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computational chemoproteomics 
to understand the role of selected 
psychoactives in treating mental 
health indications
Jonathan fine1, Rachel Lackner2, Ram Samudrala4 & Gaurav chopra  1,3

We have developed the computational Analysis of novel Drug opportunities (cAnDo) platform to infer 
homology of drug behaviour at a proteomic level by constructing and analysing structural compound-
proteome interaction signatures of 3,733 compounds with 48,278 proteins in a shotgun manner. We 
applied the CANDO platform to predict putative therapeutic properties of 428 psychoactive compounds 
that belong to the phenylethylamine, tryptamine, and cannabinoid chemical classes for treating mental 
health indications. Our findings indicate that these 428 psychoactives are among the top-ranked 
predictions for a significant fraction of mental health indications, demonstrating a significant preference 
for treating such indications over non-mental health indications, relative to randomized controls. Also, 
we analysed the use of specific tryptamines for the treatment of sleeping disorders, bupropion for 
substance abuse disorders, and cannabinoids for epilepsy. Our innovative use of the CANDO platform may 
guide the identification and development of novel therapies for mental health indications and provide 
an understanding of their causal basis on a detailed mechanistic level. These predictions can be used to 
provide new leads for preclinical drug development for mental health and other neurological disorders.

Drug discovery traditionally revolves around single biological targets and focuses on a limited set of relationships 
between a protein target and small molecules of interest. The goal of this approach is to change the biological 
function of a protein responsible for pathogenesis and subsequently determine the toxicity and side effect profile 
of a compound to make it a suitable clinical candidate. The expected result of this approach is a compound that 
modulates the single protein that it targets. Although this traditional approach has been successfully applied to 
develop the majority of approved drugs, it has been questioned in recent years as the number of new approved 
drugs continues to decrease (currently down to 30 according to fda.gov). Additionally, many new drugs are ana-
logues to already known drugs or reformulated to improve efficacy and filed as new patents. According to the 
Tufts Center for the study of Drug Development (csdd.tufts.edu), the average cost to bring a new drug to market 
can be as large as $2.6 billion. Therefore, there exists a shortage of novel drug development because the current 
approach is both time and cost prohibitive1–4.

One methodology to combat the rising cost and time commitment of novel drug development is to repurpose 
already approved drugs that are known to have few deleterious side effects3,5–11. Competiveness in the pharaceutical 
industry hinders the systematic exploration of potential repurposing opportunites, but computational approaches 
enable a workaround. Using computational multi-target docking with dynamics, we developed a drug repurposing 
approach for malaria7 and have since validated our models numerous times experimentally3,8,9,12–17. To expand the 
applicability of our work, we have developed a shotgun approach to evaluate all potential drug repurposing oppor-
tunities simultaneously by evaluating the relationships of compounds with entire proteomes (chemoproteome) in 
an indication-specific manner9,15. Here, we describe the application of our platform to identify possible therapeutic 
uses of phenethylamines, tryptamines, and cannabinoids in treating mental health indications.
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Leveraging computational chemoproteomics for drug discovery. Natural products have a profound 
impact on drug discovery. Many of these products come from plant sources18–20, where 60% of drugs approved by 
the FDA circa the 1990s came from these sources21. While this percentage has decreased to about 40% in recent 
years, it is clear that natural products have an important impact on drug discovery22. Since plants, animals, and 
other organisms have evolved together, we hypothesize that multiple modes of action are responsible for a small 
molecule to become a drug. We have thus developed a platform which relies on a “signature of interactions” (a 
row of binary or real numbers) to represent the interactions of compounds with a set of protein structures that 
are selected to represent the known structural universe. Our hypothosis requires that similar chemoproteome 
signatures indicate similar functional behvarious while non-similar signatures (or regioins thereof) indicate off 
and anti-target (side) effects as these signatures infer proteomic homology of compound or drug behavior. We can 
use these chemoproteomic signatures to rank how well a compound can be repurposed for given indication and 
provide a set of protein interactions responsible for this ranking to obtain an understanding of drug mechanisms 
at the level of atomic interactions.

cAnDo: A shotgun computational chemoproteomics platform for drug repurposing and dis-
covery. Biologically active molecules, such as proteins and drugs, do not function in isolation. The absorption, 
dispersion, metabolism, and excretion (ADME) and effectiveness of a drug are dependent on the interactions 
of the drug with a system of proteins expressed at different sites in an organism. The Computational Analysis of 
Novel Drug Opportunities (CANDO) platform works at the proteomic level by leveraging the interaction signa-
ture of a compound to all proteins in a generic structural library. It compares the signatures of candidate com-
pounds/drugs to those approved for particular indications to make drug repurposing predictions in a shotgun 
manner (here meaning an all vs. all compound-proteome signature comparison).

The first version of the CANDO platform (CANDO v1) shown in Fig. 1 predicts interactions between 3,733 
FDA approved drugs and a variety of other human ingestible compounds (including supplements and illegal 
substances) and 48,278 protein structures from multiple species (46,784 of which are used in this study and this 
protein list is provided in the GitHub data repository) either taken from the Protein Data Bank (PDB)23 or repre-
senting high confidence homology models24 constructed using protein structure prediction methods described 
previously15,25 Specifically, the proteins structures include solved and modeled proteins obtained from eukar-
yotic, prokaryotic, archaea and viral organismal proteomes, including 14,595 human proteins (8,841 of these 
are high-confidence models), a set of 24,958 nonredundant solved protein structures in the PDB, in addition to 
the remaining solved and modeled structures from M. tuberculosis, P. aeruginosa, and viral proteomes, etc. We 
consider different conformations of protein structures by separately including multiple domains (chains) and 
isoforms of proteins for calculating all compound proteins interactions. As an example, for the experimental 
structures considered for the human proteome, we use a mapping between PDB chains and UniProtKB/SwissProt 
codes26 in the human proteome. We also treat all such protein-compound interactions equally as proteins from 
different biological classes affect benchmarking accuracy results to predict putative repurposeable drugs for 
diseases15.

Figure 1. Schematic of computational chemoproteomics pipeline to identify psychoactives for mental-health 
indications using the CANDO platform. The version (v1) of the CANDO platform used in this study evaluated 
interactions between 3,733 human ingestible compounds (including the 428 psychoactives listed in Tables S1–S6) 
that are associated with 2030 indications (including 137 related to mental health and epilepsy disorders) and 
48,278 protein structures (46,784 used to compute the structural interactome). The chemoproteomics interaction 
signatures are ranked according to the degree of interaction and similarity for all indications. The signature 
comparison (RMSD) and ranking approach (TopX predictions) yielded benchmarking accuracies of 12–25% for 
1439 indications with at least two approved compounds. 58/163 (35%) top ranking predictions had comparable 
or better activity relative to existing drugs in twelve prospective in vitro studies across ten indications. We expect 
these findings to hold for evaluating the potential of psychoactives in treating mental health indications, which 
we then analysed holistically to determine global patterns and make predictions of putative drug leads for these 
indications.
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We employ our bioinformatic docking approach to construct a 3,733 × 46,784 compound-protein interac-
tion matrix (see Compound-Proteome Interaction Signature section15) that is analysed to determine similarity 
in drug behavior15,25. No special methods were used for different protein classes (e.g., kinases and GPCRs) so 
that scores of two proteins from different classes could be compared directly. To generate a pose we used a hier-
archical fragment-based docking with dynamics algorithm27 using knowledge-based potentials28 as done pre-
viously for the Ebola proteome29. We have previously shown that all-atom dynamics is necessary for accurate 
prediction of binding energies30 and demonstrated all-atom knowledge-based force fields are more accurate 
than physics-based approaches for both protein structure prediction and docking16,17,31–34. Furthermore, we have 
shown that multi-targeted docking with dynamics leads to improved hit rates for finding inhibitors of pathogens 
relative to conventional approaches7,8. It should be noted that the interaction score stored in this matrix does not 
represent whether a given target will be inhibited or activated, only that the compound and target interact. As a 
result, the CANDO platform can be used for both inhibitors and agonists with the caveat that the predicted effect 
of a compound may be unknown until verified experimentally. For example, CANDO could predict cocaine for 
the treatment of cocaine-related disorders. Therefore, special care needs to be used when examining these predic-
tions since dose selection is not part of the current model.

Once the interaction matrix is constructed, our methods compare the all compound-proteome interac-
tion signatures where the similarity of two signatures can be calculated using various metrics as simple as root 
mean squared deviations (RMSD) to sophisticated graph theory based comparisons that can take underlying 
protein-protein interactions (compiled from public sources24,35–37) into account. Similarities between (regions 
of) interaction signatures indicate a relationship in functional behaviour. However, the differences between two 
signatures are difficult to understand without further knowledge as it may indicate a more potent drug, a possible 
side effect, or no effect whatsoever. In addition to predicting a ranked list of putative drugs that are most likely 
to function similarly to other drugs approved for a particular indication, the signature comparison and ranking 
helps to analyse compound behaviour in biologically relevant pathways35,36,38. Our CANDO platform is successful 
for prospectively validating putative leads for several indications15,25,29.

Mental health indications and interventions. A large number of diseases and disorders have mental 
health implications as catalogued by the American Psychiatric Association (APA)39. These indications affect peo-
ple in all age groups, social classes, and races40–44. The treatments for these indications mostly consist of small 
molecule therapeutics, varying individually for specific diseases, disorders, or conditions. According to a report 
published by the World Health Organization in 201145, the number of United States (US) citizens taking medica-
tion to treat mental health has increased to over two million US citizens since 2001. Anxiety disorders make up 
the largest category of mental illness in the US affecting a total of 42 million people. The second largest category 
is major depression disorder affecting 14.8 million US citizens on any given day. Approximately 2.4 million US 
citizens have schizophrenia where no effective treatment or cure is currently available as schizophrenia medica-
tion typically results in metabolic issues leading to weight gain and type 2 diabetes46. Collectively mental health 
indications/disorders cost the US economy $192.3 billion each year and result in high morbidity, with suicide 
being the tenth largest cause of death47,48. Unfortunately, adolescents are susceptible to depression and suicide, 
and the effectiveness of antidepressants for these individuals remains uncertain49.

Human use of psychoactive substances. We define psychoactives as compounds that cross the 
blood-brain barrier, target proteins expressed in the brain as their primary modes of action, and thereby perturb 
human mental states. Although proteins expressed in the brain are paramount for the prediction of compounds as 
potential therapies for mental health disorders, synergistic effects may occur due to interactions in the periphery. 
For example, it has been shown that the gut microbiome plays an important role in the central nervous system50 
and multiple links between the peripheral mechanisms and depression have been found previously51,52. We have 
also benchmarked CANDO to show that best drug repurposing accuracies are obtained when all protein struc-
tures are used for interaction signature comparisons to determine compound similarity, suggesting the role of 
multiple networks working together in biology to achieve a certain phenotype/function, instead of specific pro-
teins as used traditionally for drug discovery15,25. This approach makes CANDO different than other methods 
that are focused towards single target inhibitor discovery vs drug discovery. Therefore, we believe that the study 
of proteome-wide interaction signature for repurposing psychoactive compounds is suitable in the context of 
mental health indications.

Since the time of the earliest records, humans have been ingesting psychoactive substances for religious and 
spiritual purposes (for example, dimethyltryptamine in Ayahuasca, mescaline in Peyote), for medicinal purposes 
(opium), and for recreation (caffeine, nicotine, alcohol)53. The vast majority of pyschoactives are considered 
taboo for a variety of reasons and, with few exceptions, are not investigated for potential medicinal properties. 
In this study, we focus on the phenylethylamine and tryptamine classes of psychoactives described by Alexander 
Shulgin54,55 as well as additional cannabinoids.

Due to recent changes in legislation, a few of these compounds are available as approved drugs in some 
jurisdictions (for example amphetamine for diet control and attention deficit hyperactive disorder, and tet-
rahydrocannabinol for anxiety). The action of these compounds is thought to affect human physiology by their 
structural similarity/mimicry to neurotransmitters (for example, psilocybin and lysergic acid diethylamide both 
mimic the compound serotonin). There is an increasing amount of evidence for cannabinoids having the ability 
to treat epilepsy and epilepsy-related indications56,57, but its legal status is still diffuse as cannabinoids remain 
classified as Schedule I by the United States Federal Government (a classification possessing no medicinal use). 
Similarly, psilocybin and ketamine have been shown to treat depression via a mechanism not targeted by current 
antidepressants58,59.
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These examples are the tip of a proverbial iceberg, and recent reinvestigations into the clinical relevance of 
illicit psychoactive compounds suggest further investigation into the potential of these compounds in treating 
mental health indications60. This clear disconnect between current research and current legislation warrants a 
more comprehensive investigation for the use of these psychoactive compounds for medicinal purposes but in 
vitro and in vivo verification is currently difficult given their scheduling status. The CANDO shotgun drug dis-
covery and repurposing platform is therefore uniquely suited to conduct such an investigation to make a case for 
experimental verification.

While other classifications of psychoactives could be utilized (for example, all compounds known to cross the 
blood-brain barrier), our goal in this study was to see if any of the selected psychoactive compounds, primarily 
known without any therapeutic utility, are predicted to treat mental health indications. Our work also demon-
strates the more general utility of the CANDO platform in assessing the effect of drug classes on this specific class 
of indications.

Analysing the role of psychoactives in mental health indications using CANDO. Most of our 
selected psychoactive compounds are illegal to synthesize and thus difficult to study in vitro (much less in vivo). 
Cannabinoids are in the process of being legalized for medicinal uses in some jurisdictions, and this serves as a 
justification for studying these drugs further. The cause of many mental health indications is not characterized 
by one protein, but by several proteins in several different categories61–65. Thus, the traditional high throughput 
screening methodology of testing one compound against one protein is not a suitable approach for mental health 
drug discovery. The CANDO platform allows evaluation of all selected psychoactives across a large library of 
protein structures, providing a logical and reasonable method to develop leads for medications that may be suit-
able for treating mental health indications. Our goal here is to study, analyse, and characterize these psychoactive 
compounds using the CANDO platform so that the potential medicinal properties of these compounds can be 
assessed and evaluated in further bench and clinical studies. The outcomes for this study are not necessarily to 
predict mental health therapies but rather to generate hypotheses if the predicted psychoactives serve as the most 
promising leads for different mental health indications based on similar chemoproteomics perspective.

Results
We describe our results based on two approaches of examining the relationships between the selected psychoac-
tives and mental health indications using the top-ranked predictions by the CANDO platform. An example of 
these predictions is given in Table 1, where we are careful to list potential issues with the predicted psychoactive. 
At the outset, we examined the distributions of percentages of psychoactive compounds (relative to total com-
pounds) in the top-ranked predictions for mental health indications. Conversely, we can compare the distribu-
tions of percentages of mental health indications selected by the psychoactive compounds in the top-ranked 
predictions. We further analyse the latter distributions broken down by psychoactive classes and the distributions 
of mental health indications. We conclude with three case studies illustrating the application and utility of the 
CANDO platform in discovering psychoactive therapeutics to treat mental health indications. We again caution 
that applying these predictions for the development of new therapeutics must be done judiciously.

Putative psychoactives for mental health indications. The results showing the distributions of per-
centages of psychoactives for mental health indications are given in Fig. 2, and the values used to create the figure 
are provided in Table S7. This figure shows that the difference in the random and non-random distributions. 
Since these distributions are statistically different, we conclude the selected psychoactive compounds are better 
at treating mental health indications on average than non-psychoactive compounds selected at random. As the 
number of compounds considered increases, the normal and randomized distributions become more alike. This 
result is expected as there are a larger number of non-psychoactive compounds than the selected psychoactive 
ones and, therefore, the addition of a new compound is more likely to be non- psychoactive than psychoactive. 
Therefore, as the number of compounds in the result list increases the percentage of psychoactives predicted for 
any indication will decrease (Fig. 2a–d).

Selection of mental health indications by selected psychoactives. The distributions for the selec-
tion of mental health indications by selected psychoactives relative to all indications are shown in Fig. 3 (raw 
values provided in Table S8). The greater the percentage of mental health indications, the more selective the 
psychoactive. Furthermore, the indications selected by psychoactives using the CANDO platform yield a high 
percentage of mental health indications relative to random controls, illustrating that these psychoactives are more 
likely than non-psychoactives to be effective at treating mental health indications.

Comparison of randomized compound and indication distributions. The two randomized distri-
butions in Fig. 3 (shown in green and blue) are distinct. The distribution representing randomized compounds is 
less uniform and has a larger average percentage (p-value less than 2 × 10−16 from a one-tailed student t-test for all 
four plots) than the randomized indication distribution. These data show that a single drug is more likely to treat 
multiple indications than a single indication is to be treated by multiple drugs. This has been shown previously by 
the ability to repurpose drugs66–68 and is an important feature of the CANDO platform. The ability to repurpose 
previously approved compounds is increasingly important69. This result highlights the utility of the CANDO 
platform for drug repurposing.

Comparison of different psychoactive classes. Figures 4 and 5, Tables S8 and S9 differentiate the psy-
choactives by compound class: amphetamine, cannabinoids, cathinones, phenethylamines, and tryptamines. 
These figures and tables illustrate that the classification of a compound has an impact on which indications it 
is predicted to treat. Therefore, we will continue the discussion based on psychoactive compound-classes. The 
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details to classify psychoactive compounds used in this work is given in the Supporting Information section enti-
tled: “Classification of psychoactive compounds via substructure searching”.

Relationships between mental health indications. Our predictions for indication-indication asso-
ciations are shown in Fig. 6. Interestingly, some indication relationships have been verified clinically. These 
include: Epilepsy with Seizure, Cocaine-related disorders with depression70, Seizures with Substance Withdrawal 
Syndrome71, Depression with Anxiety,72 and possibly relating binge-eating and personality disorder73. The ability 
of our repurposing platform to reproduce known indication relationships suggests that our chemoproteomic sig-
natures can capture key biological interactions. In addition, the number of overlapping psychoactive compound 
predictions strongly relate multiple mental health indications (width of the chords in Fig. 6). These psychoactives 
interact with multiple proteins (similar chemo-proteome signatures) suggesting common biochemical pathways. 
We are confident that our method may be useful to discover new disease pathways relating these indications. 
Identifying and validating these new pathways are beyond the scope of this work.

Discussion
The Top10, Top25, and Top40 predictions in Fig. 2 for three mental health indications, Seasonal Affective 
Disorder, Circadian Rhythm Sleep Disorders, and Jet Lag Syndrome, consist only of psychoactives belonging 
to the tryptamine class (indication rank of 100%). The only compound known to treat all these indications is 
melatonin (also a tryptamine)74–76, indicating that its proteomic interaction signature is most similar to the inter-
action signatures for these predicted psychoactives. This result demonstrates that the proteomic shotgun drug 
repurposing approach adopted by the CANDO platform makes sensible predictions of related compounds based 
on their similarly of interaction signature with all proteins, compared to traditional single target approaches. As a 
result, we present class specific breakdowns of Fig. 2 in the Supporting information (Fig. S1). Studies by an Israeli 
pharmaceutical company give experimental evidence demonstrating that some of these tryptamine psychoactives 
are indeed likely to treat the aforementioned three indications77. These studies provide corroborative evidence for 
the efficacy of the CANDO platform and highlight its potential of finding new drugs for treating any indication 
that has at least one approved drug.

Psychoactive Known effects and potential for abuse Mental Health Indication

3,4-dimethylmethcathinone Stimulant with a high potential for abuse. Anxiety Disorders

3,4-dimethylmethcathinone Stimulant with a high potential for abuse. Depressive Disorder, Major

1-naphthyl(1-pentyl-1h-indol-3-yl)methanone Serious source of addiction Alzheimer Disease

dextromethorphan Over the counter antitussive Attention Deficit Disorder with 
Hyperactivity

dexfenfluramine Weight loss drug pulled for causing cardiac issues Autistic Disorder

3-fluoroamphetamine Bipolar Disorder

2-fluoroamphetamine Cataplexy

metamfepramone Delirium

bupropion Approved by the US FDA to treat depression Depressive Disorder

metamfepramone Tourette Syndrome

ergoline Used to treat migraine headaches Erectile Dysfunction

α-pyrrolidinopentiophenone Stimulant Learning Disorders

2-fluoroamphetamine Narcolepsy

isopropylamphetamine Obessive-compulsive disorder

3-fluoroamphetamine Personality Disorders

pyrovalerone US Schedule V drug used for treatment of chronic 
fatigue Phobic Disorders

dextromethorphan Over the counter antitussive Psychotic Disorders

3,4-dimethylmethcathinone Restless Legs Syndrome

pyrovalerone US Schedule V drug used for treatment of chronic 
fatigue Schizophrenia

pyrovalerone US Schedule V drug used for treatment of chronic 
fatigue Stress Disorders, Post-Traumatic

α-pyrrolidinopentiophenone Stimulant Substance Withdrawal Syndrome

pyrovalerone US Schedule V drug used for treatment of chronic 
fatigue Tobacco Use Disorder

isopropylamphetamine Panic Disorder

3,4-dimethylmethcathinone Stimulant with a high potential for abuse. Cocaine-Related Disorder

3-fluoroamphetamine Binge-Eating Disorder

Table 1. Psychoactives and their corresponding mental health indications with the highest ranks from the 
Top10 predictions. This represents a small window into the types of predictions made using our drug discovery 
and repurposing platform. These predictions represent hypotheses of novel putative therapeutic leads for these 
indications to be further evaluated by preclinical and clinical experiments.
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The remainder of this discussion will be used to highlight case studies which are verified in the literature. For 
a complete list of psychoactive predictions, please see the tables in the supporting information.

The indication with the largest number of high ranking psychoactives in the top-ranked predictions is 
cocaine-related disorders belonging to the cathinone class of stimulants, a summary of which is given in Table 2. 
The similarity between the effects of cathinone and cocaine on behaviour has been previously established as part of 
a similar pathway78. We are aware that some of these predictions are unlikely to have any potential for the develop-
ment of new therapeutics for cocaine-related disorders due to their associated toxicity79,80. A cathinone of interest is 
the anti-depressant bupropion, which is well known for promoting smoking cessation and has also been proposed 
for the treatment of methamphetamine and cocaine substance abuse disorders81,82. These findings and related uses 
further showcase the ability of CANDO platform to accurately associate compounds/drugs and indications. While 
this example is successful in showcasing CANDO’s ability to find the relationship between compounds and mental 
health disorders, one needs to be cautious as these predictions may mimic cocaine and lead to adverse reactions 
depending on the dose. For example, Bupropion is perceived as a stimulant to those with a history of cocaine use83,84. 
Further, the effects of dextromethorphan may be due to its stimulant properties85. However, in some cases we can 
obtain therapeutic benefit from potentially problematic compounds, e.g. methadone is an approved treatment for 
opioid abuse, but is known to have several opioid-related effects when given in high enough dosages86.
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Figure 2. Normalized indication rank for all indications: Percentage of psychoactives in the Top10 (a), Top25 
(b), Top40 (c), and Top100 (d) ranked predictions for mental health indications. The shading of the bars 
indicates the number of compounds known to treat an indication in the ranked lists. The green line shows 
the results of randomizing the predicted compounds and the straight-line segment indicates the mean of the 
randomized distribution. A one-tailed Kolmogorov-Smirnov test is performed to show that these distributions 
are statistically different than the randomized distributions (p < 0.001) Raw KS-p-values are presented in 
Table S10. The data indicate that the prediction of psychoactives by the CANDO platform for mental health 
indications is not due to chance and that a significant fraction of mental health indications is much more likely 
to be amenable to treatment by them or an analogously behaving compound (left-hand side of the graphs 
above the green control line). The circled indications are Seasonal Affective Disorder, Circadian Rhythm Sleep 
Disorders, and Jet Lag Syndrome.
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The highest-ranking phenethylamine predicted to treat cocaine-related disorders is the antitussive drug, dex-
tromethorphan. This compound, generally available over the counter, is known for its hallucinogenic side effects 
at high doses, which is reflected both in the predictions by CANDO and is reinforced in the literature87–91. The 
use of the CANDO platform for making predictions to treat specific mental health indications is strengthened 
by the accurate identification of bupropion and dextromethorphan (both selected psychoactives) in treating 
cocaine-related disorders.

The two psychoactive cannabinoids, tetrahydrocannabinol and cannabinol are predicted to treat Epilepsy and 
Absence Epilepsy by the CANDO platform, and cannabinol is also predicted to treat Status Epilepticus. While the 
cannabinoids are not the highest ranked compounds relative to other psychoactives for these indications, our findings 
are validated by recently published studies for the use of cannabinoids to treat epilepsy-related indications56,57. The 
non-psychoactive cannabinoid (cannabidiol) is not predicted to treat any epilepsy-related indications, leading to an 
intriguing hypothesis concerning the likelihood of a cannabinoid treating epilepsy corresponding to its psychoactivity. 
However, given the limited data available, further study is warranted to verify this hypothesis. Our work illustrates the 
recovery of known corroborative associations between cannabinoids and epilepsy but also demonstrates how predic-
tions made by the CANDO platform can be used to develop hypotheses on the biology of diseases for experimental 
investigation.
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Figure 3. Normalized compound rank for all psychoactives: Percentages of mental health indications predicted 
to be treated by psychoactives for the Top10 (a), Top25 (b), Top40 (c), and Top100 (d) ranked predictions. Bars 
shown in red indicate non-randomized results, bars in green indicate the same results after the compounds in 
the ranked lists have been randomized, and bars in blue show the percentages after (only) the indications have 
been randomized in the ranked lists. The green line segment indicates the mean of the randomized psychoactive 
distribution and the blue line segment indicates the mean of the randomized indication distribution. A one-tailed 
Kolmogorov-Smirnov test for the normal (red) distribution against the randomized (green) one shows statistical 
significance (p < 0.000001) for each of the panels above. Raw KS p-values are presented in Table S10. In addition, 
raw T-test p-values are given in Table S11. The data indicate that the psychoactive compounds select mental health 
indications within their top rankings at a much higher likelihood than compounds selected at random.
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Methods
An overview of the CANDO platform is described in Supporting Information. Here, we describe the approach 
used to analyse the data generated by this platform to characterize the role of the selected psychoactives in mental 
health indications.

Selection of specific phenethylamines, tryptamines, and cannabinoids. We collected a total of 
428 compounds (structures in Tables S1–S6) to be investigated using CANDO and categorized them into 291 
phenethylamines and 109 tryptamines described by Alexander Shulgin54,55, and 6 cannabinoids (cannabinol, 
cannabidiol, and tetrahydrocannabinol) using a subgraph based search methodology based on the structure of 
the parent molecule (see Supporting Information for full description of this method). An additional 22 com-
pounds are not strictly classified as phenethylamines but have structural similarity to the phenethylamine class 
are included as unclassified. We further subdivided the 291 phenethylamine compounds into 149 amphetamines 
and 20 cathinones, the remaining 122 phenethylamines are simply referred to as phenethylamines. The CANDO 
v1 compound library includes these 428 psychoactives and their proteomic interactions signatures to repurpose 
psychoactives for indications/diseases9. Most of these psychoactives are classified as Schedule I substances by the 
United States Drug Enforcement Agency, indicating they have no known medicinal use, no accepted standards 
for safety, or have a high potential for abuse. Thus, when such a substance is discussed, the potential pitfalls are 
presented along with that substance. We selected this set of compounds as almost all of them are known to affect 
mental physiology upon ingestion54,55,92. A notable exception in the compounds evaluated is cannabidiol which 
is not strictly psychoactive92 but is structurally similar to other cannabinoids and therefore warrants an investiga-
tion into its potential therapeutic value.

The CANDO v1 compound-proteome interaction signature (see Supporting Methods) includes all associa-
tions of treatment and side effects caused for each compound via the proteomic signature as this is composed of 
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Figure 4. Percentage of mental health indications predicted to be treated by classes of psychoactive 
compounds according for the Top10 (a), Top25 (b), Top40 (c), and Top100 (d) ranked predictions. The above 
graph shows the percentage of indications selected by psychoactives (similar to the previous figure), except 
that the psychoactives have been grouped into six major classes: amphetamine, cannabinoids, cathinones, 
phenethylamines, tryptamines, and other (left to right in each panel). The data illustrate the selectivity of each of 
these three classes of compounds for mental health indications.
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all target, anti-target, and off-targets proteins for each indication/disease. The compound proteomic interaction 
signature similarity yields therapeutic predictions by considering similarity to known drug signatures for each 
disease. It should be noted that this methodology can also match a psychoactive to a compound known to worsen 
a given indication in addition to predicting a compound known to ameliorate the same indication. Therefore, 
the set of compounds that were used as therapy for a given indication did not include any of the aforementioned 
psychoactive compounds given that the nature of these compounds as treatments is still controversial. As a result, 
the ability of the platform to predict a psychoactive from another psychoactive compound-proteome signature 
is not investigated in this work. Most importantly, all predictions are made based on similarity to an approved 
non-psychoactive drug for a mental health indication, without any knowledge of therapeutic target associations 
for making predictions for psychoactive compounds. Therefore, no association between an indication and a pro-
tein target is used to weight the similarity between two compounds. For example, the interaction score of a psy-
choactive and the dopamine receptor is not given a special weight for Schizophrenia.

Selection of mental health indications. The Medical Subject Headings (MeSH) vocabulary is used to 
specify the diseases, disorders, and conditions that are classified as mental health indications. The U.S. National 
Laboratory of Medicine division of the National Institutes of Health (www.nlm.nih.gov) includes the latest ver-
sion of the MeSH database. It should be noted that this database is compiled at the clinical level and does not 
consider the underlying biology leading to a specific indication. Therefore, some spurious and non-traditional 
indications may be included as mental health indications. Since a biological mechanism study is beyond the scope 
of this paper, we used all the indications suggested by MeSH.

Top 10 Top 25

Top 40 Top 100

In
di
ca
tio
n

In
di
ca
tio
n

In
di
ca
tio
n

1 5 10 20 30
% occurrence

Amph
etamin

e
Canab

inoid
Cathin

oneOther
Phene

thylam
ine

Trypta
mine

In
di
ca
tio
n

Amph
etamin

e
Canab

inoid
Cathin

oneOther
Phene

thylam
ine

Trypta
mine

Amph
etamin

e
Canab

inoid
Cathin

oneOther
Phene

thylam
ine

Trypta
mine

Amph
etamin

e
Canab

inoid
Cathin

oneOther
Phene

thylam
ine

Trypta
mine

100

a

d

b

c

Figure 5. Distribution of mental health indications treated by different classes of psychoactives. As the number 
of predictions increases (from Top10 (a) to Top100 (d)), the distribution of indications per class becomes 
increasingly similar. Given the proteomic signature comparison approach used by CANDO to makes these 
predictions, this indicates that psychoactives from one category are predicted to bind to the same proteins as 
psychoactives from a different category, resulting in a constant percent occurrence for all compounds predicted 
to treat an indication. Thus, the Top10 rankings provide the most specificity for analysing the effect of a 
psychoactive class on selecting mental health indications. Indications of interest are shown with the following 
boxes: red for Seasonal Affective Disorder, Jet Lag Syndrome, sleep disorders and Broca Aphasia; orange is 
Binge-Eating Disorder, Narcolepsy, and Anorexia Nervosa; purple is Heroin Dependence, Substance-Related 
Disorders, and Epilepsy.
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Figure 6. Indication-Indication association counts plotted as chord diagrams for all Top sets (a–d). Raw 
association counts are given in Tables S12–S15. These diagrams show predicted relationships between the 
indications. The width of the chord is proportional to the number of predicted psychoactives relating two 
indications. Known relationships include Epilepsy with Seizure, Depression with Cocaine-related disorders, 
etc. Abbreviations used: RLS: Restless leg syndrome, SIMD: sleep initiation and maintenance disorder, ADHD: 
Attention deficit with hyperactivity disorder, SWS: substance withdrawal syndrome.

Psychoactive Known effects and legal status

flephedrone Toxicity not well established

buphedrone Illegal for human consumption

ethcathinone Illegal due to similarities to mephedrone

mephedrone High potential for abuse

methcathinone Causes euphoria. Highly addictive

3,4-dimethylmethcathinone Stimulant with a high potential for abuse

bupropion Prescription anti-depressant.

dextromethorphan Over the counter antitussive

alpha-pyrrolidinopropiophenone Stimulant

1-naphthyl(1-pentyl-1h-indol-3-yl)methanone Serious source of addiction

n,n-dibutyltryptamine Hallucinogenic research chemical

isopropylamphetamine Stimulant

Table 2. Top psychoactives predicted to treat cocaine-related disorders by the CANDO platform. The top 
predictions for these indications belong to the cathinone class. A few of these compounds have already been 
associated with cocaine-related disorders in the literature78–82,87–90, showcasing the accuracy of the platform in 
rediscovering known associations, and the remaining ones represent hypotheses of novel putative therapeutic 
leads to treat cocaine-related disorders to be evaluated by further preclinical and clinical experiments.
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The MeSH database is divided into tree structures with a specific tree (F03) denoted for Mental Disorders. The 
specific branches of the Mental Disorder Tree used in this study are Anxiety Disorders (F03.080), Dissociative 
Disorders (F03.300), Feeding and Eating Disorders (F03.400), Neurocognitive Disorders (F03.615), Somatoform 
Disorders (F03.875), Conduct Disorders (F03.250), Neurodevelopmental Disorders (F03.625), Mood Disorders 
(F03.600), Neurotic Disorders (F03.650), Personality Disorders (F03.675), Schizophrenia Spectrum Disorders 
(F03.700), Sleep-Wake Disorders (F03.870), and Substance-Related Disorders (F03.900). All the indications 
listed in these branches were used along with Dyspareunia, Erectile Dysfunction, Paraphilias, Fetishism, and 
Paedophilia from the Sexual Dysfunctions (F03.835) branch yielding a total of 108 mental health indications that 
are analyzed in this work. A separate MeSH identification paradigm was done for epilepsy-related indications 
as these indications are placed in a separate MeSH tree because they are neurological disorders, not psychiatric 
disorders. The MeSH tree evaluated for epilepsy is C10.228.140.490 which includes Drug-Resistant Epilepsy, 
Myoclonic Epilepsies, Partial Epilepsies, Benign Neonatal Epilepsy, Generalized Epilepsy, Post-Traumatic 
Epilepsy, Reflex Epilepsy, Landau-Kleffner Syndrome, Lennox-Gastaut Syndrome, Seizures, and Febrile Seizures. 
A total of 29 additional epilepsy-related indications are presented in this work.

calculation
Ranking the importance of predicted psychoactives for mental health indications. We gen-
erated Top10, Top25, Top40, and Top100 ranked compound lists for all indications (mental health related and 
otherwise) using the CANDO v1 platform for each indication and counted the number of times a compound 
prediction is present in each of the ranked lists. A compound may be predicted to treat an indication several times 
if there are numerous known drugs for that indication.

For example, 65 known drugs are used clinically for schizophrenia and are included in the CANDO platform. 
Therefore, a set of 65 chemoproteomic signature similarities are used to predict an uncharacterized compound 
for schizophrenia. It is possible that the same uncharacterized compound may be predicted at most 65 times 
for schizophrenia. The number of times such a compound is predicted for a given indication is termed as the 
‘consensus count,’ which is normalized as the percent occurrence. We compute percent occurrence as the ratio 
of consensus count to the maximum number of times a compound could be predicted for an indication using 
signature similarity (i.e. the number of known treatments for the indication).

We hypothesized that the higher the number of times a compound is predicted to treat a given indication, the 
greater the confidence in the prediction made because different drugs treat indications due to different biological 
pathways on the proteomic level. The combination of proteomic similarity implicitly includes a combination of 
all pathways to yield efficacy and is denoted by the frequency of compounds predicted for each indication. To 
investigate the general role of psychoactives for mental health, we took the frequency of psychoactive compounds 
predicted as putative drugs for each indication as a percentage of all compounds predicted for the given indica-
tion. The ratio of psychoactive to all compounds for a given indication is referred to as the normalized indication 
rank and quantifies the overall performance of psychoactive compounds versus non-psychoactive for a given 
indication.

A similar procedure is used to measure the propensity of a compound to be predicted for mental health 
indications and is used to ask the question: how many times an indication is (or percentage of mental health and 
non-mental health indications) listed either as a prediction for treatment by each psychoactive compound and is 
referred to as the normalized compound rank. This measure allows us to express the preference of a given com-
pound towards mental health indications. To illustrate metrics of normalized compound rank, and normalized 
indication rank, we consider a simple example where a psychoactive compound ergoline and a non-psychoactive 
compound aspirin are only predicted for the mental health indication Pica (an eating disorder) and Stomach pain 
(non-mental health indication). Now consider ergoline that is predicted seven times for Pica, and three times 
for Stomach pain based on the similarity of chemo-proteome analysis while the non-psychoactive drug aspirin 
is predicted to treat Pica four times and Stomach pain six times. The normalized compound rank for this simple 
example will be 70% [100 * 7/(7 + 3)] for ergoline and 40% [100 * 4/(4 + 6)] for aspirin. Using the above example, 
we can also determine the normalized indication rank for Pica and Stomach pain. Since seven psychoactives 
and four non-psychoactive compounds were predicted for Pica, the normalized indication rank is 64% [100 * 
7/(4 + 7)] for Pica and similar calculation yields an indication rank of 33% for Stomach pain. Together these 
metrics suggest the importance of psychoactive compounds and their preference for mental health compared to 
non-mental health indications.

Computational randomized controls. To further ensure that our results were not arrived at by chance, 
the order of the predicted compounds is randomized, and the above procedures repeated. All compounds pre-
dicted to treat an indication are randomized regardless of whether the indication is categorized as a mental health 
indication. Thus, a compound not predicted initially to treat a mental health indication may, due to random 
chance, be predicted to treat a mental health indication in the randomized data set. If a random compound 
replaces a predicted compound multiple times for a single indication, the random compound replaces the orig-
inal (non-random) compound for every prediction. This randomization process is repeated 1000 times, and the 
compound and indication ranks for all the randomized searches are averaged.

A second random control is performed in addition to the one described above where the indications (mental 
health or otherwise) are randomly rearranged. Thus, a non-mental health indication may be classified as a mental 
health indication by chance (and vice versa). This procedure provides a second control that allows us to assess 
whether selected psychoactives are more likely to be predicted for mental health indications than non-mental 
health indications.

https://doi.org/10.1038/s41598-019-49515-0


1 2Scientific RepoRtS |         (2019) 9:13155  | https://doi.org/10.1038/s41598-019-49515-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Determination of relationships between mental health indications. We relate two mental health 
indications when at least two different psychoactive compounds are predicted for both indications. The frequency 
of prediction for common psychoactive compound predictions is termed as ‘indication-indication association 
counts.’ Next, to strongly relate the two indications, we also calculated the ‘consensus count’ for all psychoac-
tives predicted for each mental health indication. Note that a predicted psychoactive could have a different con-
sensus count for each indication. For example, 1-naphthyl(1-pentyl-1H-indole-3-yl) methanone is predicted 10 
times for seizures and 8 times for sleep initiation and maintenance disorders (SIMD). Therefore, the consensus 
count of 1-naphthyl(1-pentyl-1H-indole-3-yl) methanone for seizures is 10 and 8 for SIMD. Another compound, 
2-(5-methoxy-2-methyl-1H-indole-3yl)-n,n-dimethyl ethanamine has consensus count of 3 for seizures and 2 for 
SIMD. Since two different compounds are common predictions for the two indications, the indication-indication 
association count for these two indications is 2. To strongly relate the indications in Top lists and limit a large 
number of associations, we selected indication pairs with predicted psychoactive compound consensus count 
as follows: >=2 for the Top10 set, >=3 for the Top25 set, >=4 for the Top40 set, and >=6 for the Top100 set.

Tests for statistical significance. A one-tailed Kolmogorov-Smirnov test93 was used to compare the distri-
butions of psychoactives in the randomized and non-random distributions as this statistical test is typically used 
to show two distributions are dissimilar. For all statistical tests performed in this work, we formulated the null 
hypothesis to be that the distribution of psychoactives predicted to treat mental health disorders can be obtained 
by chance. Our alternative hypothesis is that the true distribution of psychoactives is greater than the randomized 
control (hence a one-tailed test). We also performed a one-tailed paired T-test to ensure that the mean of the 
differences between the test distribution and the randomized distribution is greater than zero. The raw p-values 
obtained for all statistical tests are given in Tables S10–S11.

conclusions
Traditional drug discovery is limited by its narrow focus on one or a few targets. Drugs approved for one indi-
cation interact with multiple proteins and thereby work across multiple indications. The CANDO platform 
improves upon the traditional approach by examining all interactions between a compound and a universal 
proteome. This novel approach enables the study of drugs in a holistic chemoproteomic manner that is especially 
relevant for the development of compounds intended for treating mental health indications as these complex dis-
orders are mediated by multiple proteins and pathways. In this study, we investigated the compounds previously 
described by Alexander Shulgin along with additional cannabinoids to identify potential therapies for mental 
health indications. The results of this study indicate the selected psychoactive compounds perform better than 
compounds selected at random for mental health indications.

Conversely, the percentage of mental health indications selected by psychoactives is better than randomly 
selected compounds. This shows that psychoactives may represent promising leads for the development of 
therapeutics for the treatment of mental health indications. Specifically, the set shows promising results for 
sleep-related disorders, binge eating disorders, seasonal affective disorder, and cocaine substance abuse dis-
order. In addition, the other non-psychoactive compounds predicted by the CANDO platform present in the 
top-ranked predictions may also represent putative repurposable therapies for mental health indications, which 
will be explored in future studies. In a broader context, our work illustrates the advantages of using a computa-
tional chemoproteomics approach for drug discovery and repurposing by providing mechanistic information on 
which proteins are involved in the mediation of the therapeutic effect.

Data Availability
The 3,733 × 46,784 compound-protein interaction matrix, canpredict executables to calculate similarity with 
additional dependency files, output from canpredict for top10, top25, top40, top100, files for analysis, SMILES 
for 3,733 compounds, entire 46,784 list of proteins, R workspace and analysis scripts used to generate all figures 
presented in this work are available at http://github.com/chopralab/candiy_fun.git.
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