal momentum conservation, i.e., δ = 1l k, , if π= +l k n a2 / ; δ = 0l k, , otherwise; and the 
function ωF k( , )k  is defined as71
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Figure 4.  Dispersion. Dispersion relations of π π≡ω ωk a K a/ ( Re / ) versus ω ν/  [blue line], and 
κ π π≡ω ωa K a/ ( Im / ) versus ω ν/  [red line] of photonic field propagating in an array of 2LA. The green line 
represents the dispersion relation for free photon. Here we choose =g a/ 1/1252 , ν π= /4, λ ν= .0 088 , 
δ ν= /100. Being satisfying a similar (but not exactly the same) equation (Eq. (19)) with different parameters, 
the main figure looks like that of Fig. 2 in ref. 71. The inset shows the DOS (in arbitrary unit) of the (dressed) 
photon around the resonant energy ν.
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The amplitude that a photon with momentum kx emitted from the source array (s) and propagating to the 

measured array (m) (a distance y afar) with momentum ′k x after a time t evolution has its Fourier transform as
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And its integration over kx & ′k x, denoted as ωΛ
∼ y( , ), is very important in the multi-varied features of the 

(photo-)resistance of the measured array,
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where ρ ω


( )E  is the photonic density of state (DOS)71 dominated by energies around the energy gap (Fig. 4).
Without causing confusion, we shall depict in Fig. 5 the renormalized propagators of upper & lower fields of 

electron, and renormalized propagator of photon by thin double-line, single-line, and wavy-line, respectively, 
for brevity; and the term renormalized propagator will be simplified as propagator in the following paragraphs.

DC conductivity.  At zero temperature, the (renormalized) ground states |Ψ 〉
∼

1 ’s of the arrayed 2LA are occu-
pied. Thus, the electron in the ground state can not transport unless it is raised to the (renormalized) excited state 
|Ψ 〉
∼

2 , or its neighboring electrons are excited leaving holes there. Please be noted that the renormalized ground 
state is orthogonal to the renormalized excited state 〈Ψ |Ψ 〉 =

∼ ∼ 01 2  (within the approximation of binary collision).
Before reaching the end, it is hard for electrons in the (renormalized) excited states in the measured array to 

drop to the (renormalized) ground states for being almost occupied. Therefore, it would be a good approximation 
to assume that electrons in the (renormalized) ground state |Ψ 〉

∼
1  of the measured array will not be excited to |Ψ 〉

∼
2  

twice by absorbing and emitting and then absorbing again emitted photons from the source array during the 
process of transportation from one end to the other. It follows that we can calculate the Feynman diagram of 

Figure 5.  Diagram for the calculation of the conductivity. Diagram for the calculation of the conductivity (to 
the leading order) of an array of 2LA with the radiation emitted and absorbed by another parallel array which 
has an external source of electron with frequency ωe. The frequency is conserved, but the momentum satisfies 
only crystal momentum conservation. Each dotted line represents an insertion of momentum k from the 
current operator. The double-line (single-line) is the renormalized propagator of the upper field (lower field) 

ωΔ
∼

α
±

k( , )
(1)

 (Eq. 16), and wavy-line represents the renormalized photonic propagator ω ω′ ′ ′G k k( , ; , ) (Eq. 17).
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interactions between the source array and the measured array (Fig. 5) to get the retarded current-current correla-
tion 〈 ′ − ′ 〉j q j q( ) ( )0 0  to the leading order; then we obtain the DC conductivity through the Kubo formula,
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and the retarded current-current correlation corresponding to the Feynman diagram shown in Fig. 5 is
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( ) ( ) ( )

( , )

( , ) ( ) ( ) ( )

( , ) ( , )

( , ) ( , ), (26)

P

R

R
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R

R
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R

R R

0 0
( )

2 2 2
1

( )

2
( )

2
( )

1
( )

2
( )

1
( )

1
( )

0

∫

∫

π
ω
π

ω

ω

ω ω

λ ω
π π

ω

ω ω

ω ω

=
′

| |Δ

⋅ |Λ ′ |

⋅ Δ − − ′

⋅ Δ

⋅ Δ + ′ +

⋅ Δ Δ ′ +

∼

ω

ω

+

+
′

+

+
′

+ −

dp d J p

g y

p k

e d dk k k

k k

k k q

2 2
[ ( , )]

( , )

( , )

2 2
( , )

( , )

( , ) ( , ), (27)

R
e

R
e

R

R

R R

0 2
( ) 2

4 2

1
( )

2 2 2
1

( )

2
( )

1
( )

1
( )

0

where the superscript R represents the retarded propagators for the fields, and ω π δ ω ω= −

 
J p J e( , ) 2 ( )ipNa

e0
/2 , or 

δ= + ω−J x t J x Na e( , ) ( /2) i t
0

e  which is a source of particle with energy ωe located at the left end of the array 
= −x Na/2. Here we shall define a function ζ ω′ ′q( , )0  as,

∫ζ ω
π

ω
π

ω ω ω

ω ω

ζ ω

π π
δλ ω ν λ δ

′ ′ = Δ Δ + ′ +

⋅ Δ Δ ′ +

−
∂

∂
′

≈
+

⋅




 ′ − − +





.

ω

ω

+ +
′

+ −

=

′

q dk d k k k k

k k q

q
q

a k a i

( , )
2 2

( , ) ( , )

( , ) ( , ),

and Im ( , )

(1 /4)
2

1 Re 1
( sin 2 ) (28)

R R

R R

q

0
2

1
( )

2
( )

1
( )

1
( )

0

0
0

0

2

3 2

0

Then the modification to the conductivity from another parallel array of 2LA is,

∫

σ ω

λ
π

ω
π

ω ω ω

ω ζ ω

Δ = −
∂

∂
〈 − 〉

=
′

Δ Δ − − ′ ⋅

⋅ | | |Λ ′ | ⋅ −
∂

∂
′ .

∼

ω

=

+ +
′

=

y
q

j q j q

e g dp d p p k

J y
q

q

( , ) Im ( ) ( )

2 2
[ ( , ] ( , )

( , ) ( ) Im ( , )

(29)

DC
P

e
P

q

R
e

R
e

q

( )

0
0 0

( )

0

2 2 4
2

( ) 2
1

( )

0
2 2

0
0

0

0

0

If there is no external source, the measured array is independent of the source array, and its retarded 
current-current correlation and the DC conductivity for the measured array can be obtained through calculation 
similar to that done in ref.58,
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∫λ
π

ω
π π π

ω ω

σ π λ
δ

〈 ′ − ′ 〉

=
′

Δ Δ ′ +

= −
∂

∂
〈 − 〉 = .

+ −

=

j q j q

e dk d dl dl k k k q

q
j q j q e

a

( ) ( )

2 2 2 2
( , ) ( , ),

and, Im ( ) ( )
32

(30)

R R

DC

q

0 0
(0)

2 2 2
1

( )
1

( )
0

(0)

0
0 0

(0)

0

2 2

3

0

The total DC conductivity σDC
P( ) is the sum of σDC

(0) (Eq. (30)) & σΔ DC
P( ) (Eq. (29)),

σ ω σ σ ω= + Δy y( , ) ( , ), (31)DC
P

e DC DC
P

e
( ) (0) ( )

and the figures of σ −( )DC
P( ) 1 versus the source frequency ωe, and σ −( )DC

P( ) 1 versus the separation y between arrays, are 
depicted in Figs 6 and 7, respectively.

It is demonstrated in Fig. 6 that DC resistivity can reach zero; and in some regions, it can even be negative. The 
property of zero resistance has been found in many experiments in 2DEG systems irradiated by microwave on 
relatively pure samples1,4,8–21. And negative resistance arises in the experimental work of ref.11. We shall investigate 
the diverse behaviors of resistivity in our system shown in Figs 6 and 7 in more details in the Discussion section.

Discussion
For convenience, we shall define a parameter ω′e which is the energy difference between the external frequency 
and the renormalized ground state energy, ω ω ε′ ≡ − ′e e 1. Then in Eq. (29), it can be seen from 

ω ωΔ − − ′ω
+

′p k( , )R
e1

( )  (Eq. (16)) that most of the contributions in the integration over the photonic energy ω′ 
are from the region  ω ω ω λ′ ′ ′ + 2e e . And seeing from ωΔ + p[ ( , )]R

e2
( ) 2 in Eq. (29), when ωe is around ε′2, or 

ω′e is around ν ε ε= ′ − ′2 1, the modification to the conductivity σ ωΔ y( , )DC
P

e
( )  becomes its maximum. Thus, the 

parameter ω ω ε′ = − ′( )e e 1  is quite important for the behaviors of the amplitude of the emitted photon ωΛ ′
∼ y( , ) 

(Eq. (24)) and the conductivity of the measured array σ ω y( , )DC
P

e
( )  (Eq. (31)).

In the following subsections, we shall study the behaviors of the resistivity of the measured array vs. the exter-
nal frequency ωe (or ω′e), and separations between arrays, in addition to phenomena of zero & negative resistivity 
shown in Fig. 6. They can be understood by investigating ω|Λ ′ |

∼ y( , ) 2 (Eq. (24)) which is the probability of photon 
emitted from the source array to the measured array, and ζ ω− ′∂

∂
=

qIm ( , )
q

q
0

00
0

 (Eq. (28)) which characterizes 

the conductivity of the measured array through the photonic dispersion relation; both of them appear in Eq. (29) 
of σ ωΔ y( , )DC

P
e

( ) .

Behaviors of resistivity vs. the external frequency ωe.  The behaviors of the resistivity of the measured 
array with respect to the incoming frequency ω ω ε= ′ + ′( )e e 1  of the source array at three distances of separation 

=Y a8 , 16a, & 24a are shown in Fig. 6.

	 1.	 As the input frequency of the external source is small ( ω′ 0e ), ω|Λ ′ | ∼
∼ y( , ) 02 , and there are not many 

photons emitted from the source array. Therefore, the resistivity of the measured array is almost not 
changed as if it is alone.

Figure 6.  DC resistivity with input frequency. DC resistivity ρ σ= −( )DC
P

DC
P( ) ( ) 1 of the measured array (in units of 

ρDC
(0)) versus ω ω ε′ = − ′e e 1 (in units of ν), the difference between the input frequency from the external source 

of the source array and the renormalized ground state energy. Here, we have plots for three different separations 
between the measured array and the source array at =Y a8 , 16a, & 24a.

https://doi.org/10.1038/s41598-019-49606-y


9Scientific Reports |         (2019) 9:13033  | https://doi.org/10.1038/s41598-019-49606-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

	 2.	 As ω ν< ′ 0 e , ω ω φ|Λ ′ | ∼ ′ +
∼ y y( , ) cos ( )e

2 2  with φ nearly a constant, the periodic oscillations of the 
resistivity are from occurrences of standing waves, and therefore, the separation between peaks of ω′e 
satisfies ω πΔ ′ ⋅ ∼c y( / )e . For =Y a16 , we have ω ω νΔ ′ = Δ ∼ .0 255e e .

	 3.	 As ω ν′ ∼e , due to large DOS around the energy gap shown in Fig. 4, many photons with energy close to 
the difference between the excited state energy and the ground state energy (ν) are emitted from the source 
array. In the measured array, originally most atoms are in the (renormalized) ground state at zero tempera-
ture. Being almost fully occupied, ground state electrons can hardly hop to their neighbors, and the 
conductivity is poor. Once photons with frequency near ν emitted from the source array are absorbed in 
the measured array, electrons can be raised to the (renormalized) excited state. They whence can easily hop 
to their neighbors and transport. Furthermore, excited electrons are boosted by the absorbed photons with 
additional momentum = ω′k kx e

. As a result, the electron conductivity is significantly modified, and zero 
resistance appears58.
The factor ζ ω− ′∂

∂
=

qIm ( , )
q

q
0

00
0

 (Eq. (28)) appearing in σΔ DC
P( ) (Eq. (29)) carries the information of zero 

and negative resistance of the measured array. Analytically, it is shown in Fig. 4 that ω′K  is real when ω′ 
proceeds toward but not very near ν. For some λ, ω ν λ δ′ − − ∼ωk a Osin [ ]

s
; thus the denominator in the 

factor ζ ω− ′∂
∂

=
qIm ( , )

q
q

0
00

0

 (Eq. (28)) would be very small and σΔ DC
P( ) in Eq. (29) is of order 

 σ δ⋅ | | −g J[ ]DC
(0) 4

0
2 2 . For very small δ, the DC conductivity of the measured array would become very large, 

and meanwhile, the resistance goes to zero (Fig. 6).
	 4.	 For negative resistivity around ω ν′ ∼ , the momentum ω′K  of the corresponding photon is complex (Fig. 4) 

and the light wave is attenuated. Taking ≡ω ω′ ′k KRe  & κ ≡ω ω′ ′KIm , the real part of the square bracket in 
Eq. (28) is

ω ν λ κ λ κ δ
ω ν λ κ λ κ δ

=
′ − − − +
′ − − + +

.ω ω ω ω

ω ω ω ω

′ ′ ′ ′

′ ′ ′ ′



k a a k a a
k a a k a a

Re[ ] ( sin cosh ) ( cos sinh 2 )
[( sin cosh ) ( cos sinh 2 ) ] (32)

2 2

2 2 2

When ω ν′ ∼ , for some λ, the RHS of Eq. (32) becomes negative. For example, when parameters take values 
shown in Fig. 4, as ω ν′ = .1 114e  & ω ω′ ∼ ′e, the above numerator is negative and the corresponding resistivity of 
the measured array is ρ ρ= − .0 219DC

P
DC

( ) (0) (Fig. 6). From a physical point of view, briefly speaking, the appearance 

Figure 7.  DC resistivity with separation. DC resistivity ρ σ= −( )DC
P

DC
P( ) ( ) 1 (in units of ρDC

(0)) of the measured array 
versus the separation from the source array up to =Y a630 . (a) Figure on the left (named as Fig. 7(a)) depicts 
the DC resistivity when the incoming frequency of the external source ω ν ε= . + ′0 85e 1 (ω ν′ = .0 85e ). (b) 
Figure on the right (named as Fig. 7(b)) depicts the DC resistivity when the incoming frequency of the external 
source ω ν ε= . + ′1 30e 1 (ω ν′ = .1 30e ). Both insets show the details of the two curves of resistivity at short 
separations up to 0.02Y = 12.6a, respectively.
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of negative conductivity is related to the Bloch wave functions of electrons and photons. For an electron with 
momentum >k 0 transmitting in a lattice and interacting with photons on lattice sites, its eigenfunction is a 
Bloch wave function which is a linear combination of plane waves with momenta π+k n a2 / ’s, for all integer 
values of n. Among these plane waves, the =n 0 & the = −n 1 components dominate and represent the principal 
forward & backward scatterings, respectively72,73. As the energy of the dressed photon is around the energy gap 
(ω ν′ ∼ ), under certain circumstances (as we illustrated above), the amplitude of the =n 0 component of the 
Bloch wave of the electron being excited by absorbing a dressed photon with frequency ω′ is small73, and the for-
ward scattering diminishes. As a result, the backward scattering dominates and negative conductivity appears.

Behaviors of resistivity vs. the separation between two arrays from 0 to Y.  In Fig. 7(a), as the 
input frequency ω ν′ <e , the average of the resistivity increases monotonically with the separation between arrays 
(y). The periodic oscillations of the resistivity are from occurrences of standing waves, and therefore, the separa-
tion between peaks Δy satisfies πΔ ∼ω ′ y

c
e . The first peak occurs approximately at ⋅ ∼ω π′ y

c2 1 2
e  such that, roughly 

speaking, the amplitude of photon emitted from the source array to the measured array ωΛ ′
∼ y( , )e 1  (Eq. (24)) 

contributed by half of the ky’s within ω′[0, ]e  is out of phase with that from the other half. For ω ν′ = .0 85e  and 
=Y a630 , we have ∼ . = .y a Y4 725 0 00751 , and Δ ∼ . = .y a Y4 725 0 0075  as are presented in the inset of 

Fig. 7(a).
For ω ν′ ≥e , the resistivity is shown in Fig. 7(b), and there are periodic oscillations due to standing wave as 

before. Nevertheless, the average of the resistivity goes up and down before it increases monotonically with the 
separation between arrays. This is originated from the energy gap (in the photonic dispersion relation) around 
where the DOS dominates (Fig. 4). The photonic energy satisfies ω ω ω′ ∼ ′ = + k( )e k y

2 2 2 2
x

 where ωk
2
x
 & ky

2 are the 
(kinetic) energies associated with the x-momentum kx & the y-momentum ky of the emitted photon, respectively. 
As the photonic frequency ω ω ν′ ∼ ′ ≥e , ωkx

 can be larger than the lower edge of the energy gap for small ky. 
Most of the contributions to the amplitude of the emitted photon ωΛ ′

∼ y( , )e  are from photons with ωkx
 close to the 

energy gap, i.e., ∼k kx x0 & ω ω ν∼ =k kx x0
 with a spreading δωkx0

 of the energy gap around which the DOS dom-
inates71. As ∼k kx x0, we have ω ω ω ν∼ = ′ − = ′ −k k ( ) ( )y y e k e0

2 2 2 2
x0

. In terms of the parameters listed in 
Fig. 4, the spreading δω ν∼ .0 03kx0

 (see Fig. 4). Accordingly, we can then understand behaviors of the resistivity 
with respect to the separation between arrays as are shown in Fig. 7(b) through the following discussions.

	 1.	 For those photons with y-momentum −k ky y
( )

0 ( +k ky y
( )

0), they carry kinetic energy of the x-momen-
tum ω νkx

 ( ω νkx
), and are on the right (left) edge of the gap. As = ′y y 1 & π′ ∼k y /2y0 1 , we have 

′ >−k ycos( ) 0y
( )

1 , & ′ <+k ycos( ) 0y0
( )

1  in ωΛ ′
∼ y( , ) (Eq. (24)). Therefore, those photons around the left edge of 

the energy gap are out of phase with those around the right. This would reduce to the most extent the 
amplitude of the emitted photon to the measured array. Then we have the location of the first peak of the 
average of the resistivity at π π ω ν= ′ ∼ ∼ ′ −y y k/2/ /2/ ( )y e1 0

2 2. And the separation between peaks 
Δy′ satisfies ω π′ Δ ′ ∼ye , as we explained earlier for ω ν′ = .0 85e . It follows that ′ ∼ . = .y a Y2 4 0 00381 , & 
Δ ′ ∼ . = .y a Y3 1 0 0049 , for ω ν′ = .1 30e  & =Y a630  as are shown in the inset of Fig. 7(b).

	 2.	 As the separation y between the two arrays increases from ′y 1, not all photons around the left edge of the 
energy gap are out of phase with those around the right; and the amplitude of the emitted photon to the 
measured array grows. Therefore, the average of the resistivity decreases.

	 3.	 As the separation y between the two arrays increases to ′y 2, the average of the resistivity decreases to its 
minimum. This can be understood by looking at the phases of those photons around the energy gap at 
ω ν=( )kx0

. For emitted photons carrying x-momentum ∼k kx x0, or equivalently 
ω ω∼ = ′ −k k ( )y y e k0

2 2
x0

, they have ω ω ν∼ =k kx x0
 and are around the energy gap. At the distance 

= ′y y 2, those emitted photons with ωkx
 located within the spreading of the energy gap are all in phase with 

each other, i.e., δ− ′k k ycos[( /2) ]y y0 0 2  & δ+ ′k k ycos[( /2) ]y y0 0 2  are of the same sign in ωΛ ′
∼ y( , ) (Eq. (24)). 

It follows that π⋅ ′ ∼k y ny0 2 , and δ π⋅ ′ ∼k yy0 2 . To find the spreading δky0 around ky0 so as to get ′y 2, we 
have the spreading δωkx0

 around the energy gap ω ν=kx0
 as

δω δ ω
δ

ω

ω ν

ν
δ∼ ′ − =

′ −
=

′ −
⋅ .

∼
k

k k

k
k( )

( )

( )

(33)
k e y

y y

y y

e y

e
y

2 2 0 0

2
0

2

2 2

0x0
0

Thus, we have

π
δ

π ω ν

ν δω
′ ∼ ∼

′ −

⋅
y

k
( )

,
(34)y

e

k
2

0

2 2

x0

ω ν δω ν
′ ∼ = .
′ = . = ∼ .

y a Y
Y a

and 111 0 177 ,
for 1 30 , 630 , & 0 03 , (35)e k

2

x0

as is shown in Fig. 7(b).
	 4.	 As the separation y between the two arrays increases from ′y 2 and further, more photons around the 

spreading of the energy gap (or around ky0) get out of phase with each other, and the resistivity increases.
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In summary, we explored interactions between two (parallel) arrays of 2LA through emitting and absorbing 
photons via QED interaction. We calculate the t-matrix of the two fields, upper & lower fields, for electrons. The 
t-matrix summarizes the ladder diagrams of binary collisions between upper & lower fields interacting with each 
other through hard-core interaction. We take the t-matrix at low energy as the (finite) effective coupling between 
upper & lower fields. And we find renormalized propagators of the upper & lower fields. Their correspond-
ing renormalized eigenkets are orthogonal to each other. Then we include in our calculations the interactions 
between photons and electrons through diagrammatic techniques in terms of renormalized propagators.

Due to transportation with repeated scatterings in the source array which is a linear lattice of 2LA, the emitted 
photons are Bloch waves58 with a nonlinear dispersion relation which has a gap around the spacing between 2LA 
energy levels. This significantly modifies the group velocity and the DOS of the photonic field. In addition, stand-
ing waves can occur for photonic Bloch wave as it propagates from the source to the measured array. It follows 
that the conduction behaviors of the measured array can be very diversified according to the input frequency 
of the source and the separation between arrays. As a result, the resistivity of the measured array can be zero or 
negative, and can also show oscillations when we change the incoming frequency of the source array and the 
separation between arrays.

The theoretical scheme that we investigated in this work can be experimentally realized in many 
two-level-system arrays such as superconducting-qubit array74–77, trapped atom array59–63, and gate-control dot 
array78. For example, the source array can be achieved experimentally in the semiconductor quantum-dot array78. 
By connecting to the source and drain reservoirs, the electron in the source-reservoir with energy around (renor-
malized) excited energy of the array can transport through the quantum-dot array to form a source array. The 
energy of the electron tunneling out can be further tuned by changing the applied bias voltage79 between source 
and drain reservoirs. The scheme has also the potential for measuring the photoresisitance version of the quan-
tum interference, such as super-radiance80, the quantum phase transition81, and the optical non-linearity82–84. 
Furthermore, the scheme can be applied for reading out the quantum memory85.

Methods
We define the Hamiltonian of a quantized photonic field in Eq. (2). Then a Hamiltonian of arrayed 2LA with 
hopping term is introduced in Eq. (4). And Eq. (5) represents a hard-core interaction between the excited electron 
and the electron in the ground state to assure that only one electron can be present in an atom. The Hamiltonian 

A c( , { })int  describing the interaction between bare photons and bare electrons is introduced in Eq. (7). We then 
obtain an effective interaction †H c c( , )eff

(4)  (Eq. (11)) with an effective coupling which includes all the repeated 
scatterings between the excited electron and the ground state electron with the hard-core interaction in the sub-
section of t-matrix. Thereafter, we calculate the (renormalized) propagators of electrons with the modifications by 
the self-masses from the effective interaction †H c c( , )eff

(4) . Then, by the Dyson’s equation (Eq. (17)), we obtain the 
propagator of the dressed photon ω ω′ ′G k k( , ; , ) which includes the interactions between the photons and elec-
trons. The function ωΛ ′

∼ y( , ) is then introduced, and its Fourier transform in time t′ describes the amplitude of 
one photon in the source array propagating to the measured array with separation y in time interval t′. Finally, we 
calculate the DC conductivity by the Kubo formula in Eq. (25).

As for the simulation process, we consider two different situations, one with fixed separation between arrays 
and varying frequency of the source, and the other is done with fixed frequency of the source and varying sep-
aration between arrays. Then we calculate the total resistivity numerically under the two above situations with 
specific parameters. The results are presented in the Discussion subsection.
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